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Abstract
Multiple delivery speci�cations exist on nearly all commodity futures contracts.

Sellers are typically allowed to choose among several grades of the underlying com-
modity. On the delivery day, the futures price converges to the spot price of the
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modity. This imposes an additional delivery risk on hedgers. This paper derives the
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the delivery option may induce the �rm to produce more than in the absence of de-
livery risk. If delivery risk is additively related to commodity price risk, the �rm will
under-hedge its exposure to commodity price risk. If delivery risk is multiplicatively
related to commodity price risk, the �rm will under- or over-hedge this exposure. For
constant relative risk aversion, this is illustrated by a numerical example.
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The impact of delivery risk on optimal

production and futures hedging

Multiple delivery speci�cations exist on nearly all commodity futures con-
tracts. Sellers are typically allowed to choose among several grades of the
underlying commodity. On the delivery day, the futures price converges to
the spot price of the cheapest-to-deliver grade rather than to that of the par-
delivery grade of the commodity. This imposes an additional delivery risk
on hedgers. This paper derives the optimal production and futures hedging
strategy for a risk-averse competitive �rm in the presence of delivery risk. We
show that, depending on its relative valuation, the delivery option may induce
the �rm to produce more than in the absence of delivery risk. If delivery risk
is additively related to commodity price risk, the �rm will under-hedge its
exposure to commodity price risk. If delivery risk is multiplicatively related
to commodity price risk, the �rm will under- or over-hedge this exposure. For
constant relative risk aversion, this is illustrated by a numerical example.

JEL classi�cation: D81; G11

Keywords: delivery risk, futures, risk management, production

1 Introduction

Many commodity futures contracts possess options as to what, where, when and

how much of the underlying the seller of the futures contract can deliver. These

multiple delivery speci�cations are known as the quality option, the location option,

the timing option and the quantity option. They are embedded in futures contracts

in order to constrain the severity of market manipulation such as squeezes and

corners.1 This paper concentrates on the optimal production and futures hedging

decision of a commodity producer in the presence of a quality option.2 If the seller of
1Pirrong (1993) derives necessary and su�cient conditions for manipulating futures prices at

contract expiry. Pirrong (2001) compares the probability of market manipulation for delivery-
settled with that for cash-settled futures contracts.

2If a commodity at di�erent locations is interpreted as di�erent grades of the commodity, there
is no di�erence between location options and quality options. For location options, see Garbade
and Silber (1983a) and Pirrong, Kormendi and Meguire (1994). Financial futures contracts with
delivery options are analyzed by Gay and Manaster (1986, 1991), Kane and Markus (1986) and
Hemler (1990).
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the futures contract exercises the quality option by deviating from the par-delivery

grade, there will usually be a correction of the futures price that the seller receives.

Upward corrections are called premiums, downward correction are called discounts.

However, the realized price di�erence between the par-delivery grade and a non-

par-delivery grade can deviate signi�cantly from the premium or discount of this

non-par-delivery grade. Therefore, the seller can minimize his cost by delivering

the cheapest-to-deliver grade.3 It follows that the (corrected) futures price on the

delivery day converges to the spot price of the cheapest-to-deliver grade rather than

the spot price of the par-delivery grade. As shown by Kamara and Siegel (1987),

Lien (1988, 1991) and Viswanath and Chatterjee (1992), delivery options have an

impact on optimal futures positions provided that a signi�cant proportion of open

interest in a futures contract is physically delivered.4 5

In particular, hedgers are exposed to an additional delivery risk vis-à-vis the

underlying price risk since it is uncertain which grade would be the cheapest to

deliver. This delivery risk cannot be hedged such that hedging the price risk of the

underlying is impaired by the delivery risk embedded in the futures contract.6 As a

consequence, the regression approach to �nding the variance minimizing hedge ratio

is no longer appropriate as shown by Kamara and Siegel (1987).7

This paper analyzes the e�ect of the quality option embedded in commodity

futures contracts on a producer's optimal production and futures hedging decision

in a competitive environment. There are three main �ndings: First, delivery risk
3The cheapest-to-deliver grade is the grade with the minimum delivery-adjusted spot price

among all deliverable grades.
4Peck and Williams (1991, 1992) provide evidence for the signi�cance of physical delivery. They

document that deliveries on the Chicago Board of Trade (CBOT) wheat, corn and soybean futures
markets and the New York Commodity Exchange copper futures market are on average around
15% of the peak open interest in each delivery month in the 1970s and 1980s. On the delivery day,
this �gure is approximately 50%.

5Lien (1988, 1991) analyzes the welfare e�ects of introducing a delivery option into an existing
futures contract. Garbade and Silber (1983b) compare the welfare e�ects of physical delivery and
cash settlement.

