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Abstract: A three parameter (location, scale, shape) generalization of the lo-
gistic distribution is �tted to data. Local maximum likelihood estimators of the
parameters are derived. Although the likelihood function is unbounded, the like-
lihood equations have a consistent root. ML-estimation combined with the ECM
algorithm allows the distribution to be easily �tted to data.
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1 Introduction

The generalized logistic distribution with location (θ), scale (σ) and shape (b) pa-
rameters has the density:

f(x) =
b
σ
e−

(x−θ)
σ

(1 + e−
(x−θ)

σ )b+1
, b > 0, σ > 0, θ ∈ R, x ∈ R. (1)

Additional generalizations of the logistic distribution are discussed by Johnson, Kotz
and Balakrishnan (1995). For b = 1 the distribution is symmetric, for b < 1 it is
skewed to the left and for b > 1 it is skewed to the right. The moment generating
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function is

m(t) = eθt Γ(1− σt)Γ(b + σt)

Γ(b)
. (2)

From that follows

E [X] = m′(0) = θ + σ (ψ(b)− ψ(1)) (3)

E
[
X2

]− E2 [X] = m′′(0)−m′(0)2 = σ2 (ψ′(1) + ψ′(b)) , (4)

with ψ(b) = Γ′(b)/Γ(b) the digamma function (see e.g. Abramowitz, Stegun (1972)).

Fisher�s coe�cient of skewness is

γ1 =
E [(X − E [X])3]

E [(X − E [X])2]3/2
=

ψ′′(b)− ψ′′(1)

(ψ′(b) + ψ′(1))3/2
. (5)

Since γ1 is location and scale invariant the skewness of the distribution depends
only on parameter b. Invariance of the measure is requested because two random
variables Y and θ + σY should have the same degree of skewness. That means a
random variable X with generalized logistic distribution has a variance depending
on the parameters b and σ, with σ a part only a�ecting scale and a part b a�ecting
scale and furthermore shape of the distribution.

The logistic distribution has been one of the most important statistical distri-
butions because of its simplicity and also its historical importance as growth curve.
Some applications of logistic distributions in the analysis of quantal response data,
probit analysis, and dosage response studies, and in several other situations have
been mentioned by Johnson, Kotz and Balakrishnan (1995). The generalized lo-
gistic distributions are very useful classes of densities as they posses a wide range
of indices of skewness and kurtosis. Therefore an important application of the gen-
eralized logistic distribution is its use in studying robustness of estimators and tests.
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Balakrishnan and Leung (1988) present two real data examples for the useful-
ness of the generalized logistic distribution. One about oxygen concentration and
another about resistance of automobile paint. In both examples the authors choose
b = 2 by eye and verify the validity of this assumption by Q-Q plots.

Zelterman (1987) describes method of moments and Bayesian estimation of the
parameters θ, σ and b. The method of moments estimators rely on the �rst three
sample moments and have large variances. So Zeltermann concludes the the method
of moments estimators are useful only as starting values for other iterative estima-
tion techniques. He further shows that maximum likelihood estimators do not exists
(a point which we demonstrate graphically in Sec. 2 of this paper) and presents as
conclusion Bayesian estimators.

Gerstenkorn (1992) discusses ML-estimators of b alone, because there is no prob-
lem with existency in this case.

In this paper the three parameter generalized logistic distribution is �tted to
data. It is shown that, although the likelihood function is known to be unbounded
at some points on the edge of the parameter space, the likelihood equations have a
root which is consistent and asymptotically normally distributed.

The following section derives ML-estimators of θ, σ and b which are consistent.
The ML-estimation is combined with the ECM algorithm in Section 3 to produce
an iterative procedure for �tting the distribution. The �nal section in this paper
presents numerical examples.
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2 ML-estimation

Let X1, ..., Xn be an i.i.d. sample from the generalized logistic distribution. Then
the log-likelihood is given by

l(b, θ, σ; x1, ..., xn) = n ln(b)− n ln(σ)− 1

σ

∑
i

(xi − θ) (6)

−(b + 1)
∑

i

ln
(
1 + e−

1
σ

(xi−θ)
)

.

