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Abstract

We consider parameter estimation for time-dependent locally sta-
tionary long-memory processes. The asymptotic distribution of an
estimator based on the local infinite autoregressive representation is
derived, and asymptotic formulas for the mean squared error of the
estimator, and the asymptotically optimal bandwidth are obtained.
In spite of long memory, the optimal bandwidth turns out to be of
the order n−1/5 and inversely proportional to the square of the second
derivative of d. In this sense, local estimation of d is comparable to
regression smoothing with iid residuals.

Keywords: long memory, fractional ARIMA process, local stationarity, band-
width selection

1 Introduction

The usefulness of stationary long-memory processes for modeling time series
has been demonstrated in the literature by numerous examples, including ap-
plications in hydrology, geophysics, economics, finance, climatology, physics,
biology, medicine, music and telecommunications engineering among others
(see e.g Mandelbrot 1977, Beran 1994, 2003, Lowen and Teich 2005). Long
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memory of a second order stationary process Xt is characterized by slowly
decaying non-summable autocovariances

γ(k) = cov(Xt, Xt+k) ∼ cγ |k|2d−1 (|k| → ∞) (1)

where d ∈ (0, 1
2
), and a pole of the spectral density at the origin,

fX(λ) =
1

2π

∞∑
k=−∞

γ(k)e−ikλ ∼ cf |λ|−2d (|λ| → 0). (2)

Here ” ∼ ” means that the ratio of both sides tends to one. For some data
sets, however, it has been observed that the assumption of stationarity is
too restrictive, even after trends in the mean are removed. In particular,
the long-memory parameter d, as well as other parameters characterizing the
spectrum of the process, may change as a function of time. Data examples
with time-varying d can be found, for instance, in geophysics, oceanogra-
phy, meteorology, economics, telecommunication engineering, medicine and
other areas of statistical applications (see e.g. Beran et al. 1995, Vesilo
and Chan 1996, Whitcher and Jensen 2000, Lavielle and Ludena 2000, Ray
and Tsay 2002, Whitcher et al. 2002, Granger and Hyung 2004, Falconer
and Fernandez 2007). This motivates introducing locally stationary pro-
cesses with long-range dependence. For locally stationary processes with
short-range dependence see e.g. Subba Rao (1970), Hallin (1978), Priestley
(1981), Dahlhaus (1986, 1987), Dahlhaus and Giraitis (1998), Moulines et
al. (2005). Jenssen and Whitcher (2000) define locally stationary fractional
ARIMA (FARIMA) processes (Granger and Joyeux 1980, Hosking 1981),
and estimate parameters using wavelets. Alternatively, given a specific linear
model such as a fractional ARIMA, one may consider local estimation based
on estimated innovations. This is the approach taken here. For related esti-
mates for stationary long-memory processes, see e.g. Fox and Taqqu (1986),
Yajima (1985), Giraitis and Surgailis (1990) and Beran (1995). Modeling
time series by locally stationary long-memory processes is closely related to
change point detection in the spectral domain. For spectral change point
detection in the long memory context, see e.g. Giraitis and Leipus (1990,
1992), Horváth and Shao (1999), Lavielle and Ludena (2000), Ray and Tsay
(2002), Ben Hariz et al. (2007), also see Kokoszka and Leipus (2003) for a
review. It should also be noted that shifts in the mean can also give rise to
long-memory type dependence (see e.g. Granger and Ding 1996, Diebold and
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Inoue 2001). Distinguishing nonconstant mean from stationary long memory
is possible either under regularity assumptions on a trend function (see e.g.
Hall and Hart 1990, Csörgö and Mielniczuk 1995, Ray and Tsay 1997, Beran
and Feng 2002a,b) or in the presence of a finite number of change points (see
e.g. Horváth and Kokoszka 1997, Kuan and Hsu 1998, Wright 1998, Ray and
Tsay 2002, Sibbertsen 2004, Berkes et al. 2006). In this paper, we assume
the mean to be constant. The methods proposed here may be extended to
situations with nonconstant mean by combining them with suitable algo-
rithms for nonparametric regression smoothing (Beran and Feng 2002b) or
change point estimation (Horváth and Kokoszka 1997).

Specifically, we consider a sequence of processes Xt,n having a time-
varying infinite autoregressive representation

Xt,n =

∞∑
j=1

bj,nXt−j,n + εt (3)

where εt are iid zero-mean random variables with finite variance σ2
ε = σ2

ε(t/n)
and bj,n = bj(θ(t/n)). Here σ2

ε(u) and θ(u) = (d(u), θ2(u), ..., θk(u))
T (u ∈

[0, 1]) are sufficiently smooth functions of rescaled time. Moreover, for fixed
u = t/n, the value of d(u) ∈ (0, 1

2
) is assumed to be such that

0 < lim
j→∞

jd+1bj(θ(u)) = cb <∞ (4)

and

0 < lim
λ→0

2πσ−2
ε λ−2d

∣∣∣∣∣1 −
∞∑

j=1

bje
−ijλ

∣∣∣∣∣
2

= c−1
f <∞ (5)

where cb, cf are positive constants. In the case of a fractional ARIMA(p, d, q)
process, we have cf = σ2

ε/(2π) and for z ∈ C, with |z| ≤ 1 and z �= 1,

1 −
∞∑

j=1

bj(d)z
j = ϕ(z)ψ−1(z) (1 − z)d (6)

where
ϕ(z) = 1 − ϕ1z − ...− ϕpz

p �= 0 (|z| ≤ 1), (7)

ψ(z) = 1 − ψ1z − ...− ψqz
q �= 0 (|z| ≤ 1). (8)

The time varying parameters are then σ2
ε(t/n) = var(εt) and θ(t/n) =

[d(t/n), ϕ1(t/n), ..., ϕp(t/n), ψ1(t/n), ..., ψq(t/n)]T . Note that, d(u) > 0 means
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that locally the process has (approximately) a spectral density with a pole
at the origin proportional to |λ|−2d(u), and, in the course of time, the rate of
divergence of the pole changes slowly.

