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Abstract Based on a general specification of the asset specific pricingkernel, we
develop a pricing model using an information process with stochastic volatility. We
derive analytical asset and option pricing formulas. The asset prices in this rational
expectations model exhibit crash-like, strong downward movements. The resulting
option pricing formula is consistent with the strong negative skewness and high levels
of kurtosis observed in empirical studies. Furthermore, wedetermine credit spreads
in a simple structural model.
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1 Introduction

Asset pricing for stocks, bonds, or derivatives is based on expectations about fu-
ture cash flows and risk preferences. This view is emphasizedby an equilibrium ap-
proach, the stochastic discount factor or pricing kernel approach, which goes back
to Rubinstein (1976) and Brennan (1979). Another, traditional approach is to specify
an asset price process exogenously and price by no-arbitrage arguments. The seminal
example of this approach is Black and Scholes (1973) paper onpricing of European-
style options. Bick (1987) reconciles both approaches by showing that the geometric
Brownian motion is consistent with a representative investor economy and that given
the representative investor maximizes a von Neumann-Morgenstern utility function
over terminal wealth and the asset represents total wealth,such a stochastic process
implies constant relative risk aversion.

In this paper we follow the pricing kernel approach. The pricing kernel has the
important property that the forward asset price equals the expected value of the prod-
uct of the terminal asset value and the pricing kernel. Mathematically, the pricing
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kernel characterizes the change from the subjective probability measureP to the risk-
neutral (or equivalent martingale) measureQ. It is also known as the Radon-Nikodym
derivative ofQ with respect toP. In this view, any pricing problem is completely de-
termined by the distribution of terminal asset value and theshape of the asset specific
pricing kernel (ASPK). The asset specific pricing kernel is the pricing kernel con-
ditioned on the payoffs of an asset. For a detailed discussion of the pricing kernel
and the asset specific pricing kernel we refer the reader to the textbook of Cochrane
(2001) as well as to the articles of Câmara (2003, 2005).

Rubinstein (1976) and Brennan (1979) make explicit assumptions on the dis-
tribution and the ASPK. More precisely, they assume a representative investor and
thus the representative investor’s utility function characterizes the ASPK. Similar,
Black and Scholes (1973) assume that the underlying is lognormally distributed, i.e.,
the information process follows a geometric Brownian motion, and investors are con-
stant relative risk averse, or the asset specific pricing kernel has constant elasticity
with respect to the underlying asset (see Bick, 1987; Frankeet al., 1999). These as-
sumptions lead to simple, explicit pricing formulas. However, empirical research re-
vealed that they are not able to explain important effects inreal financial markets,
e.g. the volatility smile (or skew) in option prices, serialcorrelation in asset returns
and excess and random volatility. One approach to explain such effects was to incor-
porate learning effects (e.g. Campbell and Cochrane, 1999)and irrational behavior
as overconfidence (e.g. Daniel et. al., 2001). Another venueof literature analyzes the
effect of risk preferences. Empirical studies by Ait-Sahalia and Lo (2000), Jackwerth
(2000) and Rosenberg and Engle (2002) suggest that the pricing kernel is not of the
constant elasticity type.

Several papers have analyzed the impact of non-constant elasticity on option
prices (see e.g. Benninga and Mayshar, 2000; Franke et al., 1999). Among others,
Franke et al. (1999), L̈uders and Franke (2004) and Düring and L̈uders (2005) showed
that declining relative risk aversion leads to serial correlation in asset returns and
smile effects in option implied volatility. D̈uring and L̈uders (2005) provided ex-
plicit, analytical option pricing formulas for ASPKs with declining elasticity, when
the underlying information process follows a lognormal, log-gamma, normal or uni-
form, with a single risk factor. Other authors (e.g. Câmara, 2003; Schroder, 2004;
Vitiello and Poon, 2006) recently also extended their approaches to alternative distri-
butions and utility functions, where they focus on preferences and distributions which
yield risk neutral valuation relationships, i.e. pricing formulas without any preference
parameter.

However, all these models only include asingle risk factor. In real financial mar-
kets, not only asset returns are subject to risk, but also theestimate of the riskiness
is typically subject to significant uncertainty. To incorporate such additional source
of randomness into an asset pricing model, one has to introduce asecond risk factor.
This also allows to fit higher moments of the asset return distribution. In the tradi-
tional pricing approach mentioned above, one of the most prominent works in this
direction is the Heston (1993) model. Based on an exogenous asset price process
with stochastic volatility, explicit option pricing formulas are derived. The Heston
(1993) model can be used successfully and allows also to be fitted to market data.
However, empirical tests of the model in Bakshi et al. (1997)have shown that the
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fitted parameters are not consistent with parameters from time series data. This is
economically unsatisfactory, since the model parameters loose their economic inter-
pretation. In particular, the model demands for unreasonable levels of correlation and
volatility of volatility to match the skewness and kurtosiseffects observed in market
option prices. Generally, an exogenously given price process seems unpleasant from
an economic point of view, since any price process which cannot be supported by an
economic model, lacks an economic justification and is subject to the objection of
being arbitrary.

The focus of this paper is to derive analytical asset pricingformulas which impose
as little as possible restrictions on the shape of the ASPK and include a second, corre-
lated risk factor in the modelling of the information process. To this end, we consider
an information process that is driven by atwo-dimensional diffusion. Our approach
is based on a class of ASPKs with declining elasticity. In this class of ASPKs, we de-
rive analytical asset and option pricing formulas and determine credit spreads using
a structural model approach.

Our approach should not be confused with the (also called) two-dimensional risk-
neutral valuation relationships in Franke et al. (2007). Infact, their approach is quite
different from ours. They use a (declining elasticity) pricing kernel with two pa-
rameters, whereas we employ the generalized pricing kernels originally proposed in
Lüders and Franke (2004). Moreover, Franke et al. (2007) propose a generalized log-
normal distribution with two parameters. We use an information process driven by a
two-dimensional diffusion with correlation, i.e. we introduce stochastic volatility as
an additional risk factor. Then we derive explicit formulasfor the case of a non-central
chi-squared distribution of the volatility. We do not restrict ourselves to risk-neutral
valuation relationships, but are interested in deriving explicit formulas to obtain a
better understanding of the impact of investor preferenceson asset pricing.

The contribution of our pricing model to the existing asset and option pricing lit-
erature consists of several aspects: The enhanced flexibility of our two-dimensional
model allows for more accurate analytical and tractable asset and option pricing for-
mulas. For example, our model provides an explanation for crash-like phenomena in
time series of asset prices based on a rational expectationsapproach. It also seems to
be a promising approach for pricing options on a stock index as the S&P 500, since it
allows to fit reasonable levels of kurtosis and skewness while using model parameters
from time-series data. Credit spreads computed from our model in a simple structural
model framework show quantitatively and qualitatively nice features. Moreover, our
approach provides a convenient and more precise way to analyze the quantitative
implications of non-constant elasticity of the ASPK. Also,since only the expected
terminal distribution of the underlying needs to be known itpresents an interesting
model to price options when the underlying is not traded as, for example, with real
options.