A closed-form expression for estimating b is as follows

b̂ =
n

∑
i ln

(
1 + e−

1
σ

(xi−θ)
) . (7)

Plugging in this estimator into the log-likelihood gives the concentrated log-likelihood

lc(θ, σ; x1, ..., xn) =
nθ

σ
−

∑
i

ln
(
1 + e−

1
σ

(xi−θ)
)

(8)

−n ln
∑

i

ln
(
1 + e−

1
σ

(xi−θ)
)

+ H(σ, x), (9)

with H a function not depending on θ or b. The concentrated log-likelihood function
is maximized for θ → −∞ (Zelterman (1987) p.180). That means the concentrated
log-likelihood diverges to in�nity and the global maximum is not a consistent esti-
mator of the parameters under consideration. This is a very interesting behaviour
which results from introducing a scale parameter and a shape parameter. There is
for example no equivalent problem in the location-scale model of the usual logistic
distribution.

2.1 Graphical representation of the likelihood functions

The following �gures show the concentrated log-likelihood and the conditional log-
likelihood for a simulated sample of size n = 200 and parameters b = 1, θ = 0, σ = 1.
Figure 1 presents the concentrated log-likelihood. As stated above, the likelihood
diverges as θ approaches minus in�nity.
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Figure 1: Concentrated log-likelihood (b = 1, θ = 0, σ = 1)

Figure 2 contains the concentrated log-likelihood as in Figure 1 but for a smaller
domain, revealing a local optimum at the true parameter values.

Figures 3 and 4 show the conditional likelihood given b = 1. In these graphs
the problem of divergence vanishes, and the maximum of the function at the true
parameters becomes clearly apparent. This behaviour motivates the use of the so
called Expectation-Conditional Maximization Algorithm for the calculation of the
ML-estimators.

2.2 Consistency of the ML-estimates

The global maximum of the log-likelihood is not a consistent estimator. But this
does not imply that ML-estimation is impossible. There exists a sequence of local
maxima which forms consistent estimators. To prove this we use a theorem of
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Figure 2: Concentrated log-likelihood (b = 1, θ = 0, σ = 1)

Chanda (1954), which is stated here as a lemma.
Lemma: Let f(x, ω) be a density with ω = (ω1, ω2, ..., ωk) a vector of unknown

parameters and let x1, ..., xn be independent observations of X. The likelihood
equations or score functions are

δ ln L

δω
= 0, (10)

with ln L =
∑n

i=1 ln f(xi, ω).
Let ω0 be the true value of the parameter vector ω, included in a closed region
Ω̄ ⊂ Ω. If Conditions 1-3, given below, are ful�lled, then there exists a consistent
estimator ωn corresponding to a solution of the likelihood equations. Furthermore,
√

n(ωn − ω0) is asymptotically normally distributed with mean zero and variance-
covariance I(ω0)

−1, the Fisher information.
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Figure 3: Conditional log-likelihood given b = 1 (θ = 0, σ = 1)

Condition 1: for almost all x and for all ω ∈ Ω̄
∣∣∣∣
δ ln f

δωr

∣∣∣∣ ,

∣∣∣∣
δ2 ln f

δωrδωs

∣∣∣∣ and
∣∣∣∣

δ3 ln f

δωrδωsδωt

∣∣∣∣ ,

exist for all r, s, t = 1, ..., k.

Condition 2: for almost all x and for all ω ∈ Ω̄
∣∣∣∣
δf

δωr

∣∣∣∣ < Fr(x),

∣∣∣∣
δ2f

δωrδωs

∣∣∣∣ < Fr,s(x) and
∣∣∣∣

δ3 ln f

δωrδωsδωt

∣∣∣∣ < Hr,s,t(x),

with H such that
∫∞
−∞ Hr,s,t(x)f dx ≤ M < ∞ and Fr(x) and Fr,s(x) bounded for

all r, s, t = 1, ..., k.