6This was �rst noted by Garbade and Silber (1983a), but does not necessarily hold if there are
options on the futures contract, see Lien and Wong (2002), or dynamically complete markets.

7However, Viswanath and Chatterjee (1992) show that the di�erence is not economically sig-
ni�cant for the CBOT wheat contract between 1970 and 1981. The regression approach has been
proposed by Benninga, Eldor and Zilcha (1983, 1984), Lence (1995) and others.
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has a positive impact on output if the producer considers the delivery option more

valuable than the market does. Second, we analyze risk management with futures

contracts and show that the optimal hedge ratio is below one if the delivery risk

embedded in a futures contract is independent of the level of spot prices at the

delivery date. Third, if the amount of delivery risk increases with the level of spot

prices, the optimal hedge ratio may also be above one despite the fact that futures

hedging creates unhedgeable delivery risk.

The paper by Kamara and Siegel (1987) comes closest to ours. However, we ex-

tend their work in at least three respects: Firstly, Kamara and Siegel (1987) analyze

the case of two deliverable grades with jointly normally distributed prices having

equal variance whereas this paper captures the e�ect of any number of deliverable

grades without relying on normality assumptions. Secondly, our model allows for

more general preferences as compared to the mean-variance framework used by Ka-

mara and Siegel (1987). Finally, they take the initial exposure as given and focus

on optimal hedging whereas this paper endogenizes the production decision.

This paper is organized as follows: Section 2 delineates a single-period model of

a risk-averse competitive �rm facing both price risk and delivery risk. The impact of

delivery risk on the optimal production decision is presented in Section 3. Optimal

risk management with futures is analyzed in Section 4. Section 5 concludes.

2 The model

Consider a one-period model with two dates, indexed by t = 0 and 1. There is a

commodity which has several grades, labeled as grades 1, 2, ..., n, where n ≥ 2. At

t = 0, a risk-averse �rm operating in a competitive environment produces grade 1

of the commodity according to a cost function C(Q) where Q is the �rm's output

level to be sold at t = 1; C(0) ≥ 0, C ′(Q) > 0 and C ′′(Q) > 0. When making its

production decision at t = 0, the �rm neither knows the spot price of grade 1 of the

commodity at t = 1, denoted P̃1, nor the spot prices of the other grades, denoted
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P̃2, P̃3, ... , P̃n.8 The support of P̃i is given by [Pi, Pi] with 0 < Pi < Pi < ∞ for

each i. Since P̃1 is random, the �rm is exposed to commodity price risk.

At t = 0, the �rm can trade in�nitely divisible futures contracts in a competitive

futures market where contracts mature at t = 1. Let H denote the number of futures

contracts sold (purchased if H is negative) by the �rm. The futures price at t = 0,

denoted F , is given.

At maturity at t = 1, sellers of the futures contracts have the right to choose

among the deliverable grades 1, 2, ..., n of the commodity the grade they want to

deliver for the ful�llment of their obligations.9 Since sellers exercise this delivery

option by choosing the cheapest-to-deliver grade, the futures price at t = 1 is equal

to the minimum of P̃1, P̃2, ..., P̃n.10 Thus, there is an additional delivery risk vis-

à-vis the price risk to which the �rm is exposed should it enter into a non-trivial

futures position H 6= 0.

The �rm's pro�ts at t = 1 are given by11

Π̃ = P̃1Q− C(Q) +
[
F −min(P̃1, P̃2, ..., P̃n)

]
H . (1)

The �rm has a von Neumann-Morgenstern utility function U(Π), de�ned over its

pro�ts at t = 1, with U ′(Π) > 0 and U ′′(Π) < 0, indicating risk aversion. The �rm's

decision problem at t = 0 is to choose an output level Q and a futures position H

so as to maximize the expected utility of its pro�ts at t = 1,

max
Q,H

E
[
U(Π̃)

]
(2)

subject to equation (1), where E[·] is the expectation operator with respect to the

(subjective) joint probability distribution of P̃1, P̃2, ..., P̃n.
8Throughout the paper, random variables have a tilde (∼) while their realizations do not.
9Location options embedded in a number of futures contracts can all be captured by the quality

options of the type considered in this model.
10For simplicity, it is assumed that there are no delivery adjustments in the form of premiums

and discounts. Otherwise, the model had to be based on the delivery-adjusted prices of grades 2,
3, ..., n.