The paper is organized as follows. Section 2 presents the market model and the
class of generalized ASPKs. In Section 3 the general valuation approach using the
generalized characterization of the ASPK is shown. Based onthis class of ASPKs,
we derive analytical pricing formulas for assets and European options, when the final
distribution at timeT is characterized by an information process that is driven by
a two-dimensional diffusion with stochastic volatility. Furthermore, we determine
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credit spreads in a simple structural model. In Section 4, weinvestigate the influence
of non-constant elasticity of the ASPK and stochastic volatility of the information
process on asset and option prices and credit spreads. The paper is completed by a
short conclusion.

2 The model

Throughout this paper we consider a market with a given time horizon T > 0. We
assume that the asset does not pay any dividends until terminal dateT . To simplify
the presentation we consider forward asset prices in this paper. Alternatively, one can
assume the riskless interest rate to be zero. The fundamental asset pricing equation
states that in an arbitrage free market the price of an asset is given by the expected
future value of the asset, where the expectation is taken under some equivalent mar-
tingale measureQ. The equivalent martingale measureQ is defined by

Q(A) =
∫

A

φt,T dP, ∀A ∈ FT ,

with the physical measureP and the asset specific pricing kernelφt,T . Given the
equivalent martingale measure is defined by the ASPKφt,T , the forward asset price
Ft for 0≤ t ≤ T can be written as

Ft = EQ[IT ] = E[ IT φt,T |Ft ] ,

whereIT is the value of an information process at the terminal dateT and the filtra-
tion Ft characterizes the information available at time 0≤ t ≤ T . Here and in the
following E[·] denotes the expected value with respect to the subjective measureP.
The information process is exogenously given and defined as the conditional expec-
tation of the terminal value of the underlying asset, i.e.It = E[FT |Ft ]. Due to the
definition of the information processIt , the valueIT is equal to the terminal time
T value of the underlying. This may be either some liquidationvalue at timeT or
simply the asset price at timeT . Since the information process characterizes condi-
tional expectations, it is a martingale; its drift is zero. Otherwise, the investor could
improve his forecasts by anticipating the expected change in his forecasts. Assum-
ing such an exogenous information process to model the information in the economy
is common. The main advantages of this approach are that it isa parsimonious and
intuitive way to characterize the filtration and that it has an economic interpretation,
see Franke et al. (1999).

It follows that the price of a European call option with strike priceK and expira-
tion dateT is given by

Ct = E[max(IT −K,0)φt,T |Ft ] , 0≤ t ≤ T.

Throughout this paper, we will assume that the distributionof IT and the filtration
(Ft)t∈[0,T ] are exogenously given. Our emphasis is to analyze the impactof the ASPK
on asset prices, European option prices and credit spreads.
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We do not restrict ourselves to a single investor. Given a heterogeneous group of
investors, however, it is known that their aggregation to a representative investor is
non-trivial. Therefore, we here do not derive an equilibrium, and will simply assume
the existence of a pricing kernel. Concerning the viabilitydicussion in two factor
models we refer to Pham and Touzi (1996). They derive viability conditions from
the representative investor’s optimality condition and show that viability in the two-
factor model implies that the pricing kernel is a deterministic function of time, wealth
and volatility. Since we are interested in deriving explicit formulas, we neglect an
additional dependence of the ASPK on volatility in our analysis. In particular, we
follow Lüders and Franke (2004) who suggest to characterize the ASPKby

φt,T =
∑N

i=1 αiI
δi
T

E
[

∑N
i=1 αiI

δi
T

∣

∣

∣
Ft

] , 0≤ t ≤ T, (1)

with αi,δi ∈ R, N ∈ N∪ {∞}. To generate arbitrage-free asset prices the only re-
striction which has to be imposed on the parameters is that 0< φt,T < ∞, P-a.s. This
specification is rather general so that many different characteristics of the ASPK can
be matched. Obviously the power function is a special case with N = 1 in equation
(1). This shape of the ASPK can either be related to a representative investor with
declining relative risk aversion or to the aggregation ofN investors with power utility
(see D̈uring and L̈uders, 2005).

The flexibility of the ASPK is of great importance for option pricing but also for
empirical investigations of option markets since recent empirical literature points to
very complicated functional forms of empirical ASPKs. The main advantage of this
class of ASPKs, besides the fact that very flexible shapes of the asset specific pricing
kernel can be well approximated, is that these ASPKs are characterized by a series of
non-central moments of the random variable. Hence, for different,one-dimensional
distributions of the underlying asset, the ASPK and asset prices have been computed
(Lüders and Franke, 2004) and analytical option pricing formulas have been derived
(Düring and L̈uders, 2005). Let us mention that in the literature there arealso other
parametric approaches to study the form of the ASPK, among others the orthogo-
nal polynomial approach of Rosenberg and Engle (2002). Düring and L̈uders (2005)
provides a discussion of the technical aspects of characterization (1) as well as a
comparison with other approaches to model the ASPK. Note that characterization (1)
can also be further generalized to allow for more flexibilityin time by allowing the
coefficients to be functions of time rather than being constant, without affecting the
main results of this paper. We give an example in Section 4.1.In the following sec-
tion we derive analytical formulas for asset prices and European option prices based
on this class of ASPK when the information process is a two-dimensional diffusion
with stochastic volatility. We also consider credit spreads in a simple structural model
framework.
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3 Asset prices, options and credit spreads

We consider a two-dimensional standard Brownian motionWt = (W (1)
t ,W (2)

t ) with

correlationdW (1)
t dW (2)

t = ρdt on a given filtered probability space(Ω ,F ,Ft ,P)
where(Ft)t∈[0,T ] is the filtration generated byW augmented by all theF -null sets,
with F = FT . We assume that the value of the underlying asset at expiration is given
by IT which is characterized by

dIt =
√

σt It dW (1)
t ,

dσt = a(σt)dt +b(σt)dW (2)
t , (2)

for 0 ≤ t ≤ T with I0,σ0 > 0. Intuitively, such an information structure models the
uncertainty about the “true” riskiness ofIT . Or, in other words, it accounts for the
fact that not only the terminal value itself but also the amount of risk associated
with it is unknown. Different choices for the drift coefficient a(σt) and diffusion
coefficientb(σt) will lead to different models. By introducing a second risk factor
this characterization of the information process is more flexible and realistic than
the ones used previously in the literature. Through appropriate choices for the drift
function a(σt) it allows to introduce mean-reverting patterns of volatility ‘shocks’
which model information events like profit warnings.

