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Summary. The presence of subcentres cannot be captured by an exponential function. Cubic spline

functions seem more appropriate to depict the polycentricity pattern of modern urban systems. Using data

from Barcelona Metropolitan Region, two possible population subcentre delimitation procedures are

discussed. One, taking an estimated derivative equal to zero, the other, a density gradient equal to zero. It

is argued that, in using a cubic spline function, a delimitation strategy based on derivatives is more

appropriate than one based on gradients because the estimated density can be negative in sections with

very low densities and few observations, leading to sudden changes in estimated gradients. It is also

argued that using as a criteria for subcentre delimitation a second derivative with value zero allow us to

capture a more restricted subcentre area than using as a criteria a first derivative zero. This methodology

can also be used for intermediate ring delimitation.
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1. INTRODUCTION

A residential density function relates gross or net population density to distance to the

city centre. The estimated equation allows one to predict for any distance from the city

centre the population density at that distance. A residential density function is a useful

device for describing the metropolitan urban structure and the spatial pattern of

population distribution. Since Clark’s (1951) seminal study on residential density

patterns, most theoretical and empirical work on urban spatial structure has adopted the

negative exponential density function, by which that population density declines in a

smooth fashion as distance from the city centre increases. While such analysis

traditionally assumed monocentricity, several recent studies have demonstrated the

presence of population and employment subcentres, peripheral massive housing

neighbourhoods, discontinuities in the form of open spaces such as parks, mountains

and green belts and the relative lack of residential land use at the centre of the urban

area. These studies suggest that a more complex pattern in population density requires a

more flexible function form. Cubic spline density functions have demonstrated to be

able to depict that complexity.

The basic structure of the paper is to use cubic spline estimates in subcentre boundaries

definition. Two possible population subcentre delimitation procedures are discussed.

One, taking an estimated derivative equal to zero, the other,  a density gradient equal to

zero. It is argued that, in using a cubic spline function, a delimitation strategy based on

derivatives is more appropriate than one based on gradients because the estimated

density can be negative in sections with very low densities and few observations,

leading to sudden changes in estimated gradients.



I. Muñiz, A. Galindo and M.A. García Cubic Spline Functions and Subcentre Delimitation

3

This paper is structured in the following way. Section 2 discusses why the exponential

function can not explain the population density pattern of the discontinuous, polycentric

and relatively dispersed contemporary city; Section 3 discusses alternative

methodologies for subcentre delimitation; Section 4 characterises the Barcelona

Metropolitan Region; Section 5 presents the alternative functional forms and the results

of OLS estimations applied to the Barcelona Metropolitan Region; Section 6 reports the

results of Barcelona subcentres delimitation; and Section 7 gives the conclusions of the

research.

2. WHY THE EXPONENTIAL DENSITY FUNCTION CANNOT EXPLAIN THE

RESIDENTIAL DENSITY PATTERN OF MODERN URBAN REGIONS

2.1. The Monocentric City Model and the Exponential Density function

One of the main conclusions of the Monocentric City Model is that the relationship

between residential density and accessibility is seen as a reflection of a more basic

relationship between land rent and accessibility. Residential density declines with

distance to the city centre because bid rent declines to compensate for commuting costs.

Equation (1) represents the standard residential density function

xeDxDEN γ−= 0)(        (1)

where DEN(x) is residential density at distance x from the city centre, D0 is the

theoretical density in the central district, and γ is the density gradient. The population

density gradient measures the proportional decline in residential density per unit of

distance. The estimated exponential function enables the density level at any city centre

distance to be predicted. The value of the gradient is in turn related to the
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suburbanisation level. The greater the level of suburbanisation the flatter the estimated

gradient.