11Production costs C(Q) are compounded to t = 1. Since transaction costs in the delivery
process are neglected, there is no di�erence between cash settlement and physical delivery.
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The �rst-order conditions for an optimum are given by

E
[
U ′(Π̃∗)

(
P̃1 − C ′(Q∗)

)]
= 0 , (3)

E
[
U ′(Π̃∗)

(
F −min(P̃1, P̃2, ..., P̃n)

)]
= 0 . (4)

where an asterisk (∗) indicates an optimal level. Given risk aversion and the con-

vexity of the cost function, the second-order conditions for the unique maximum

(Q∗, H∗) are satis�ed. The optimal output level is assumed to be positive, Q∗ > 0.

3 Optimal production under delivery risk

In this section, the �rm's optimal production decision and its reaction to the intro-

duction of delivery risk is examined. As a benchmark, we consider the hypothetical

case in which only grade 1 of the commodity is deliverable. In this case, program

(2) becomes

max
Qa,Ha

E
[
U

(
P̃1Qa − C(Qa) + (Fa − P̃1)Ha

)]
,

where index a indicates the absence of delivery options. In this case, the well-known

separation and full-hedging theorems apply such that the �rm's optimal output level

Q∗
a solves C ′(Q∗

a) = Fa and the optimal futures position H∗
a is a full hedge, H∗

a = Q∗
a,

if the futures market is unbiased, Fa = E[P̃1].12

Now, we return to the �rm's decision problem in the presence of delivery risk.

Equation (4) can be rewritten as

E
[
U ′(Π̃∗)

(
F − P̃1 −min(0, P̃2 − P̃1, P̃3 − P̃1, ..., P̃n − P̃1)

)]
= 0 .

Substituting the above equation into equation (3) and rearranging terms yields

C ′(Q∗) = F + V , (5)

where13

V =
E

[
U ′(Π̃∗) max(0, P̃1 − P̃2, P̃1 − P̃3, ..., P̃1 − P̃n)

]
E

[
U ′(Π̃∗)

] .

12See Holthausen (1979).
13Notice that min(0, P2 − P1, P3 − P1, ..., Pn − P1) = −max(0, P1 − P2, P1 − P3, ..., P1 − Pn).
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V is positive since U ′(Π) > 0 and max(0, P1 − P2, P1 − P3, ..., P1 − Pn) ≥ 0 with

strict inequality in at least one state.14 V represents the �rm's individual valuation

of the payo� from the delivery option at t = 1, calculated at t = 0. Since marginal

utility is evaluated at the optimum Π∗, this valuation generally depends upon the

�rm's optimal decisions due to wealth e�ects etc.

The di�erence between the futures price in the absence of a delivery option and

the futures price in the presence of it, (Fa − F ), can be interpreted as the market's

valuation of the delivery option.15 Of course, this di�erence is positive since it is the

seller of the futures contract who has the right to exercise the option such that the

futures price has to be reduced by the value of this option.

The reaction of the �rm's optimal production decision to the introduction of

delivery risk depends on the �rm's individual valuation of the delivery option, V ,

relative to the value the market attaches to the delivery option as represented by

(Fa − F ).16

It is important to notice that assuming di�erent valuations is not a problem

in futures markets since the existence of futures contracts requires at least some

heterogeneity among futures market participants. Given this heterogeneity, it is

likely that di�erent (groups of) market participants attach di�erent values to the

futures contract and to the delivery option.17 Therefore, the value attached to the

delivery option in a futures market equilibrium, (Fa−F ), generally di�ers from the
14If this condition is violated such that max(0, P1 − P2, P1 − P3, ..., P1 − Pn) = 0 in all states,

grade 1 of the commodity is always the cheapest-to-deliver grade such that there is no delivery risk
at all and, hence, V = 0.

15It is not realistic to assume the coexistence of two futures contracts on the same commodity,
one without delivery options, the other with such options. Hence, it would be somewhat misleading
to call the di�erence (Fa − F ) a 'market value' in the usual sense since it is both impossible to
observe this value as well as to trade the delivery option separately.

16It is assumed that the distribution of the par-delivery grade's price P̃1 is not a�ected by the
existence of the delivery option in the futures contract.

17Since delivery options can be interpreted as options to exchange one grade for another, one
can apply valuation models for exchange options such as that of Margrabe (1978) which is em-
ployed by Gay and Manaster (1984) for the valuation of the quality option in the case of two
deliverable grades. A theoretical pricing model for any number of deliverable grades is presented
by Boyle (1989). An overview on pricing is provided by Chance and Hemler (1993). Kamara
(1990) demonstrates that the delivery structure has crucial implications for equilibrium pricing
and, hence, market e�ciency tests even if delivery uncertainty is relatively small.
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�rm's subjective valuation, V .