3.1 The general pricing methodology

Our pricing methodology works in general as follows. In an arbitrage-free market the
value of a European call (with expiration dateT ) at timet ≤ T is given by

C(It ,σt , t) = E[max(IT −K,0) φt,T |Ft ] .

Assume that the asset specific pricing kernel is characterized by equation (1) and
defineµ(t,δi) = E

[

Iδi
T

∣

∣Ft
]

. This yields

C(It ,σt , t) = E

[

max

(

∑N
i=1 αiI

δi+1
T

∑N
i=1 αiµ(t,δi)

−K
∑N

i=1 αiI
δi
T

∑N
i=1 αiµ(t,δi)

,0

)∣

∣

∣

∣

∣

Ft

]

(3)

=

∞
∫

K

∑N
i=1 αiI

δi+1
T

∑N
i=1 αiµ(t,δi)

f (IT , t)dIT −K

∞
∫

K

∑N
i=1 αiI

δi
T

∑N
i=1 αiµ(t,δi)

f (IT , t)dIT

=
∑N

i=1

(

αi
∫ ∞

K Iδi+1
T f (IT , t)dIT

)

∑N
i=1 αiµ(t,δi)

−K
∑N

i=1

(

αi
∫ ∞

K Iδi
T f (IT , t)dIT

)

∑N
i=1 αiµ(t,δi)

,

where f (IT , t) is the conditional density function ofIT whereσT is arbitrary. The
price of a European put can be determined similarly or from the put-call parity. For
the underlying asset this equation further simplifies to

Ft = E

[

∑N
i=1 αiI

δi+1
T

∑N
i=1 αiµ(t,δi)

∣

∣

∣

∣

∣

Ft

]

=
∑N

i=1 αiµ(t,δi +1)

∑N
i=1 αiµ(t,δi)

. (4)
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In the next two subsections we choose a specific form of the drift coefficienta(σt)
and the diffusion coefficientb(σt). This allows us to derive analytical formulas for
asset prices and European call options. Moreover, we determine credit spreads of
corporate bonds using a structural model approach.

3.2 Analytical formulas for asset and option prices

In the following we choose the drift and diffusion coefficient in (2) to be

a(σt) = κ(θ −σt) and b(σt) = v
√

σt ,

respectively, whereκ is the constant mean reversion speed,θ is the long-run mean
of σt , andv is the constant volatility of volatility. Hence, the volatility is non-central
chi-squared distributed.

First, consider a European call option with strike priceK that expires at timeT .
Then, from equation (3) and the fact thatIT is distributed according to (2) it follows
by rearranging the terms that option prices in this ASPK class are given by

C(It ,σt , t) = E

[

max(IT −K,0)
∑N

i=1 αiI
δi
T

E
[

∑N
i=1 αiI

δi
T

∣

∣Ft
]

∣

∣

∣

∣

∣

Ft

]

= E

[

N

∑
i=1

max(IT −K,0)αiI
δi
T

E
[

∑N
i=1 αiI

δi
T

∣

∣Ft
]

∣

∣

∣

∣

∣

Ft

]

=
N

∑
i=1

E
[

αiI
δi
T

∣

∣Ft
]

E
[

∑N
i=1 αiI

δi
T

∣

∣Ft
]

E

[

max(IT −K,0)αiI
δi
T

E
[

αiI
δi
T

∣

∣Ft
]

∣

∣

∣

∣

∣

Ft

]

.

We prove in the appendix, that this can be understood as a weighted sum of option
prices,

C(It ,σt , t) =
N

∑
i=1

ωi Ci(F
(i)

t ,σt , t;K), (5)

whereωi are weights and the pricesCi are given by

Ci(F
(i)

t ,σt , t;K) = F(i)
t I1−KI2,

with (k = 1,2)

Ik =
1
2

+
1
π

∞
∫

0

Re

[

e−iξ ln(K) fk(ξ )

iξ

]

dξ , (6)

fk(ξ ) = eA(T−t,ξ ;δk)−A(T−t,0;δk)+σt [B(T−t,ξ ;δk)−B(T−t,0;δk)]+iξ ln It ,

A(τ,ξ ) =
κθ
v2

[

(b+d)τ −2ln
(1−gedτ

1−g

)]

, B(τ,ξ ) =
b+d

v2

1− edτ

1−gedτ ,

g =
b+d
b−d

, d =
√

(ξ 2 + iξ (1−2δk)+δk(1−δk))v2 +b2.

b = κ −ρv(iξ +δk), δ1 = δi +1, δ2 = δi,
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The ‘virtual asset’ priceF(i)
t is given by

F(i)
t =

E
[

Iδi+1
T

∣

∣Ft
]

E
[

Iδi
T

∣

∣Ft
]

(7)

= Ite
A(T−t,0;δi+1)−A(T−t,0;δi)+σt [B(T−t,0;δi+1)−B(T−t,0;δi)], 0≤ t ≤ T.

We call this a virtual asset price sinceF(i)
t is the price that would hold if the elasticity

of the ASPK wereδi. The derivation of (7) is also given in the appendix.
To get a better understanding of equation (5), note that ifN = 1 andδ = −1 then

the first term in equation (5) is one and the option price is given by a formula, which
looks similar as the Heston (1993, p.331) option pricing formula. However, recall that
in the present situation the ASPK is given by a power function, while in the Heston
case it is not. So the formulas do not coincide. IfN > 1 then the option price is a

weighted sum of option prices, where every price Ci(F
(i)

t ,σt , t;K) corresponds to an
economy with constant elasticityδi. For very small levels of volatility of volatility,
i.e. asv → 0, the evolution of the volatility becomes deterministic. Hence, formula
(5) approaches the values of the generalized Black-Scholespricing formula derived in
Düring and L̈uders (2005) asv → 0, with time-averaged volatilityσ = 1

T−t

∫ T
t στ dτ.

If, additionally,N = 1 andδ = −1, we recover the Black-Scholes formula.
The price of the underlying asset under the generalized ASPKis given by the

weighted sum

Ft =
N

∑
i=1

E
[

αiI
δi
T

∣

∣Ft
]

E
[

∑N
i=1 αiI

δi
T

∣

∣Ft
]

F(i)
t =

N

∑
i=1

ωiF
(i)

t , 0≤ t ≤ T. (8)

The proposed class of ASPKs therefore yields an analytical formulas for asset prices
and for European options which are given by a weighted sum of generalized prices
with stochastic volatility. Note that these formulas are written in terms of the expected
terminal valueIt of the underlying. This can be sometimes more convenient, when no
market price for the underlying is available but the investors have some knowledge
about the expected future payoff of the underlying. Moreover, pricing formulas de-
pending explicitly on investors’ expectations and on the parameters of the ASPK can
be applied as a tool to study the impact of expectations and preferences on asset and
option prices. In the case that asset prices are available, the observable price of the
underlying is given by (8).