Condition 3: for all ω ∈ Ω̄

I(ω) =

∫ ∞

−∞

(
δ ln f

δω

)(
δ ln f

δω

)T

f dx
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Figure 4: Conditional log-likelihood given b = 1 (θ = 0, σ = 1)

is positive de�nite.

With the help of this lemma we can show the following theorem about the con-
sistency of the local ML-estimates.

THEOREM 1: Let ω = (b, θ, σ) and Ω the parameter space be given by

0 < b < ∞, −∞ < θ < ∞, 0 < σ < ∞.

Let ω0, the true parameter value, be contained in a closed set Ω̄ which is a subset
of Ω. If the random variable Xi, is i.i.d. with the generalized logistic distribution,
then there exists a consistent root ωn of the likelihood equations and √n(ωn − ω0)

is asymptotically normally distributed with mean zero and variance I(ω0)
−1.

Proof:
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The proof consists of the veri�cation of Conditions 1-3 and is given in the appendix.

The theorem does not provide any information about which root, in the event
there is more than one, is consistent. So there is a necessity for a good algorithm
which helps us to �nd the ML-estimators. Also an initial consistent estimate is
needed as starting point for the maximization. Therefore the above mentioned
method of moments estimators derived by Zeltermann (1987) can be used.

3 ECM algorithm

The speci�c behaviour of the likelihood under consideration suggests the use of
the ECM-Algorithm (Expectation-Conditional Maximation-Algorithm) discussed by
Meng and Rubin (1993). This algorithm consists of several conditional maximiza-
tions. Since we know that the problem of divergence of the likelihood vanishes when
the function is maximized for θ and σ conditional on b and for b conditional on θ

and σ the estimator is in closed form it is reasonable to use an algorithm which sep-
arates these steps. Exactly this does the ECM-Algorithm. Also other optimization
algorithms could be used but the use of the ECM-Algorithm should protect from
running into divergence problems.

ECM is a generalization of the EM-Algorithm. These algorithms have been
developed for estimation problems with missing data. But they can also be applied
without missing data. Let l(ω; x) denote the log-likelihood under consideration, than
the E-step, generating the function which has to be maximized, is without missing
data an identity operation of the form

Q(ω) := l(ω; x), (11)

with ω = (b θ σ)′ ∈ Ω ⊂ R3 and x = (x1 ... xn)′ and Q(ω) the func-
tion which has to be maximized. The CM-iteration takes advantage of the simplicity
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of conditional maximum likelihood estimation by replacing the maximum-step with
several conditional maximum-steps. More precisely, CM replaces each M-step by a
sequence of S conditional maximum steps, each of which maximizes the Q function
over ω but with some vector function of ω, gs(ω) (s = 1, ..., S), �xed at its previous
value. The procedure is then used iteratively until it converges.

If the log-likelihood of the generalized logistic distribution is maximized in two
steps, then the S = 2 constraints are

g1(ω) = (θ(t) σ(t))′ (12)

g2(ω) = (b(t+1/2)). (13)

The t-th iteration step �nds ω(t+s/2), s = 1, 2, so that

Q(θ(t+s/2)|ω(t)) ≥ Q(ω|ω(t)), {ω ∈ Ω|gs(ω) = gs(ω
(t+(s−1)/2)}. (14)

Then the value of ω for starting the next iteration, ω(t+1), is de�ned as the output
of the �nal step of the previous iteration, that is ω(t+s/S).

For estimating the location-scale model of the generalized distribution the �rst
CM-step is calculating

b(t+1/2) =
n

∑
i ln

(
1 + e

− 1

σ(t)
(xi−θ(t))

) . (15)

The second step consists of maximizing

n ln(b(t+1/2))− n ln(σ)− 1

σ

∑
i

(xi − θ)− (b(t+1/2) + 1)
∑

i

ln
(
1 + e−

1
σ

(xi−θ)
)

(16)

with a usual optimization algorithm, �nding the values of θ(t+1) and σ(t+1).