2.2 What the exponential function cannot depict

a) The CBD

Many European and American cities present low density centres due to both the

presence of economic activities that can offer higher bids, as well as to the population's

suburbanisation toward the periphery in search of homogeneous neighbourhoods and

ecological amenities. The Monocentric City Model establishes that the residential

density function is discontinuous. From the city centre until the edge of the CBD,

residential density is low and relatively constant, followed by a slightly decrease in

density levels as we move away from the city centre. However, density variation may

not be so sudden. In such a case, a function that allowed to capture the increasing

evolution of density in the CBD until arriving to a maximum point from which the

residential density decreases, would capture the density pattern better than a

discontinuous exponential function with a constant tract corresponding to the CBD

radius. (1)

b) Massive housing  neighbourhoods

Under the influence of the modern movement (Le Corbusier, 1977), massive housing

neighbourhoods, urbanised by means of high residential blocks for low income families,

were built between 1950 and 1970 at the edge of the traditional city in many European
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cities and also in some Anglo-Saxon cities. Their presence implies that residential

density doesn't fall gradually from the limits of the CBD, but rather it continues

increasing up to a distance that can oscillate between  5 and 15 km.

c) Green belts and metropolitan parks.

Anti-sprawl policies carried out in many urban regions under the influence of Garden-

city movements (Howard, 1898) and Regional Planning (Geddes, 1915), have created a

discontinuous urban region fragmented by green belts and metropolitan parks. Again,

the exponential function is not able to capture this pattern since it doesn't incorporate

the possibility of a local minimum associated to the rural or ecological metropolitan

spaces.

d) Subcentres

Large urban regions usually include employment and residential subcentres. By means

of some corrections, polycentricity can be included in the Monocentric City Model.

However, the residential density function can no longer be the exponential one, rather a

more flexible function able to incorporate a local maximum.Subcentres can be a modern

urban phenomena, as in the case of the edge cities in a number of North American

cities, or the result of an increasing commuting integration of previous settlements, as in

many European and Asian cities (Garreau, 1991; Giuliano and Small, 1991; Cervero

and Wu, 1996; Dieleman and Faludi, 1998;  Lambooy, 1998; Champion, 2001).
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2.3. Cubic spline functions

The presence of “density craters” in city centres, dense peripheries, subcentres, and

green belts cannot be captured by an exponential function, therefore cubic spline

functions have been used in research applied to European cities (Goffette-Nagot and

Schmitt, 1999), Asian cities (Zheng, 1991) and North American cities (Anderson, 1982,

1985; McDonald, 1989). Spline functions are a “device for approximating the shape of a

curvilinear stochastic function without the necessity of pre-specifying the mathematical

form of the function” (Suits et al., 1978, p. 132).

It is convenient in cubic spline estimation to consider segments with the same length.

Considering three segments divided by points (knots) x0, x1, x2 and x3, the relationship

between density and distance would be:
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Cubic spline estimation only allows for identifying central theoretical densities by the

coefficients a1,  a2 and a3, the gradients have to be obtained indirectly. In order to

guarantee the continuity of the function, as well as the first and second derivative,

equation (2) must be restricted to:

a) Equal value in the right and the left of adjacent segments

( ) ( ) ( )3
1

2
111 −−−+ −+−+−+= iiiiiiiiiii xxdxxcxxbaa     (3a)

b) Equal slope in the right and the left of knots corresponding to adjacent segments

( ) ( )2
111 32 −−+ −+−+= iiiiiiii xxdxxcbb    (3b)
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c) Equal second derivative in the right and the left of knots corresponding to adjacent

segments

( )11 3 −+ −+= iiiii xxdcc     (3c)

Substituting (3a), (3b) and (3c) into (2) and considering equal segments

( ) ( ) ( ) ( )[ ]ii xxxxxxxx −=−=−=− +1231201  the cubic spline reduced form can be

obtained.
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3. VARIABLE CUBIC SPLINE DENSITY GRADIENTS AND SUBCENTRE

DELIMITATION

3.1. Variable cubic spline density gradients

In exponential functions estimations, the gradient is by definition constant for each

distance, whereas in cubic spline estimation the gradient is variable and must be

obtained by taking the derivative dxdDEN  divided by DEN− , and evaluating it at

various distances between the initial and terminal knots (Anderson, 1985).
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The density gradient is an empirical instrument which has no correspondence to any

economic theoretical concept. The density gradient is not a slope, nor is it an elasticity,

it is the proportional density variation per unit of distance. Why do we use such an usual

indicator? The answer is that it remains constant for each distance in the case of the

exponential function, whereas the slope and the elasticity do not. Therefore, we can

describe the density performance, that is, urban spatial structure and/or city

suburbanisation level, by only one number which is easily comparable between diverse

cities and periods.