3.3 Credit spreads in a simple structural model

The yield difference between corporate bonds and treasury bonds due to credit risk
is called the credit spread. In this section we investigate credit spreads under the
generalized ASPK and the dynamics ofIt as given above. Here, we will only be
concerned with the fraction of the credit spread that is inflicted by default risk. Other
important factors like illiquidity and asymmetric taxation are not considered here.
We develop a simple structural model. We assume that a firm issues a risky zero
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coupon bondZ that can only default at maturityT . The bond defaults if the firm
value at maturity is lower than a given default boundaryD. We consider two different
scenarios of investor compensation in case of default:

1. In case of default, bond holders receive aconstant recovery rate R ∈ (0,1). Under
these assumptions we show in the appendix that the credit spread is given by

y = − 1
T

lnZ(It ,σt , t) = − 1
T

ln
[

1− (1−R)
N

∑
i=1

ωi Zi(It ,σt , t;D)
]

. (9)

where each Zi(It ,σt , t;D) is corresponding to an economy with constant elasticity
δi and it holds

Zi(It ,σt , t;D) =
1
2

+
1
π

∞
∫

0

Re

[

e−iξ ln(D) f (ξ )

iξ

]

dξ ,

f (ξ ) = eA(T−t,ξ ;δi)−A(T−t,0;δi)+σt [B(T−t,ξ ;δi)−B(T−t,0;δi)]+iξ ln I ,

A(τ,ξ ) =
κθ
v2

[

(b+d)τ −2ln
(1−gedτ

1−g

)]

, B(τ,ξ ) =
b+d

v2

1− edτ

1−gedτ ,

g =
b+d
b−d

, d =
√

(ξ 2 + iξ (1−2δi)+δi(1−δi))v2 +b2,

b = κ −ρv(iξ +δi).

2. In case of default, bond holders receive aconstant fraction R ∈ (0,1) of the ter-
minal firm valueFT . Under these assumptions it can be seen that the credit spread
is given by

y = − 1
T

lnZ(It ,σt , t) = − 1
T

ln
[

1− (1−R)
N

∑
i=1

ωi Pi(It ,σt , t;D)
]

, (10)

where Pi(It ,σt , t;D) are put option prices corresponding to an economy with con-
stant elasticityδi. For very small levels of volatility of volatility, i.e. asv → 0,
the evolution of the volatility becomes deterministic. Then, if N = 1 andδ =−1,
the credit spreads of formula (10) approach the spreads of Merton (1974) with
averaged volatilityσ = 1

T−t

∫ T
t στ dτ.

We close this section with a note on the implementation of theabove formulas. All
formulas can easily be implemented and efficiently computedin real-time. However,
there are two subtle points to note. First, the integrands appearing in the numerical
integration which has to be performed can by highly oscillating. Therefore, the use of
an adaptive integration method is recommended. We use an adaptive Gauß-Lobatto
quadrature formula in our numerical simulations. The second issue is related to the
complex logarithm appearing in the formulas. Standard algebraic software will typi-
cally return the principal value of the complex logarithm which has a branch cut along
the negative real axis. If during numerical integration theargument in the complex
logarithm crosses this axis, numerical problems can occur.Similar problems appear
in the numerical implementation of the Heston (1993) optionpricing formula. Dif-
ferent solutions to it have been suggested in the literature, cf. Kahl and J̈ackel (2005)
and Albrecher et al. (2007).
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4 Effects of different pricing kernels

4.1 Asset prices with excess volatility

To study the quantitative implications of non-constant elasticity of the ASPK and to
get a better understanding of the influence of the model parameters, we first take a
look at the price of the underlying, given by (8). Figure 1 shows plots of the underly-
ing’s price for different parameter sets for

– a two-term pricing kernel with declining elasticity withN = 2, α1 = 1, α2 = 5,
δ1 = −1, δ2 = −10, and for

– a standard pricing kernel with constant elasticity withN = 1, α1 = 1, δ1 = −1.

The left plot shows prices for different values of volatility σt while the volatility
of volatility v = 0.1 is fixed. The right plot shows prices for different choices for
the volatility of volatility v while the actual volatility is kept constant atσt = 0.04.
In both plots, the time horizon isT − t = 3 years, the long-run mean of volatility
θ = 0.04 and other parameter values are as shown in Table 1. Under the ASPK with
constant elasticity the information and the asset price show a linear dependence. For
the ASPK with declining elasticity the relationship becomes strongly nonlinear, with
regions where an investor is only willing to pay a slightly higher price for the asset in
spite of grown expectations on the asset’s terminal value. On the other hand, there are
regions, where the asset price that is rational under this investor preferences is rising
fast although little additional information is provided. We observe that the price of
the underlying is decreasing with increasing actual volatility σt . It also decreases
when volatility of volatility v is increased for both pricing kernels, although for the
standard pricing kernel the differences are very small. Note that the plots display the
asset price depending on the information levelIt at the fixed timeT − t = 3. With
time approaching maturity the ‘hump-shaped’ asset price will smoothly approach the
identity, since at maturity asset price and information level coincide, i.e.FT = IT . To
study the influence of the ASPK on the temporal evolution of asset prices we simulate
(2) using Monte Carlo simulation. We compute times series ona daily basis using an
Euler-Maruyama discretization. The time horizon is 3 yearsor 756 business days.
For the current volatility and its long-run mean we useσt = θ = 0.016641. The other
parameters are as shown in Table 1. Some sample time series are shown in Figure 2.
Below each time series plot daily log returns of the information and the asset price
process are shown.

Table 1: Default parameters for numerical simulations.

Parameter Value

correlation ρ = −0.28
volatility of volatility v = 0.1
mean reversion speed κ = 1.16
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Fig. 1: PriceFt of the underlying asset as a function of the information level It for
a two-term pricing kernel (thick lines,N = 2, α1 = 1,α2 = 5, δ1 = −1, δ2 = −10)
and for a standard pricing kernel with constant elasticity (thin lines,N = 1, α1 = 1,
δ1 = −1.) The left figure shows prices for different values of volatility σt and the
right for different choices for the volatility of volatility v. The time to maturity is
T − t = 3 years and other parameter values are as shown in Table 1.