Meng and Rubin (1993) show the following theorem about the ECM-Algorithm:
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THEOREM 2:
Suppose that all the conditional maximizations of ECM are unique. Then all limit
points of any ECM sequence {ω(t), t ≥ 0} belong to the set

Γ ≡
{

ω ∈ Ω | δl(ω; x)

δω
∈ J(ω)

}
, (17)

with

J(ω) ≡
S⋂

s=1

Js(ω) (18)

and Js(ω) the column space of the gradient of gs(ω), that is

Js(ω) = {∆gs(ω)λ | λ ∈ Rds}, (19)

and ds is the dimensionality of the vector function gs(ω). It is assumed that gs(ω)

is di�erentiable and the corresponding gradient, ∆gs(ω), is of full rank at ω ∈ Ω0,
the interior of Ω.

Meng und Rubin (1993) state that the assumption that all conditional maxi-
mizations are unique can be eliminated, if we force the conditions: a) continuity of
D10Q(ω|ω′) in both ω and ω′, D10 denoting the �rst derivative in the �rst argument
of Q, and b) continuity of ∆gs(ω) for all s.

In the present application gs(ω) is a partition of the parameter space. From that
follows, that J1(ω) and J2(ω) are orthogonal and because of that J(ω) = {0}. So the
algorithm converges to a local optimum of the likelihood of the generalized logistic
distribution. In the event there is more than one root, it is not guaranteed that the
consistent root is found. Therefore initial consistent estimators like Zeltermann�s
(1987) method of moments estimators should be used as starting values.
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4 Numerical examples

The above mentioned Theorem 2 states that the iterative ECM procedure converges
to a root of the likelihood. To demonstrate that the procedure really converges, two
numerical examples are worked out. In both examples 1000 repetitions for every
three sample sizes n1 = 100, n2 = 200 and n3 = 500 are carried out. In the �rst
example the true parameter values are b = 2, θ = 1, σ = 2. The estimation results
are presented in Figure 5. The second example, shown in �gure 6, uses the true
parameters b = 0.5, θ = 1, σ = 2.
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Figure 5: Simulation example for b = 2, θ = 1, σ = 2 (1000 repetitions)

In the �rst example the distribution is right skewed, while in the second one the
distribution is left skewed. In both examples the ECM algorithm works very well
for all three parameters. That means the procedure does not run into divergence
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Figure 6: Simulation example for b = 0.5, θ = 1, σ = 2 (1000 repetitions)

problems. All repetitions converged to reasonable results. None of them leads to
unreliable estimations.
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5 Appendix
Proof of Theorem 1:
The proof consists of veri�cation of conditions 1-3.

Condition 1:
Let u = e−

1
σ

(x−θ). Then the derivatives of u are as follows:

uθ =
1

σ
u

uθθ =
1

σ2
u

uθθθ =
1

σ3
u

uσ =
1

σ2
(x− θ)u

uσσ = − 2

σ3
(x− θ)u +

1

σ4
(x− θ)2u

uσσσ =
6

σ4
(x− θ)u− 6

σ5
(x− θ)2u +

1

σ6
(x− θ)3u

uθσ = − 1

σ2
u +

1

σ3
(x− θ)u

uθθσ = − 2

σ3
u +

1

σ4
(x− θ)u

uθσσ =
2

σ3
u− 4

σ4
(x− θ)u +

1

σ5
(x− θ)2u.