Subtracting equation (5) from the condition C ′(Q∗
a) = Fa results in (Fa−F )−V =

C ′(Q∗
a) − C ′(Q∗). The convexity of the cost function directly implies the following

proposition.

Proposition 1 If the risk-averse competitive �rm attaches a higher value to the

delivery option than the market does, V > (Fa − F ), introducing a delivery op-

tion induces the �rm to raise its optimal level of production, Q∗ > Q∗
a. If V <

[=] (Fa − F ), optimal production decreases [remains unchanged].

The intuition behind Proposition 1 is as follows: Notice �rst that the �rm can

always sell the marginal unit of its output via the futures market at the predeter-

mined futures price which is either F or Fa. In the absence of delivery risk, the �rm

optimally produces at the point where the marginal cost of production equals the

deterministic marginal revenue Fa. In the presence of the delivery option, the �rm

receives the smaller futures price F . Taken in isolation, this decreases production

since (Fa − F ) > 0. But by selling futures contracts, the �rm also acquires the

valuable delivery option. If pro�table at maturity at t = 1, the �rm does not deliver

its output of grade 1, but sells this output at the spot price P1 and uses part of the

proceeds to purchase the cheapest-to-deliver grade at the spot price min(P2, ..., Pn)

in order to ful�ll the futures contracts. It thereby generates an additional marginal

revenue of max(0, P1 − P2, P1 − P3, ..., P1 − Pn). At t = 0, this additional marginal

revenue is stochastic but never negative (as is the case for any rational option ex-

ercise policy). The �rm's individual valuation of this uncertain marginal revenue

(in the optimum) is given by V > 0. This additional marginal revenue increases

production. In sum, the �rm attaches a value of (F + V ) to its marginal revenue as

indicated by equation (5).

The net e�ect of introducing a delivery option depends on the size of V relative

to (Fa − F ) > 0 which is the amount the �rm has to pay for this option. If the

increase in marginal revenue due to V is higher than the decrease due to (Fa−F ), the
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optimal level of production is higher. If the reverse relation holds, optimal output

is smaller. This is the statement of Proposition 1.

In addition, it follows directly from equation (5) and the de�nition of V that the

�rm's optimal production decision depends on its assessment of the joint probability

distribution of P̃1, P̃2, ..., P̃n, and on its attitude towards risk. In other words, the

separation theorem fails to hold when there is delivery risk. This is not surprising

since there is no way to make the marginal revenue non-stochastic in the presence

of non-tradable delivery risk.

4 Optimal futures hedging under delivery risk

In order to derive the optimal hedging position, it is necessary to impose some

structure on the joint probability distribution of P̃1, P̃2, ..., P̃n. For tractability, we

shall consider two alternative speci�cations.

Assumption A The spot price of grade i (i = 2, 3, ..., n) of the commodity at t = 1

is related to that of grade 1 in the following additive manner:

P̃i = P̃1 + ε̃i ,

where ε̃i is a zero-mean random variable with support [εi, εi]. Apart from the as-

sumption that εi + P1 > 0 in order to guarantee Pi > 0 in all states, ε̃i and P̃1 are

independent.18

Assumption M The spot price of grade i (i = 2, 3, ..., n) of the commodity at t = 1

is related to that of grade 1 in the following multiplicative manner:

P̃i = (1 + γ̃i)P̃1 ,

where γ̃i is a zero-mean random variable with support [γi, γi], 0 < γi < γi < ∞. γ̃i

and P̃1 are independent.19

As will be shown below, the �rm's optimal futures position depends on which

of these two assumptions holds. In order to focus on the hedging role of futures
18It is not necessary to assume that the ε̃is are independent of each other.
19Again, the γ̃is do not have to be independent of each other.
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contracts, it is assumed that the futures market is unbiased under either assumption

A or assumption M. That is, the futures price at t = 0 equals the expected futures

price at t = 1 such that F = E[min(P̃1, P̃2, ..., P̃n)].

For the ease of exposition, we reformulate the �rm's decision problem by �xing

its output level at Q∗. Let EU = E[U(Π̃)], where Π̃ is de�ned in equation (1) with

Q = Q∗. Partially di�erentiating EU with respect to H yields

∂EU

∂H
= E

[
U ′(Π̃)

(
F −min(P̃1, P̃2, ..., P̃n)

)]
= − cov

[
U ′(Π̃), min(P̃1, P̃2, ..., P̃n)

]
,

(6)

where the second equality follows from the unbiasedness assumption. The right-hand

side of equation (6) vanishes at H = H∗.

The following proposition characterizes the �rm's optimal futures position under

assumption A.