Contrary to the constant gradient at all distances given by the negative-exponential

function, the cubic spline density function has a variable gradient in sign and

magnitude. What is the economic significance of such variation beyond the obvious

reflection of a flexible functional form? It is hard to say, because the gradient loses its

main property as it acquires other functional forms. That must be the reason why

Anderson (1982) just describes the density gradient variability in applying a cubic

spline function for the city of Detroit. In taking functional forms alternative to the

exponential one, density gradient does not present any advantage relative to other

indicators like the slope value or the elasticity value. In spite of its important limitation

related to the lack of a theoretical explanation of gradient variability, variable cubic

spline density gradients could be used for population subcentres delimitation.

3.2. Subcentre delimitation

The North American empirical literature uses to identify employment subcentres, not

population subcentres, the former being the key variable to explain the influence of a
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zone over its surrounding area according to the monocentric city model. Polycentric

urban models only adapt that assumption for a number of employment centres. It is a

reasonable assumption in the case of American cities, but not in Mediterranean cities,

where subcentres correspond to medium-sized mixed cities, previously developed

separately from the main centre, which combine population and employment.

Therefore, urban subcentres identification is not really a problem, because the

preeminence of such areas is so obvious that no empirical framework is needed.

Nevertheless, subcentre boundaries delimitation requires some criteria because the

impact on population density sprawls beyond the administrative limits.

The empirical literature provides a variety of definitions of employment subcentres.

Dunphy (1982) defines subcentres by using a long list of local data. In Giuliano and

Small (1991) and Small and Song (1994) an employment subcentre is defined as a

contiguous set of zones, each with a employment density above some cut-off that

contains total employment above some other cut-off. The problem of such

methodologies is that they require subjective criteria. In contrast with these informal

approaches, McDonald and Prather (1994) depart from the classical monocentric

analysis, and define subcentres as locations with significant positive residuals. In

McMillen and McDonald (1997) Chicago employment subcentres are identified using a

nonparametric analysis and locally weighted regressors. McMillen and McDonald

(1998) propose a two-steps method combining Giuliano and Small (1991) thresholds

and a formal model on employment probability and employment density.

Two recent papers have improved the identification procedure in two directions.

McMillen (2001) propose a two-stage non-parametric procedure. The first step uses a
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non-parametric estimator, locally weighted regression, to smooth employment density

(McMillen, 2001, p. 449). In the second step, a semi-parametric regression is used. The

non-parametric part of the regression captures the effect of distance from the CBD using

a flexible Fourier form. The parametric part of the second regression accounts for the

effects of subcentre proximity on employment density (McMillen, 2001, p. 450). On the

other hand, Craig and Ng (2001) use employment density quantile splines. The method

developed by Craig and Ng (2001),  like McMillen and McDonald (1997) and

McMillen (2001), and different from Giuliano and Small (1991), allow employment

densities to be conditioned on distance to the CBD. Also, quantile splines allows to

investigate real densities rather than to infer peaks.

Departing from Mc Millen (2001) and Craig and Ng (2001), it is posible to identify

population subcentres boundaries by taking CBD distances where variable cubic spline

gradient or the estimated slope is zero. Three points capture the beginning of the

increasing density section, the secondary density peak, and estimated CBD distance

where density stops falling.

The problem with gradients in cubic spline estimation is that the estimated density –the

denominator of the function- can be negative in sections with very low densities and

few observations, leading to sudden changes in estimated gradients (Figure 1). Using

Quantile Smoothing Splines, this would not pose a problem because real data is used,

therefore, no negative value is computed. Taking as a criteria a zero derivative works

better than a zero density gradient if a cubic spline function is used.