The asset priceFt is always smaller or equal than the value of the information
process. Recall thatFt is the forward asset price and we have chosen a riskless bond
as numeraire. The gap between the forward asset priceFt and the information pro-
cessIt , that quantifies the investors’ current expectation of the terminal firm value,
can be interpreted as a deduction for risk. It is larger in states with higher actual
volatility and approaches zero as time approaches maturityT . When the information
goes up, volatility is typically low, and the gap closes. Thetime series for the asset
prices exhibit excess volatility and days with large negative returns although the in-
formation about the final firm value has only changed little. These negative shocks
are a result of the stochastic volatility which is negatively correlated with the infor-
mation process and the strongly nonlinear interplay between information and asset
price process shown in Figure 1. Recall that our pricing model is based on rational
expectations. The shock-like, large negative returns occur without exogenously added
jumps in the underlying diffusion processes and are not result of learning or overcon-
fidence effects. They are completely endogenously explained by rational behavior,
more precisely by the investor’s risk preference structurewhich is characterized by
the shape of the ASPK. Our results are also in line with the theoretical findings of
Franke et al. (1999), who show (for an information process following a geometric
Brownian motion) that in the case of declining elasticity, the variance of the forward
price increases relative to the constant elasticity case, and also that returns exhibit
negative autocorrelation.
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Fig. 2: Simulated time series for asset priceFt and informationIt for a two-term
pricing kernel (N = 2, α1 = 1,α2 = 5, δ1 = −1, δ2 = −10). Logarithms of daily
returns forFt and It are shown below each graph. Time horizon isT − t = 3 years
(756 business days) and other parameter values are as shown in Table 1 exceptσ0 =
θ = 0.016641.
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Fig. 3: Simulated time series for asset priceFt and informationIt for a time-dependent
two-term pricing kernel (N = 2, α1 = 1,α2(t) = 2.5[tanh(10(t −1))+ tanh(−10(t −
2))], δ1 = −1, δ2 = −10). The ASPK switches smoothly from constant elasticity
to declining elasticity and back. Logarithms of daily returns forFt andIt are shown
below each graph. Time horizon isT − t = 3 years (756 business days) and other
parameter values are as shown in Table 1 exceptσ0 = θ = 0.016641.
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In reality, investor preferences will not be constant over time. They will change
when certain exogenous information events, favorable or unfavorable, like profit warn-
ings or forecasts of economic stagnation or recession occur. It is possible to in-
corporate such changes in investor preferences in our modelby employing atime-
dependent ASPK. Since all integration in the pricing formulas are performed over
the information variable, we can introduce time-dependentcoefficientsαi(t), δi(t) in
the specification (1) of the ASPK.

To illustrate this, we repeat the simulation, but replace the time-constant ASPK
by a time-dependent two-term ASPK with

α1(t) ≡ 1, α2(t) = 2.5[tanh(10(t −1))+ tanh(−10(t −2))], δ1 = −1, δ2 = −10.

This ASPK changes smoothly from constant elasticity duringthe first year to an
ASPK with declining elasticity during the second year and back. Some sample time
series are shown in Figure 3. Below each time series plot daily log returns of the
information and the asset price process are shown. We observe that during the first
year and the third, where the ASPK has constant elasticity, the forward asset price
Ft is always close to the information levelIt . However, in the second year, when
the investor changes his risk preference structure, decline in the informationIt and
accompanying high levels of volatility can lead to strong downward movements in
the forward asset price.

4.2 Option prices

Next we turn to the effect of different ASPKs on the option price. We plot the price
difference between the prices from formula (5) and Black-Scholes prices for different
pricing kernels in Figure 4 using the parameter values from Table 1. These parameter
choices are motivated by the time-series estimates that were obtained in Bakshi et al.
(1997) from daily returns and volatility changes of the S&P 500 index during a period
from June 1988 to May 1991.

First, we use the standard pricing kernel with constant elasticity, i.e., we setN = 1,
α = 1, δ =−1. The price differences compared to the Black-Scholes price displayed
in Figure 4 show that call option prices are significantly higher in-the-money and
lower out-of-the-money. For a two-term ASPK with decliningelasticity (N = 2, α1 =
1,α2 = 5, δ1 =−1, δ2 =−3,−5) we observe that the option prices are higher and the
price difference is smaller out-of-the-money and more pronounced for in-the-money
options. Such patterns are also found in empirical studies.The option prices increase
for smaller values ofδ . This is consistent with Theorem 1 in Franke et al. (1999)
who show that option prices are ceteris paribus higher underdeclining elasticity of
the ASPK than under constant elasticity of the ASPK.

Stock return distributions observed in empirical studies show negative skewness
and higher levels of kurtosis than explained by lognormal distribution used in the
standard Black and Scholes (1973) option pricing formula. Alternative models have
been proposed in the literature to address these issues. Oneof the most successful
and widely accepted approaches is the stochastic volatility model of Heston (1993).
However, empirical studies, e.g. Bakshi et al. (1997), showthat the Heston (1993)
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Fig. 4: Option price differences between prices from formula (5) and the Black-
Scholes price for different pricing kernels: pricing kernel with constant elasticity
(N = 1, α = 1, δ =−1), and two term pricing kernel with declining elasticity (N = 2,
α1 = 1,α2 = 5, δ1 =−1, δ2 =−3,−5). Option prices are ceteris paribus higher under
declining elasticity of the ASPK than under constant elasticity of the ASPK.

model demands for unreasonable levels of correlationρ and volatility of volatility
v to match the skewness and kurtosis effects observed in market option prices. The
model seems to be misspecified, although this does not imply that the model cannot
be applied successfully. In the following, we want to illustrate how the option pricing
approach developed in the previous section can help to alleviate this shortcoming.

We compute the prices from the generalized prices from formula (5) and Heston
(1993) prices. First, we use the standard pricing kernel with constant elasticity i.e.
we setN = 1, α = 1, δ = −1. The price differences compared to the Black-Scholes
price displayed in the left plot of Figure 5 show that call option prices are higher
in-the-money and lower out-of-the-money. Prices are very similar as from the Heston
(1993) formula. We used the same parameter values, current volatility σt = 0.04, time
to maturityT − t = 0.5 and the other parameters as given in Table 1 for both models,
although we increase the long run mean slightly fromθ = 0.04 toθ = 0.043 for the
Heston model so that both models match at the money.