Proposition 2 Suppose that assumption A holds. If the futures market is unbiased,

the �rm's optimal futures position is a short under-hedge, 0 < H∗ < Q∗.

Proof. Evaluating the right-hand side of equation (6) at H = 0 and using

assumption A results in

∂EU

∂H

∣∣∣∣∣
H=0

= − cov
[
U ′

(
P̃1Q

∗ − C(Q∗)
)
, P̃1 + min(0, ε̃2, ε̃3, ..., ε̃n)

]

= − cov
[
U ′

(
P̃1Q

∗ − C(Q∗)
)
, P̃1

]
,

(7)

where the second equality follows from the fact that ε̃i is independent of P̃1 for all

i = 2, 3, ..., n.20 Since U ′′(Π) < 0, the right-hand side of equation (7) is positive.

Thus, by the concavity of EU , we have H∗ > 0.

Now, evaluating the right-hand side of equation (6) at H = Q∗ and using as-
20Two random variables X̃ and Ỹ are independent if and only if cov[F (X̃), G(Ỹ )] = 0 for all

functions F (·) and G(·), see Ingersoll (1987).
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sumption A yields

∂EU

∂H

∣∣∣∣∣
H=Q∗

= − cov
[
U ′

(
FQ∗ −min(0, ε̃2, ε̃3, ..., ε̃n)Q∗ − C(Q∗)

)
,

P̃1 + min(0, ε̃2, ε̃3, ..., ε̃n)
]

= − cov
[
U ′

(
FQ∗ −min(0, ε̃2, ε̃3, ..., ε̃n)Q∗ − C(Q∗)

)
,

min(0, ε̃2, ε̃3, ..., ε̃n)
]
,

(8)

where the second equality follows from the fact that ε̃i is independent of P̃1 for all

i = 2, 3, ..., n. Since U ′′(Π) < 0, the right-hand side of equation (8) is negative.

Thus, by the concavity of EU , we have H∗ < Q∗. 2

If the �rm can use futures contracts to hedge against �uctuations in the spot

price of its output at t = 1, the unbiasedness of the futures market guarantees that

this does not a�ect the �rm's expected pro�ts. Thus, any futures position taken by

the �rm only a�ects the �rm's risk. Under assumption A, the futures contracts can

be interpreted as a package of commodity price risk from P̃1 and delivery risk from

min(0, ε̃2, ε̃3, ..., ε̃n). In particular, the additive combination of the two independent

risks ensures that the amount of delivery risk embedded in each futures contract is

invariant to di�erent realizations of P̃1.21 As a result, hedging against commodity

price risk arising from P̃1 using futures contracts always generates the same exposure

to delivery risk arising from min(0, ε̃2, ε̃3, ..., ε̃n), thereby rendering a clear con�ict

between hedging against commodity price risk and creating delivery risk exposure.22

Complete elimination of commodity price risk calls for full hedging, H = Q∗, whereas

complete elimination of delivery risk calls for no hedging, H = 0. Since the two risks

are independent, the �rm cannot enter into a riskless position. Indeed, the �rm's

optimal futures position as stated in Proposition 2 is simply a compromise between

full hedging and no hedging. The smaller the delivery risk relative to the commodity

price risk, the more closely the optimal futures position approaches a full hedge.

21In a similar spirit, the cross hedging model of Benninga, Eldor and Zilcha (1983, 1984) is based
on the assumption that basis risk is independent of the level of spot prices (regression approach).

22Alternatively put, the potential gain from exercising the delivery option is independent of P1.
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Now, we turn to the �rm's optimal futures position under assumption M.

Proposition 3 Suppose that assumption M holds. If the futures market is unbiased,

the �rm's optimal futures position is a short position, H∗ > 0.

Proof. Evaluating the right-hand side of equation (6) at H = 0 and using

assumption M, we have

∂EU

∂H

∣∣∣∣∣
H=0

= − cov
[
U ′

(
P̃1Q

∗ − C(Q∗)
)
, P̃1

(
1 + min(0, γ̃2, γ̃3, ..., γ̃n)

)]
= − cov

[
U ′

(
P̃1Q

∗ − C(Q∗)
)(

1 + min(0, γ̃2, γ̃3, ..., γ̃n)
)
, P̃1

]
,

(9)

where the second equality follows from the fact that γ̃i is independent of P̃1 for all

i = 2, 3, ..., n.23 Since U ′′(Π) < 0, the right-hand side of equation (9) is positive.