[Fig. 1]
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Taking as a criterion for subcentre delimitation a first derivative with value zero still

poses an important problem. We are implicitly supposing that the boundary between the

influence area of the main centre and the influence area of the subcentre is only one

point. But we know that there are large areas where the density influence of the main

centre and subcentres is very low. Taking as a criterion a second derivative with value

zero, which captures the inflexion of the curve, allows us to define an intermediate area

not significantly influenced by the effect of the main centre and the subcentre, as well as

a more restrictive subcentre criteria delimitation.

4. BARCELONA: A POLYNUCLEATED URBAN REGION

4.1. Polynucleated urban regions in Europe

The pattern of urbanisation in Europe is dominated by polynucleated cities. In Western

Europe many cities have between 200 000 and one million inhabitants (Dieleman and

faludi, 1998, p. 365), particularly in Netherlands (Randstad), Belgium (Flemish

Diamond), and Germany (Rhin-Ruhr Metropolitan Region). Neither of these three

metropolitan regions contains a primate city of more than one and a half million

inhabitants. Yet, altogether they concentrate large populations of more than five million

people (Dieleman and Faludi, 1998, p.365). Champion has characterised the way in

which these urban regions have emerged as a fusion mode, that is, “the urban region

emerges from the fusion of several previously independent centres of similar size as a

result of their own separate growth both in overall size and lateral extent and

particularly because of the improvement of transport links between them” (Champion,

2001, p. 664).
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Mediterranean polycentric cities (Barcelona, Florence, Bologna, etc.), differ from

Western Europe urban networks in the presence of a large primate city, but also from

monocentric cities that have recently evolved towards a polycentric pattern by the

formation of new edge cities. City growth does not come from a centrifugal mode

(American cities, Paris, London), nor does it come from a fusion mode (Northwest

urban networks), but from an incorporation mode. Cities like Barcelona or Florence are

becoming polycentric urban regions because the large urban centre is expanding its

commuting area, so that it incorporates medium-sized cities that had previously been

self-sufficient in terms of employment and services (Champion, 2001, p. 664).  These

polycentric urban regions have integrated a Christallerian pre-industrial urban system

(Hohenberg and Lees, 1985) due to the overlapping of two different processes,

population suburbanisation, and the expansion of the commuting area of the central city

and the subcentres.

4.2  The historical process of Barcelona metropolitan growth

Barcelona 1900-1920: The boundaries of the municipality of Barcelona are stabilised.

As in many European cities, the classical structure of Barcelona begins with the old

central city within walls, the ensanche(2), that is, a large area urbanised following a grill

pattern, and the annexation of old villages near the central city with a vast network of

transport inspired in Haussmann (3).

Barcelona 1920-1960: First and second ring urbanisation. The first ring has been

urbanised with massive housing blocks becoming a very dense environment following
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the modern movement criteria. The second ring concentrates second residences used

only at weekends and during vacations.

Barcelona 1960-1985: Second ring integration into the commuting area of the central

zone due to an increasing process of utilisation of second residences as primary

residences. Medium-sized cities suburbanisation toward their contiguous municipalities.

Barcelona 1985-2000: Subcentres integration and expansion of the metropolitan region

including extensive areas beyond subcentres which combine residential and rural uses,

the metropolitan corridors. Following the North American methodology for MSA

delimitation, Clusa and Roca (1997) have estimated that the Barcelona Metropolitan

Region was conformed by 62 municipalities and 3,4 million inhabitants in 1981; 94

municipalities and 3,7 million inhabitants in 1986; 145 municipalities and 4,2 million

inhabitants in 1991 and 162 municipalities, the population remaining at 1991 levels, in

1996 (Pacte Industrial Metropolità, 2001).