Next, we would like to generate the strong negative skewnessand high levels
of kurtosis that are present in empirical data with both pricing formulas. Using the
Heston model, we can achieve this by changing the parameters, for example, to

θ = 0.07, ρ = −0.5, v = 0.15, (11)

since these control the moments of the underlying distribution. Increasing these three
values is what typically is necessary to match market optionprices with the Heston
(1993) formula. However, these parameter values are now no longer consistent with
time-series estimates, e.g. such a strong negative correlation cannot be found in typi-
cal data. Interestingly, similar prices can be found using formula (5), if we use a two-
term ASPK with declining elasticity (N = 2, α1 = 1,α2 = 5, δ1 = −1, δ2 = −5.5)
and still retain the more realistic parameter values used before. The price differences



16

0.8 0.9 1 1.1 1.2
−5

0

5

10

15x 10
−4

I/K

D
iff

er
en

ce
 to

 B
−

S

 

 

formula (5)
Heston 93

0.8 0.9 1 1.1 1.2

0

2

4

6x 10
−3

I/K

D
iff

er
en

ce
 to

 B
−

S

 

 

formula (5)
Heston 93

Fig. 5: Option price differences with respect to the Black-Scholes price of gener-
alized prices from formula (5) and Heston (1993) prices for different pricing ker-
nels: standard pricing kernel with constant elasticity (N = 1, α = 1, δ = −1, left),
two term pricing kernel with declining elasticity (N = 2, α1 = 1,α2 = 5, δ1 = −1,
δ2 = −5.5, right). To generate the negative skewness in the right plot, the parameters
in the Heston (1993) model have to be set to unrealistic values that are no longer
consistent with time-series data. For the generalized prices from formula (5) this is
done by choosing an appropriate ASPK while retaining realistic model parameters.

compared to the Black-Scholes price are displayed in the right plot of Figure 5 for
both approaches. The differences between the two approaches are small, and the qual-
itative behavior is very similar.

We also compute the implied volatilities of the option prices using the following
iteration procedure. LetC be the option price computed by one of models and let
σ (0) be a given starting value. Then,

– For a given volatilityσ (n) compute the Black-Scholes option priceC(σ (n)),

– Computeσ (n+1) = σ (n)− C(σ (n))−C

C′(σ (n))
,

– Setn := n+1, repeat cycle.

Let σ (n)
i denote thenth iterate of the implied volatility at grid pointIi. We stop the

iteration procedure when thel2 norm of the update defined by

ε2 =

(

h
N

∑
i=0

∣

∣

∣
σ (n+1)

i −σ (n)
i

∣

∣

∣

2
)

1
2

becomes less than 10−5.
Using the above setting we compute the implied volatilitiesfor the two settings

above: The Heston (1993) model with realistic and unrealistic parameters on one
hand, and the pricing formula (5) with realistic parametersusing the two different
pricing kernels, one with constant, the other with declining elasticity. The results are
shown in Figure 6. For the Heston model with realistic parameters from Table 1 and
for the pricing formula (5) with the constant elasticity ASPK, the implied volatility is
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more or less flat (see left plot of Figure 6). Empirical data typically show a significant
volatility skew, i.e. the implied volatility for in-the-money calls (i.e. out-of-the-money
puts) is significantly higher than the implied volatility ofat-the-money calls and out-
of-the-money calls. In the Heston model such a shape is obtained by increasing the
parameters to the unrealistic values (11), see the right plot of Figure 6. For formula
(5) using the two-term ASPK we find implied the volatility skew to be similar with
higher volatilities for out-of-the-money calls.
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Fig. 6: The figure shows the implied volatilities for the two different settings: Heston
model with realistic parameter values from Table 1 and the prices from formula (5)
using a pricing kernel (N = 1, α = 1, δ = −1) with constant elasticity (left plot),
Heston (1993) model with unrealistic parameter values and the prices from formula
(5) using a two term pricing kernel (N = 2, α1 = 1,α2 = 5, δ1 =−1, δ2 =−5.5 (right
plot).

This illustrates, that using formula (5) with parameters from time-series data we
can compute option prices that are consistent with empirical findings. Moreover, from
a modeling point of view it has the advantage that the model parameters are clearly
separated from the fitting parameters. The model parametersσ0,θ , ρ, v, κ can be
chosen from suitable estimates, e.g. of historic time-series data. To fit the model to
the market, one can then choose suitable values ofαi, δi in the specification (1) of the
ASPK.

4.3 Credit spreads

Structural models for determining credit spreads (Merton,1974; Longstaff and Schwartz,
1995) predict that the term structure of spreads is upward-sloping for high-grade
bonds and downward-sloping for low-grade bonds. The intuition for a downward-
slope is that low-grade bonds have a chance to upgrade. However, this is rejected
by practitioners who claim that the term structure should always be upward slop-
ing. The firm’s leverage in the Merton (1974) model is implicitly falling since the
firm value is drifting upwards at the riskless interest rate in the risk-neutral world. If
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one maintains a constant leverage ratio, this results in larger spreads and a upward-
sloping term structure (Collin-Dufresne and Goldstein, 2001). This is e.g. justified by
the assumption that firms issue additional debt or retire outstanding debt to maintain
a target leverage ratio. In contrast, our model is based on the information processIt
that reflects the investor’s expectation of the terminal firmvalue. This information
process has no drift, hence our model guarantees a constant leverage ratio implicitly.
A second shortcoming of structural models is that the predicted spreads are too low.
In our approach the size of the spreads is related to the investor preferences through
the specific shape of the ASPK. To illustrate this, we report some results of numerical
experiments we carried out.

Huang and Huang (2003) collected a number of historical dataunderlying their
calibration study of different models. For B rated firms theyreport the average yield
spread to be 470 basis points (bps) at 4 and 10 years. Based on their data we choose
the leverage ratio to be 0.65, i.e. we look at B rated bonds, and fix the recovery rate
at R = 0.5. We setσt = θ = 0.016641 and the other values as given in Table 1. We
use two ASPKs,

– a standard pricing kernel with constant elasticity withN = 1, α1 = 1, δ1 = −1,
andδ2 = −10, and

– a two-term pricing kernel declining elasticity withN = 2, α1 = 1, α2 = 5, δ1 =
−1, δ2 = −3.3.

Then we compute the credit spreads using formula (9). The resulting credit spreads
are shown in Figure 7.
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Fig. 7: The figure shows the credit spreads for B rated bonds computed from formula
(9) using two different pricing kernels: one with constant elasticity (dashed line), the
other with declining elasticity (solid line). The spreads are upward-sloping. Using the
ASPK with declining elasticity they are of the order of historical estimates.

The spreads are upward sloping, unlike in the Merton (1974) model but in agree-
ment with practitioner’s claims. Under the ASPK with constant elasticity they are
rather small and increase only slowly. Using the ASPK with declining elasticity how-
ever, they are show a steep ascent and then increase only moderately. The order of
the spreads in this case agrees quite well with the historical estimates.
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To understand better the possibilities and limitations of our credit spread model
it would be interesting to perform an empirical analysis. However, empirical stud-
ies of credit spreads using structural models are rather rare and are complicated by
additional issues like coupon payment. On the other hand, the focus of this paper is
on modelling investor risk preferences and understanding the interplay of the ASPK,
risk preferences and asset and option prices and credit spreads. Therefore, we are
rather interested in pricing methodology and modeling investor expectations and re-
frain from an empirical study which would be beyond the scopeof this paper.