Thus, by the concavity of EU , we have H∗ > 0. 2

Under assumption M, the con�ict between hedging against commodity price risk

and creating delivery risk is less clear-cut if contrasted to the con�ict under assump-

tion A. The multiplicative combination of P̃1-risk and γ̃-risk from min(0, γ̃2, γ̃3, ..., γ̃n)

that characterizes assumption M implies that the amount of delivery risk embedded

in each futures contract is higher the higher the realization of P̃1. In other words,

the potential bene�t arising from the delivery option that is enjoyed by selling the

futures contracts increases in P1. It is this uncertainty about the trade-o� between

P̃1-risk and γ̃-risk that is responsible for the lack of an unambiguous relationship

between the optimal futures position and the optimal output level. Proposition 3

only states that the �rm sells futures contracts, but it is completely silent about the

optimality of under- or over-hedging.

However, one can derive a necessary and su�cient condition for the optimality of

under- or over-hedging. At full hedging, H = Q∗, the �rm's pro�ts can be written as
23For any three random variables, X̃, Ỹ , and Z̃, where X̃ and Ỹ are independent of Z̃,

cov[X̃, Ỹ Z̃] = E[X̃Ỹ Z̃] − E[X̃]E[Ỹ Z̃] = cov[X̃Z̃, Ỹ ] + E[X̃Z̃]E[Ỹ ] − E[X̃]E[Ỹ ]E[Z̃] = cov[X̃Z̃, Ỹ ]
under mild regularity conditions.
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Π̃ = FQ∗−C(Q∗)−min(0, γ̃2, γ3, ..., γ̃n) Q∗P̃1. Due to the concavity of the problem,

the optimal futures position H∗ is an under-hedge [full hedge] [over-hedge] if the

right-hand side of equation (6) at H = Q∗ is negative [zero] [positive].

Evaluating the right-hand side of equation (6) at H = Q∗ under assumption M

yields

∂EU

∂H

∣∣∣∣∣
H=Q∗

= − cov
[
U ′

(
FQ∗ − C(Q∗)−min(0, γ̃2, γ3, ..., γ̃n) Q∗P̃1

)
, P̃1

]

− cov
[
U ′

(
FQ∗ − C(Q∗)−min(0, γ̃2, γ3..., γ̃n) Q∗P̃1

)
,

P̃1 min(0, γ̃2, γ̃3, ..., γ̃n)
]
.

(10)

To sign the �rst covariance in (10), use the Law of Iterated Expectations to

obtain
∂ E

[
U ′

(
FQ∗ − C(Q∗)−min(0, γ̃2, γ̃3, ..., γ̃n)Q∗P̃1

)∣∣∣ P1]

∂ P1

= −Q∗ E
[
U ′′(·) min(0, γ̃2, γ̃3, ..., γ̃n)

∣∣∣P1

]
.

(11)

min(0, γ̃2, ..., γ̃n) is non-positive in all states and strictly negative in at least one

state. Since U ′′(Π) < 0 and H = Q∗ > 0, the expression in (11) and, hence, the

�rst covariance in (10) is negative. For the same reason, the second covariance in

(10) is positive. Thus, it is not possible to derive a general statement on whether

the optimal futures position is an under- or an over-hedge. However, a necessary

and su�cient condition for an under-hedge [over-hedge] is that the �rst covariance

is smaller [larger] than the second covariance in absolute terms when evaluated at

H = Q∗.

In the following numerical example, both under-hedging and over-hedging can

be optimal under assumption M for di�erent joint probability distributions of P̃1

and the γ̃is. The example is based on the following assumptions. There is only one

alternative grade (say grade x) of the commodity whose spot price at t = 1 is given

by P̃x = P̃1(1 + γ̃). In each scenario, the marginal probability distribution of P̃1 has

a three-point support: P1 = 50 with probability 40%, P1 = 50− δ with probability

30% and P1 = 50 + δ with probability 30%. Thus, P̃1 is symmetrically distributed
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such that E[P̃1] = 50 and var(P̃1) = 0.6 δ2. The marginal probability distribution

of γ̃ has a two-point support: γ = −0.2 and γ = 0.2 with equal probability. In

addition, E[γ̃] = 0, E[min(0, γ)] = −0.1, and var(γ̃) = 0.04. There are six possible

states in the joint probability distribution of P̃1 and γ̃. Due to the independence

of P̃1 and γ̃, four of the states occur with probability 15% each, and the remaining

two occur with probability 20% each. In all states, Px is either 20% higher or 20%

lower than P1. Hence, P̃x is not symmetrically distributed. These assumptions are

summarized in Table 1. Furthermore, F = E[P̃1] (1 + E[min(0, γ̃)]) = 45. The cost

function is C(Q) = 0.025 Q2.