The �rst and third derivatives of the likelihood are listed below, because they are also required later. They are as
follows

δl(b, θ, σ; x)

δb
=

1

b
− ln(1 + u)

δl

δθ
=

1

σ
− (b + 1)

uθ

1 + u

δl

δσ
= − 1

σ
+

1

σ2
(x− θ)− (b + 1)

uσ

1 + u

δ3l

δb3
= − 1

b2

δ3l

δb2δθ
= 0

δ3l

δb2δσ
= 0

δ3l

δθ2δb
= −

(
uθθ(1 + u)− u2

θ

(1 + u)2

)

δ3l

δσ2δb
= −(b + 1)

(
uθθσ(1 + u) + uθθuσ − 2uθuσθ − 2(uθθ(1 + u)− u2

θ)(1 + u)uσ

(1 + u)4

)

δ3l

δσ2δθ
=

2

σ3
− (b + 1)

�
uσσθ(1 + u)− uσσuθ

(1 + u)2
− 2uσuσθ(1 + u)2 − 2u2

σ(1 + u)uθ

(1 + u)4

�

δ3l

δθ3
= −(b + 1)

(
uθθθ(1 + u) + uθθuθ − 2uθuθθ − 2(uθθ(1 + u)− u2

θ)(1 + u)uθ

(1 + u)4

)

δ3l

δσ3
= − 2

σ3
+

6

σ4
(x− θ)− (b + 1)

�
uσσσ(1 + u)− uσσuσ

(1 + u)2
− 2uσuσσ(1 + u)2 − u3

σ2(1 + u)

(1 + u)4

�
.

All of the third derivatives exist for all y and all ω in Ω̄ with Ω̄ any closed set in Ω. So Condition 1 is satis�ed.
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Condition 2:
The �rst derivatives of the density are

δf

δb
=

u

σ(1 + u)b+1
− bu ln(1 + u)

σ(1 + u)b+1

δf

δθ
=

buθ

σ(1 + u)b+1
− b(b + 1)uuθ

σ(1 + u)b+2

δf

δσ
= − bu

σ2(1 + u)b+1
+

buσ

σ(1 + u)b+1
− b(b + 1)uuσ

σ(1 + u)b+2
.

These derivatives of f are continuous in x and in ω, so they are certainly bounded for ω ∈ Ω̄ and x in any closed
interval of the real line. It is only necessary to consider their behavior for extreme values of x. Since the exponential
function grows faster than any power, the terms xe−x are bounded. From that follows, that the derivatives of f

are bounded for x →∞. For the case x → −∞ we use that e−x/(1 + e−x)b+1 = O(ebx) = e−2x/(1 + e−x)b+2. So
the derivatives are also bounded for the case x → −∞. The second derivatives are also continuous, and for x →∞
the relevant expressions are of the form xe−x, thus the second derivatives are bounded in this case. Looking at
x → −∞ there are in addition terms of the form e−3x/(1 + e−x)b+3. Since these terms are of order O(ebx) also the
second derivatives are bounded.

The third derivatives of the logarithmized density are listed under Condition 1. Similar to the considerations,
the second derivatives of the density holds that for x → ∞ the terms in the curved brackets tend to zero. So in
this case the relevant value is x in the derivative δ3l/δ3σ. Since the moment generating function of the generalized
logistic distribution exists for t in a region around zero, all of the moments of f exist and are �nite. A constant
M can be choosen so that Condition 2 is satis�ed. Remains the case x → −∞. The term with the largest order
is contained in the derivative (δ3l/δσ3). It holds uσσσ/(1 + u) = x3O(1) = u3

σ/(1 + u)3. Since all moments of X

exist, a constant M can be chosen, so that Condition 2 is ful�lled.

Condition 3:
Since I(ω) is a dispersion matrix it is positive semide�nite. The matrix is positive de�nite, if the statistics δl/δb,
δl/δθ and δl/δσ are a�ne independent. So I(ω) is positive de�nite unless

3X

i=1

δl

δωi
· λi = 0,

for all x and with λ1, λ2, λ3 not all equal to zero. An examination of the �rst derivatives of f , given in Condition
1, shows that Condition 3 is satis�ed.
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