At the present time, Barcelona is a conurbation with a large, diverse, and compact

centre (the municipality of Barcelona), an extremely dense first metropolitan ring

urbanised by massive housing blocks, discontinuities in the form of agricultural land

and metropolitan parks, seven activity and residential subcentres and an extensive area

that combines rural and low density residential uses. Five subcentres are historically

medium sized cities which endogenously developed in the past beyond the impulsion

and attraction of the municipality of Barcelona, whereas 2 subcentres have recently

developed under the influence of the Barcelona dynamism. The transportation network

is radial. All subcentres and corridors are connected to the city centre through diverse
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railroad lines and Metropolitan highways. The BMR is a complex, diverse,

discontinuous, polycentric and also partly dispersed metropolitan region. A city of cities

with more than 160 municipalities that occupies nearly 4000 km2 in a radius of

approximately 50 km (Table 1).

The spatial dynamism of the Barcelona metropolitan region during the last 10 years is

characterised by population and employment suburbanisation from the densest areas,

that is, Barcelona, its first ring and subcentres, towards lower density settlements, the

second ring, the commuting influence area of subcentres and the metropolitan corridors.

Simultaneously, there is an increasing metropolitan integration of the surrounding areas,

not only driven by suburbanisation, but also by previous settlements' integration due to

improvements in transportation infrastructures. Both phenomena imply an important

redistribution of densities inside the metropolitan area.

[Table 1]

[Fig. 2]

5. BARCELONA DENSITY FUNCTIONS ESTIMATES

Data for 3481 census tracts were obtained from the 1996 population census report: total

population and the area of each tract. A Geographic Information System (GIS) was used

to provide coordinates for the census tract centroids. These coordinates are used to

measure distance to the CBD, an air distance.
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Tables 2, 3 reports the estimates for the whole BMR and each one of its 6 axes. Table 4

summarises total Barcelona Metropolitan Region optimal results for each function.

Cubic spline functions have been estimated by considering two, three and four interior

knots to provide three, four and five equal-distance intervals respectively from the

minimum distance observed to the maximum. More knots could be computed, but as it

can be seen in Table 3, in most cases additional knots does not significantly decreases

the standard error of regression. The optimal number of knots can be determined using

minimum standard error of regression (Anderson, 1982, 1985), maximum R2, the

statistical significance of the coefficients estimated (Zheng, 1991), or a combined

method. We have followed Anderson adopting the minimum standard error criteria. In

the cubic spline axis estimation, the number of knots varies depending on each axis. 2

knots have been chosen in two axes, 3 knots are chosen in 2 other axes, and 4 knots in

the remaining two axes.

In general, the cubic spline function fits better than the exponential function. The

estimates provide strong evidence that the negative exponential function is not an

appropriate form to use in estimating urban-density functions in the case of  the

Barcelona Metropolitan Region.

[Table 2]

[Table 3]

[Table 4]
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From cubic spline of Figure 3 it can be seen that, on average, the maximum height of

the density function  is not at the centre, but about 5 km distance from it. Beyond

distance 5 km density declines until distance 24 km, where a local minimum is

obtained. Beyond that point, density increases reaching a maximum at distance 38 km,

where, on average, a subcentre is located.

[Fig. 3]

In Figure 4, the metropolitan axes have been grouped into 3 categories: axes that

include a historical subcentre; coastline axes, which also include a historical subcentre;

and modern subcentre axes.

[Fig. 4]

Figure 4 reveals that massive housing peripheral municipalities are located at distance

7-9 km from the city centre, that is, beyond the administrative boundaries of the

municipality of Barcelona, in the axes Vilanova, Granollers, Vilafranca, and Mataró.

The maximum of the density function in the axis Terrassa-Sabadell corresponds to a

peripheral district of the Municipality of Barcelona (Sarrià-St Gervasi), while in the

Vilanova and Martorell axis population density falls from the city centre. It is worth

noting that while obviously there is only one real value corresponding to population

density at the city centre, each axis presents different theoretical densities at the city

centre. Another interesting pattern is that, in comparing cubic spline functions in the

coastline axes, Mataró and Vilanova, we find that between distance 5 and 42 km

population density level is higher in the Mataró axis. This result is consistent with a
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previous historical investment in transport infrastructures in the Mataró axis compared

to the Vilanova axis, mostly due to its plain relief.