Table 1: The joint probability distribution

state probability P1 γ Px

1 15% 50 + δ +0.2 60 + 1.2δ

2 15% 50 + δ -0.2 40 + 0.8δ

3 20% 50 +0.2 60

4 20% 50 -0.2 40

5 15% 50− δ +0.2 60− 1.2δ

6 15% 50− δ -0.2 40− 0.8δ

Table 2 presents the optimal decisions for eleven scenarios that di�er in the value

of δ, the spread parameter for P̃1. For each scenario, the joint probability distri-

bution is characterized by standard deviations and correlation coe�cients. Then,

the decisions are presented for a power utility function of Û(Π) = −1 / Π such that

relative risk aversion is equal to two and relative prudence is equal to three.

The �rst �ve columns of Table 2 exhibit the assumptions on δ and some charac-

teristics of the joint probability distribution of P̃1 and P̃x. Column 1 gives the value

of δ. For example, δ = 20 means that P1 is either 30, 50 or 70. Both the volatility

of P̃1 and P̃x increase in δ as columns 2 and 3 show. Columns 4 and 5 show the cor-

relation coe�cients ρ(·) for P̃1 and P̃x and for P̃1 and min(P̃1, P̃x). Both correlation

coe�cients are high, indicating that delivery risk is rather small in this example.
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Table 2: Optimal decisions for di�erent levels of δ

joint distribution of P̃1 and P̃x optimal decision for CRRA = 2
δ std(P̃1) std(P̃x) ρ(P̃1, P̃x) ρ(P̃1,min(P̃1, P̃x)) Q∗ (H∗ −Q∗) (Hmv −Q∗)

20 15.5 18.7 0.829 0.936 961.31 -44.57 -25.14
21 16.3 19.4 0.840 0.941 960.82 -36.86 -15.22
22 17.0 20.1 0.850 0.945 960.35 -30.10 -6.45
23 17.8 20.7 0.859 0.949 959.89 -24.14 1.32
24 18.6 21.4 0.867 0.953 959.44 -18.87 8.24
25 19.4 22.1 0.875 0.956 959.00 -14.17 14.42
26 20.1 22.8 0.882 0.959 958.55 -9.97 19.96
27 20.9 23.6 0.888 0.961 958.10 -6.21 24.95
28 21.7 24.3 0.894 0.963 957.66 -2.81 29.45
29 22.5 25.0 0.899 0.965 957.20 0.27 33.53
30 23.2 25.7 0.903 0.967 956.75 3.06 37.22

The coe�cients increase in δ because an increase in δ causes the covariances to grow

at a higher rate than the products of the standard deviations.24

Columns 6 and 7 exhibit the optimal production and hedging decisions for con-

stant relative risk aversion (CRRA) of two. Column 6 shows the optimal production

decision. Optimal output slightly decreases in the volatility of the output price.25

This indicates that even signi�cant changes in the volatility of tradable P̃1-risk only

have a minor impact on optimal output if there is delivery risk.26

Before analyzing the optimal futures position H∗ it is useful to consider the

futures position that minimizes the variance of pro�ts assuming that the �rm has

a given exposure of Q∗. This futures position, labeled Hmv, relative to the given

exposure Q∗, is given in column 8.27 Table 2 shows that the variance minimizing
24Due to the independence of P̃1 and γ̃, we have cov(P̃1, P̃x) = var(P̃1).
25Therefore, the incorrectness made when presenting absolute di�erences in columns 7 and 8

instead of hedge ratios is negligible.
26In the absence of delivery risk, there is no impact at all because full hedging, Q∗ = H∗, is

optimal in an unbiased futures market.
27Of course, the combination of Hmv and Q∗ cannot be optimal if the �rm is allowed to optimize

over both Q and H, because the optimal values of a �rm that minimizes the variance of pro�ts is
H = Q = 0.
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futures position monotonically increases in δ. In particular, it is an under-hedging

position for values of δ ranging from 20 to 22, but turns into an over-hedging position

for higher values of δ.28 In order to see why, notice that the variance of the �rm's

pro�t is given by

var(Π̃) = (Q−H) var(P̃1)
[
(Q−H)− 2H E[min(0, γ̃)]

]
+ H2 var

(
P̃1 min(0, γ̃)

)
.

Hence, for given Q, the variance minimizing futures position Hmv satis�es

(Q−Hmv) var(P̃1)
{
1 + E[min(0, γ̃)]

}
−Hmv

{
var

(
P̃1 min(0, γ̃)

)
+ var(P̃1)E[min(0, γ̃)]

}
= 0 .