5 Conclusion

In this paper we presented a pricing approach for assets, European options and credit
spreads based on a generalized specification of the asset specific pricing kernel (ASPK).
The underlying information process is modelled by a two-dimensional diffusion. This
rather general information process with stochastic volatility allowed us to derive an-
alytical asset and option pricing formulas as well as to determine credit spreads in a
simple structural model. The main observations can be summarized as follows. First,
the asset prices in this rational expectations model show excess volatility and exhibit
crash-like patterns in the asset price. Second, the resulting option pricing formula is
consistent with the strong negative skewness and high levels of kurtosis observed in
empirical studies. Third, the credit spreads derived in a simple structural model yield
qualitatively and quantitatively promising results. Our approach may also be useful
to infer empirical ASPK from option prices and credit spreads. As in existing para-
metric approaches it would allow to fit the ASPK to market dataand could therefore
be used for an empirical analysis of ASPKs.

A Mathematical proofs and formulas

A.1 Asset price formula (7)

First, we address the formula (7). The virtual asset priceF(i)
t is given by

F(i)
t =

E
[

Iδi+1
T

∣

∣Ft
]

E
[

Iδi
T

∣

∣Ft
]

.

Hence, we need to computeV = E
[

Iδ
T

∣

∣Ft
]

for arbitraryδ . Assuming thatV = V (I,σ , t) and sufficiently
smooth, so that by Itô’s lemma we obtain (note that in the following and in the rest ofthis section subscripts
denote partial derivatives)

dV =
(

Vt +
1
2

I2σVII +ρb(σ)
√

σ IVIσ +
1
2

b2(σ)Vσσ +a(σ)Vσ

)

dt +
√

σ IVI dW (1) +b(σ)Vσ dW (2)

Taking expectations on both sides we get the following partial differential equation

Vt +
1
2

I2σVII +ρb(σ)
√

σ IVIσ +
1
2

b2(σ)Vσσ +a(σ)Vσ = 0, (12)

which has to be solved forI,σ > 0, 0 < t < T with final conditionV (I,σ ,T ) = Iδ . Similar as in Heston
(1993) we guess that the solution is of the formV = Iδ P. Performing the transformation of variablesx = ln I
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and t̃ = T − t (we immediately drop the tilde in the following) and substituting this functional form into
(12), we arrive at

Pt −
1
2

σ
[

Pxx −Px
]

−δσPx −ρ
√

σb(σ)Pxσ − 1
2

b2(σ)Pσσ

−
[

a(σ)+ρ
√

σb(σ)δ
]

Pσ − 1
2

σδ (δ −1)P = 0, (13)

Introducing the Fourier transform ofP,

P̂(ξ ,σ , t) =
∫

R

eiξ xP(x,σ , t)dx

under which differentiation with respect tox turns into multiplication with−iξ , we obtain the following
equation

P̂t =
1
2

b2(σ)P̂σσ +
[

a(σ)+ρ
√

σb(σ)δ − iξ ρ
√

σb(σ)
]

P̂σ

−
[1

2
σξ 2 + iξ

(

δ − 1
2

)

σ +
1
2

δ (δ −1)σ
]

P̂. (14)

In the following we assume thata(σ) = κ(θ −σ) andb(σ) = v
√

σ . This allows us to solve explicitly
for the characteristic function ofP. Otherwise, one could resort to solve (14) numerically. By inserting
the ansatzP̂ = eA(t,ξ ;δ )+σB(t,ξ ;δ )+iξ x with A(0,ξ ;δ ) = B(0,ξ ;δ ) = 0 into (14) we get the two ordinary
differential equations (′ = ∂/∂ t)

A′ = κθD,

B′ =
1
2

v2B2−
[

κ −ρvδ − iξ ρv
]

B− 1
2

ξ 2 + iξ
(

δ − 1
2

)

+
1
2

δ (δ −1),

subject toA(0) = B(0) = 0, which can be solved yielding

A =
κθ
v2

[

(b+d)t −2ln
(1−gedt

1−g

)]

, B =
b+d

v2

1− edt

1−gedt , (15)

where

g =
b+d
b−d

, d =
√

[ξ 2 + iξ (1−2δ )+δ (1−δ )]v2 +b2, b = κ −ρv(iξ +δ ).

Note that sinceP(x,σ ,0) = 1 it holds

P̂(ξ ,σ ,0) =
∫

R

eiξ xP(x,σ ,0)dx = 2πδ0(ξ ),

whereδ0(·) is the delta distribution with zero mean. This can easily be seen from

P(x,σ ,0) =
1

2π

∫

R

e−iξ xP̂(ξ ,σ ,0)dξ =
∫

R

e−iξ xδ0(ξ )dξ = e0 = 1.

Hence, we obtain

P(x,σ ,T − t) =
∫

R

δ0(ξ )eA(t,ξ ;δ )+σB(t,ξ ;δ )+iξ x dξ = eA(t,0;δ )+σB(t,0;δ ). (16)

Finally, we are able to compute the virtual asset price

F(i)
t =

E
[

Iδi+1
T

∣

∣Ft
]

E
[

Iδi
T

∣

∣Ft
]

= It e
A(T−t,0;δi+1)−A(T−t,0;δi)+σt [B(T−t,0;δi+1)−B(T−t,0;δi)].
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A.2 Option pricing formula (5)

Now, we turn to formula (5). The term which is left to be computedis

W (I,σ , t) = E
[

Iδ
T max(IT −K,0)

∣

∣Ft
]

.

Applying Itô’s lemma,W (I,σ , t) has to solve (12) with final condition

W (I,σ ,T ) = Iδ max(I −K,0).

We make use of the ansatz

W = Iδ (IP1−KP2) (17)

with P1,2(I,σ ,T ) = 1I≥K . Thus,P1,2 can be interpreted as the conditional probabilities that the option
expires in the money. Equation (12) is linear, hence both termsof (17) have to satisfy (12) separately.
Applying the transformations as above and inserting each part separately into (12), we obtain two equations
like (13) for P1,2, whereδ has to be replaced byδ + 1 in case ofP1. Performing now a complex Fourier
transform (also called extended transform), i.e.ξ ∈ C, we find thatP1,2 have to solve (14).