6. BARCELONA SUBCENTRES DELIMITATION

Table 5 and Figure 5 reports the results from applying the first and second derivative

criteria discussed in section 3.2. We correct for distinctive topographical and historical

features which conform a non-symmetrical subcentre pattern around the CBD by

dividing the total area in six wedges where the methodology is replicated. This

procedure requires neither “visual inspection” nor previous local knowledge. Therefore

it is an objective approach which is easily reproducible to a variety of cities.

The first derivative methodology provides a subcentre radius with values between 15.04

km, Vilanova, and 25.23 km, Mataró. In applying the second derivative criterion we

find a much more restricted area in radius distance and number of census tracts.

Vilafranca has the larger radius (16.58 km), and Martorell the lower (7.08 km).

Terrassa-Sabadell includes the higher number of census tracts, 258, and Martorell the

lower, 22. The intermediate ring between the main centre and subcentres oscillates

between 9 km (Martorell and Vilanova), and 16 km (Vilafranca).

[Fig. 5]

[Table 5]

7. CONCLUDING REMARKS
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In the case of the Barcelona Metropolitan Region, the inappropriateness of the negative

exponential functional form of the density function has been demonstrated. A more

flexible function is needed to depict a polycentric, and fragmented city region. Peak

densities occur some distance from the city centre, on average, about 5 km, which

corresponds to massive housing peripheral municipalities, and 38 km, which

corresponds to traditional or modern subcentres localisation. The intuitive

appropriateness of the cubic spline function is particularly convincing as it provides a

more realistic urban density pattern. Cubic spline density function can be also used in

population subcentre delimitation. We have argued that neither a gradient with value

zero nor the first derivative are appropriate criteria. We propose in urban subcentre

delimitation to take as a criterion a second derivative with value zero when a cubic

spline function is used.

FOOTNOTES

(1) Latham and Yeates (1970) and Newling (1969) provided a polynomial exponential

function in order to capture the notion that population density may have a “crater” at the

CBD (McDonald, 1989).

(2) The Barcelona ensanche was designed by Ildefons Cerdà in 1850.

(3) The French urbanist Leon Jaussely designed El Plan de Enlaces of Barcelona in

1907.
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TABLES

Table1: The Barcelona Metropolitan Region

Metropolitan
rings

Number of
municipalities

Average
distance
from the

city centre

Net density
residential

levels
(population/

Ha)

Percentage
of public
transport

commuting
trips

Percentage
of

residential
units in

buildings
with more

than 3
floors

Average
population

Barcelona 1 2,5 366 41 94
1,6

millions

First ring 10 12,2 378 29 86 88230
Second ring 23 20,3 241 19 69 23289
Subcentres 7 38,1 169 15 68 85283

Subcentres
commuting

area
20 41,3 54 13 33 5391

Metropolitan
Corridors

101 41,2 69 16 46 5830
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Table 2: Exponential Density Function Estimates 1996

D0 γ Obs. S.E. R2

BMR total
597.19*
(50.35)

-0.05*
(-23.28) 3481 232.23 0.2570

 GRANOLLERS
566.68*
(30.89)

-0.03*
(-10.77) 1159 243.71 0.1806

MARTORELL
604.98*
(23.15)

-0.05*
(-7.85) 927 264.87 0.1434

 MATARÓ
531.31*
(24.41)

-0.03*
(-8.98) 775 245.52 0.1836

TERRASSA—SABADELL
523.31*
(37.569

-0.05*
(-15.63)

1296 192.78 0.2504

 VILAFRANCA.
587.26*
(24.13)

-0.04*
(-6.80)

855 256.78 0.1684

 VILANOVA
549.21*
(23.55)