(12)

The curly bracketed term in the �rst line of (12) is positive since γ > −1. In the

curly bracket sum in the second line, the �rst summand is positive while the second

is negative. Due to this fact, the sum cannot be signed without making further

assumptions on the marginal distributions of P̃1 and γ̃. Obviously, full hedging at

H = Q is variance minimizing if and only if this sum is zero. Similarly, an under-

hedging position with 0 < H < Q minimizes the variance of Π̃ if and only if the curly

bracketed term in the second line in (12) is positive since the �rst line is positive

in this case. Finally, an over-hedging position H > Q > 0 is variance minimizing if

and only if the sum in the second line is negative.29

Now, the optimal futures position H∗ as given in column 7 can be interpreted by

comparing it to the variance minimizing position Hmv. H∗ is consistently smaller

than Hmv; their di�erence increases in the variability of P̃1. Suppose the �rm starts

from the variance minimizing futures position Hmv. Since the �rm's preferences

exhibit prudence, it does not only want to reduce the variability of its pro�t but

it also wants to protect itself from very low realizations of pro�t (precautionary

motive). The only way to satisfy the latter aim is to sell less futures than Hmv

for the following reason: The lowest realizations of pro�t occurs when the delivery
28At δ ≈ 22.82, full hedging is variance minimizing.
29For the case of two deliverable grades whose prices are jointly lognormally distributed with

equal variance, Kamara and Siegel (1987) derive a related result where the variance minimizing
hedge ratio may be above or below one.
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option expires worthless, that is when Px > P1 due to γ > 0 and grade 1 is the

cheapest to deliver.30 In these states, the �rm's pro�t only depends on the realization

of P̃1. Generating additional pro�t for states with high P1 requires selling less

futures contracts. Starting from the variance minimizing position and taking the

precautionary motive into account, it is optimal for a prudent �rm to sell less futures

contracts than Hmv.31 Therefore, the optimal futures position is consistently smaller

than the variance minimizing position. In relation to optimal output Q∗, the optimal

futures position H∗ is an under-hedging position for values of δ between 20 and 28.

For larger values of δ, over-hedging is optimal.

To sum up, a clear-cut statement on the optimal futures position relative to

the �rm's optimal output cannot be derived because the variance minimizing fu-

tures position under assumption M can be an over-hedging or an under-hedging

position, depending on the marginal distributions of P̃1 and γ̃. Preferences other

than quadratic utility may lead to higher or smaller futures positions such that the

di�erence (H∗ − Q∗) cannot be signed. In the example where preferences exhibit

prudence, the optimal futures position is always below the variance minimizing po-

sition. In contrast, the variance minimizing position under the assumption A is

always an under-hedging position.32 As Proposition 2 shows, this under-hedging

position is preserved whatever the �rm's preferences are.

5 Conclusions

Delivery options are a feature of nearly all commodity futures contracts. Quality

options allow the seller to choose among several grades of the underlying commodity.

Due to the quality option, the futures price on the delivery day does not converge

to the spot price of the par-delivery grade but to the spot price of the cheapest-to-
30Of course, this holds for H > 0 only because the delivery option can be exercised by the seller

of a futures contract. However, Proposition 3 states that H∗ is always positive under assumption
M.

31Under quadratic utility, the optimal and the variance minimizing futures position coincide in
an unbiased futures market.

32This can be easily seen from the condition for the variance minimizing futures position under
assumption A which is (Hmv −Q) var(P̃1) + Hmv var(min(0, ε̃2, ε̃3, ..., ε̃n)) = 0.
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deliver grade of the commodity. Hence, any futures position carries an additional

delivery risk in addition to commodity price risk. Hedgers seeking to manage their

commodity price risk are faced with this untradable delivery risk.

This paper examined the optimal production and futures hedging decisions for

a risk-averse competitive �rm in the presence of delivery risk arising from a quality

option. The three main results can be summarized as follows: First, if the �rm

attaches a higher value to the delivery option than the market does, the existence

of the delivery option induces the �rm to produce more than in the absence of a

delivery option. The second and third result relate to optimal risk management. If

the delivery risk is additively related to commodity price risk, the �rm will always

under-hedge the exposure created by its production decision. This result changes

signi�cantly if the delivery risk is multiplicatively related to commodity price risk

such that the deviations between the par-grade and the cheapest-to-deliver grade

increase in the level of the par-grade spot price at delivery. In this case, the �rm's

optimal futures position may also be an over-hedge of its exposure. The reason

for the optimality of over-hedging in the presence of untradable delivery risk is the

fact that under this speci�cation, the variance minimizing futures position is not

necessary a full hedge but may itself be an over-hedge. A numerical example shows

how the variance minimizing hedge ratio and the hedge ratio optimal for constant

relative risk aversion vary with the amount of delivery risk relative to the price risk

associated with a futures contract.
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