To continue, we need the transformed payoff given by

P̂1,2(ξ ,σ ,0) =
∫

R

eiξ xP1,2(x,σ ,0)dx =
∫

R

eiξ x1x≥lnK dx =

∞
∫

lnK

eiξ x dx =
−Kiξ

iξ
,

with x = ln(I) and subject to Im(ξ ) > 0. Inverting the characteristic function we obtain the desired proba-
bilities

P1,2(x,σ ,T − t) =
1

2π

∞
∫

−∞

P̂1,2(ξ ,σ ,0)eA(t,ξ ;δ )+σB(t,ξ ;δ )+iξ x dξ

=
1

2π

∞
∫

−∞

−Kiξ

iξ
eA(t,ξ ;δ )+σB(t,ξ ;δ )+iξ x dξ

=
1

2π

∞
∫

−∞

e−iξ lnK

iξ
eA(t,ξ ;δ )+σB(t,ξ ;δ )+iξ x dξ

=
1
2

+
1
π

∞
∫

0

Re

[

e−iξ lnK

iξ
eA(t,ξ ;δ )+σB(t,ξ ;δ )+iξ x

]

dξ ,

whereδ = δi +1 in case ofP1, andδ = δi for P2. From

W (I,σ , t) = E
[

Iδ
T max(IT −K,0)

∣

∣Ft
]

= Iδ (IP1(x,σ , t)−KP2(x,σ , t)
)

and from (16), we conclude that

E

[

max(IT −K,0)αiI
δi
T

E
[

αiI
δi
T

∣

∣Ft
]

∣

∣

∣

∣

∣

Ft

]

=
E
[

max(IT −K,0)Iδi
T

∣

∣Ft
]

E
[

Iδi
T

∣

∣Ft
]

=
It P1(ln It ,σ , t)−KP2(ln It ,σ , t)

P(ln It ,σ , t)

= F(i)
t I1−KI2,

whereI1 andI2 are given by (6) andF(i)
t by (7). Thus, formula (5) is proved.
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A.3 Credit spreads

We assume that the risky zero coupon bondZ can only default at maturityT . The bond defaults if the
firm value at maturity is lower than a given default boundaryD. In case of default, bond holders receive a
constant recovery rateR ∈ (0,1). Thus, the bond’s cash flow at maturity is given by

Z(IT ,σT ,T ) = 1− (1−R)1IT <D.

In the spirit of Merton (1974), the bond price under the generalized ASPK is then obtained by

Z(It ,σt , t) = E
[ (

1− (1−R)1IT <D
)

φt,T
∣

∣Ft
]

= 1− (1−R)E[1IT <D φt,T |Ft ]

= 1− (1−R)E



1IT <D
∑N

i=1 αiI
δi
T

E
[

∑N
i=1 αiI

δi
T

∣

∣

∣
Ft

]

∣

∣

∣

∣

∣

∣

Ft





= 1− (1−R)E

[

N

∑
i=1

1IT <DαiI
δi
T

E
[

∑N
i=1 αiI

δi
T

∣

∣

∣
Ft

]

∣

∣

∣

∣

∣

Ft

]

= 1− (1−R)
N

∑
i=1

E
[

αiI
δi
T

∣

∣Ft
]

E
[

∑N
i=1 αiI

δi
T

∣

∣

∣
Ft

]E

[

1IT <DαiI
δi
T

E
[

αiI
δi
T

∣

∣Ft
]

∣

∣

∣

∣

∣

Ft

]

= 1− (1−R)
N

∑
i=1

ωi Zi(It ,σt , t;D), (18)

whereωi are the weights and Zi(It ,σt , t;D) are corresponding to an economy with constant elasticityδi.
The Zi(It ,σt , t;D) still need to be specified. To this end we need to compute E

[

1IT <DIδ
T

∣

∣Ft
]

for arbitrary
δ . From Itô’s lemma follows, thatZi solves (12) with final condition

Zi(I,σ ,T ) = Iδ 1IT <D.

We make use of the ansatz
Zi = Iδ P3

with P3(I,σ ,T ) = 1I<D. Thus,P3 is the conditional probability that default occurs. Applying the trans-
formations as above, we obtain an equation like (13) forP3. We continue as above and find thatP3 has to
solve (14). Here, the transformed initial condition is givenby

P̂3(ξ ,σ ,0) =
∫

R

eiξ xP3(x,σ ,0)dx =
∫

R

eiξ x1x<lnD dx =
Diξ

iξ
,

with x = ln(I) and subject to Im(ξ ) < 0. Inverting the characteristic function we obtain the desired proba-
bilities

P3(x,σ ,T − t) =
1

2π

∞
∫

−∞

P̂3(ξ ,σ ,0)eA(t,ξ ;δ )+σB(t,ξ ;δ )+iξ x dξ

=
1

2π

∞
∫

−∞

eiξ lnD

iξ
eA(t,ξ ;δ )+σB(t,ξ ;δ )+iξ x dξ

=
1
2

+
1
π

∞
∫

0

Re

[

eiξ lnD

iξ
eA(t,ξ ;δ )+σB(t,ξ ;δ )+iξ x

]

dξ .

From

Zi(I,σ , t) = E
[

Iδ
T 1IT <D

∣

∣Ft
]

= Iδ P3(x,σ , t)
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and from (16), we conclude that

Zi(It ,σt , t;D) = E

[

1IT <DαiI
δi
T

E
[

αiI
δi
T

∣

∣Ft
]

∣

∣

∣

∣

∣

Ft

]

=
E
[

1IT <DIδi
T

∣

∣Ft
]

E
[

Iδi
T

∣

∣Ft
]

=
P3(ln It ,σ , t)
P(ln It ,σ , t)

.

Summing up, theZi are given by

Zi(It ,σt , t;D) =
1
2

+
1
π

∞
∫

0

Re

[

e−iξ ln(D) f (ξ )

iξ

]

dξ , (19)

f (ξ ) = eA(T−t,ξ ;δi)−A(T−t,0;δi)+σt [B(T−t,ξ ;δi)−B(T−t,0;δi)]+iξ ln I ,

A(τ,ξ ) =
κθ
v2

[

(b+d)τ −2ln
(1−gedτ

1−g

)]

, B(τ,ξ ) =
b+d

v2

1− edτ

1−gedτ , (20)

g =
b+d
b−d

, d =
√

(ξ 2 + iξ (1−2δi)+δi(1−δi))v2 +b2,

b = κ −ρv(iξ +δi).

Thus, formula (18) is fully proved.
Writing the bond in terms of its yield to maturity,Z = e−yT , the credit spread is given by

y = − 1
T

lnZ(It ,σt , t) = − 1
T

ln
[

1− (1−R)
N

∑
i=1

ωi Zi(It ,σt , t;D)
]

.
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Câmara, A. (2005). “Option Prices Sustained by Risk-Preferences,”Journal of Busi-
ness 78, 1683–1708.



24

Campbell, J.Y. and J.H. Cochrane (1999). “By Force of Habit:A Consumption-Based
Explanation of Aggregate Stock Market Behavior,”Journal of Political Economy
107, 205–251.

Cochrane, J.H. (2001).Asset Pricing, Princeton University Press.
Collin-Dufresne, P. and R. Goldstein (2001). “Do Credit Spreads reflect Stationary

Leverage Ratios?,”Journal of Finance 56, 1928–12957.
Daniel, K., D. Hirshleifer, and A. Subrahmanyam (2001). “Overconfidence, Arbi-

trage, and Equilibrium Asset Pricing,”Journal of Finance 56, 921–965.
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