-0.05*
(-8.42) 500 232.77 0.2467

t-values are in brackets
(*) statistically significant variable
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Table 3: Cubic Spline Estimates 1996

a1 b1 c1 d1 d2-d1 d3-d2 d4-d3 d5-d4 Knots Obs S.E. R2

408.42*
(16.19)

25.13*
(3.72)

-3.55*
(-7.12)

0.08*
(7.81)

-0.13*
(-7.69)

0.15*
(4.44) - - 20.62

41.24 229.92 0.2718

269.5*
(8.21)

79.10*
(7.59)

-9.32*
(-9.73)

0.25*
(9.92)

-0.33*
(-9.43)

0.13*
(5.00)

-0.17
(-1.80)

-
15.36
30.92
46.38

228.62 0.2800

B
M

R
 to

ta
l

241.32*
(5.62)

95.34*
(6.02)

-11.84*
(-6.82)

0.36*
(6.44)

-0.40*
(-5.38)

0.00
(0.04)

0.10
(1.53)

-0.26
(-1.11)

12.37
24.74
37.11
49.48

3481

229.28 0.2758

152.18*
(3.21)

118.36*
(7.19)

-11.91*
(-7.50)

0.29*
(7.06)

-0.39*
(-6.14)

0.23*
(2.53) - - 16.82

33.64 233.65 0.2468

129.75
(1.86)

131.55*
(4.61)

-14.02*
(-4.35)

0.39*
(3.74)

-0.38*
(-2.70)

-0.09
(-1.01)

0.29
(1.27) -

12.61
25.23
37.84

234.56 0.2409

G
RA

N
O

LL
ER

S

332*
(3.68)

32.59
(0.79)

-0.65
(-0.12)

-0.14
(-0.69)

0.49
(1.92)

-0.70*
(-5.28)

0.69*
(3.79)

-0.92
(-1.89)

10.09
20.18
30.27
40.36

1159

233.20 0.2497

88.49
(1.16)

165.09*
(5.29)

-19.85*
(-5.32)

0.61*
(4.68)

-0.67*
(-3.38)

-0.05
(-0.16) - - 12.60

25.20 255.60 0.2023

124.75
(1.17)

147.72*
(2.90)

-17.56*
(-2.38)

0.53
(1.64)

-0.24
(-0.55)

-0.64*
(-2.04)

0.81
(1.03) -

9.45
18.90
28.35

255.66 0.2019

M
AR

TO
RE

LL

277.67*
(1.98)

55.98
(0.73)

-1.13
(-0.09)

-0.36
(-0.54)

1.08
(1.27)

-1.11*
(-2.38)

0.47
(0.68)

-0.17
(-0.09)

7.56
15.12
22.68
30.24

927

255.51 0.2028

290.8*
(5.99)

54.31*
(4.01)

-5.33*
(-4.92)

0.11*
(4.86)

-0.17*
(-4.55)

0.16*
(2.98) - - 20.62

41.24 241.32 0.2113

152.12*
(2.38)

115.17*
(5.22)

-12.15*
(-5.65)

0.32*
(5.52)

-0.42*
(-5.21)

0.17*
(3.05)

-0.21
(-1.41) -

15.46
30.92
46.38

240.12 0.2191

M
AT

AR
Ó

284.7*
(3.48)

57.54
(1.76)

-5.73
(-1.55)

0.13
(1.06)

-0.02
(-0.18)

-0.28*
(-2.89)

0.43*
(3.31)

-0.80*
(-2.36)

12.37
24.74
37.11
49.48

775

240.96 0.2137

299*
(5.96)

73.15*
(3.75)

-11.75*
(-5.23)

0.41*
(5.49)

-0.60*
(-5.30)

0.38*
(2.43)

- - 12.76
25.52 190.20 0.2703

286.6*
(3.71)

83.37*
(2.26)

-13.97*
(-2.64)

0.55*
(2.47)

-0.55
(-1.92)

-0.24
(-1.51)

0.98*
(2.12) -

9.56
19.24
28.71

190.51 0.2680

TE
RR

AS
SA

—
SA

BA
D

EL
L

420.6*
(4.05)

6.47
(0.11)

-1.07
(-0.11)

-0.08
(-0.18)

0.43
(0.77)

-0.67*
(-3.11)

0.34
(1.16)

0.69
(0.64)

7.65
15.30
22.95
30.60

1296

190.37 0.2690

165.80*
(3.15)

121.60*
(6.90)

-12.77*
(-7.99)

0.30*
(7.76)

-0.43*
(-6.69)

0.24*
(2.34)

- - 18.72
37.44

245.90 0.2373

58.45
(0.85)

173.39*
(6.45)

-19.79*
(-6.45)

0.56*
(5.72)

-0.66*
(-4.4)

0.07
(0.59)

0.10
(0.40)

-
14.04
28.08
42.12

245.48 0.2399

VI
LA

FR
AN

C
A

33.95
(0.37)

188.68*
(4.69)

-22.53*
(-4.19)

0.70*
(3.40)

-0.66*
(-2.24)

-0.15
(-0.79)

0.13
(0.52)

0.08
(0.13)

11.23
22.46
33.70
44.93

855

245.96 0.2370

499.2*
(7.71)

-0.49
(-0.35)

-0.72
(-0.26)

0.00
(0.11)

0.05
(0.46)

-0.27
(-1.72) - - 15.26

30.52 231.13 0.2573

444.1*
(5.12)

19.03
(0.46)

-4.51
(-0.88)

0.15
(0.80)

-0.17
(-0.64)

0.10
(0.58)

-0.50
(-1.53) -

11.44
22.89
34.33

231.20 0.2568

VI
LA

N
O

VA

341.9*
(3.18)

81.88
(1.43)

-15.33
(-1.79)

0.68
(1.77)

-0.91
(-1.73)

0.54
(1.42)

-0.59
(-1.12)

0.10
(0.12)

9.15
18.31
27.46
36.62

500

230.79 0.2594

t-values are in brackets
(*) statistically significant variable
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Table 4: BMR estimates 1996

Function Coefficients t-stad. Knots Obs. S.E. R2

Exponential
D0= 597.19
γ = -0.05

50.35
-23.38 - 3481 232.23 0.2570

Cubic Spline

a1= 269.5
b1= 79.10
c1= -9.32
d1= 0.25

d2-d1= -0.33
d3-d2= 0.13
d4-d3= -0.17

8.21
7.59
-9.73
9.92
-9.43
5.00
-1.80

15.36
30.92
46.38

3481 228.62 0.2800
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Table 5: Barcelona Population Subcentre Delimitation

FIRST DERIVATIVE
METHODOLOGY

SECOND DERIVATIVE
METHODOLOGY

Subcenter
Interval
Distance

Subcenter
center
CBD

Distance

Total
Subcenter

Census
Tracts

Subcenter
Interval
Distance

Subcenter
center
CBD

Distance

Total
Subcenter

Census
Tracts

Intermediate
Ring Interval

Distance

Total
Intermediate
Ring Census

Tracts

G
ra

no
lle

rs

24.24 29.71 143 8.96 29.71 75 10.84 67

M
ar

to
re

ll

18.73 24.18 60 7.08 24.18 22 9.57 64

M
at

ar
ó

25.23 29.52 134 11.76 29.51 89 13.34 87

Te
rr

as
sa

 –
Sa

ba
de

ll

16.88 23.96 361 10.07 23.96 258 9.59 181

V
ila

fr
an

ca

32.64 38.63 58 16.58 38.43 48 16.31 42

V
ila

no
va

15.04 40.48 59 11.59 40.36 50 9.65 12
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FIGURES

Figure 1: Subcentre Delimitation: Gradient problems
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Figure 2: The BMR evolution
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Figure 3: Exponential and Cubic Spline Density Functions Estimates: Total BMR 
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Figure 4: Cubic Spline Estimates: axes
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Figure 5: Barcelona Subcentre Delimitation
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