In this paper, estimation of θ(.) based on the autoregressive representa-
tion (3) is considered. For Gaussian innovations εt, this corresponds to an
approximate maximum likelihood estimator. Two questions are addressed:
1. asymptotic distribution of θ̂(u), and 2. the choice of a suitable bandwidth
that determines which observations in the neighbourhood of u (or nu on the
original time scale) are used for the local estimate. The paper is organized
as follows. The asymptotic distribution of θ̂ is derived in section 2. Section 3
addresses the issue of bandwidth choice. In particular, an asymptotic expres-
sion for the mean squared error of d̂ is obtained. The asymptotically optimal
bandwidth turns out to be proportional to n−1/5 and inversely proportional
to {d′′}2. In spite of long-range dependence, the formula are similar to re-
sults in the context of regression smoothing with iid errors. For the case of
short-memory AR(p) processes also see Dahlhaus and Giraitis (1998). Simu-
lations and data examples in section 3 illustrate the approximate validity of
the asymptotic results for finite samples. Moreover, a simple iterative plug-in
algorithm for data driven bandwidth choice is proposed. General comments
in section 4 conclude the paper. Proofs are given in the appendix.

2 Estimation, asymptotic distribution

Denote by θo(u) the true parameter curve. We consider estimation of θo(u)
for a fixed rescaled time point uo ∈ (0, 1). Let to(n) = [nuo], ut,n = t(n)/n,
and denote by K : R → R+ a nonnegative kernel function with K(−x) =
K(x), K(x) = 0 (|x| > 1) and

∫
K(x)dx = 1. A local estimate of θo(uo) is

defined by minimizing

Ln(θ) =

to+[nb]∑
t=to−[nb]

K(
t− to(n)

nb
)e2t (θ) (9)

or by solving

L̇n(θ̂) =

to+[nb]∑
t=to−[nb]

K(
t− to(n)

nb
)et(θ̂)ėt(θ̂) = 0 (10)
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where

et(θ) = Xt −
t−1∑
j=1

bj(θ)Xt−j , (11)

ėt(θ) = −
t−1∑
j=1

ḃj(θ)Xt−j (12)

and

ḃj(x) =
∂

∂x
bj(x) =

[
∂

∂x1
bj(x1), ...,

∂

∂xk
bj(xk)

]T

. (13)

Note that et(θ) and ėt(θ) are approximations of

εt(θ) = Xt −
∞∑

j=1

bj(θ)Xt−j (14)

and

ε̇t(θ) = −
∞∑

j=1

ḃj(θ)Xt−j (15)

Under suitable regularity conditions, Xt,n defined by (3) is a locally sta-
tionary process (see e.g. Jenssen and Whitcher 2000), i.e. there exist transfer
functions At,n(e−iλ; θ) and A(e−iλ; θ) such that Xt,n has a spectral represen-
tation

Xt,n = σε(ut,n)

∫ π

−π

eitλAo
t,n

(
e−iλ; θ(ut,n)

)
dZε(λ) (16)

and

sup
λ∈[−π,π],t=1,2,...,n

∣∣σε(ut,n)[At,n(e−iλ; θ(ut,n)) −A(e−iλ; θ(ut,n))]
∣∣ ≤ Cn−1 (17)

for all n and a constant C. In the following we will use the notation
f{λ; θ(ut,n)} = (2π)−1|A(e−iλ; θ(ut,n))|2 for the standardized local spectral

density. The asymptotic distribution of θ̂(uo) is then characterized by

Theorem 1 Let Xt,n be generated by (3), and uo ∈ (0, 1). Assume that, as
n tends to infinity, b → 0 and nb3 → ∞. Then, under assumptions (A1)-
(A7) given in the appendix, there is a sequence θ̂n such that L̇n(θ̂n) = 0 and
θ̂n → θo(uo) in probability. Moreover,

√
nb(θ̂n − E(θ̂n)) →d N(0, V ) (18)
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where

V = J−1(θo)

∫ 1

−1

K2(x)dx (19)

with

J(θo) =

[
1

4π

∫ π

−π

∂

∂θr

log f(λ; θo)
∂

∂θs

log f(λ; θo)dλ

]
r,s=1,...,k

(20)

Remark 1 The estimate of σ2
ε(uo) can be defined similarily by

σ̂2
ε(uo) =

to+[nb]∑
t=to−[nb]

K(
t− to(n)

nb
)e2t (θ) (21)

As in the stationary case, σ̂2
ε(uo) can be shown to be asymptotically indepen-

dent of θ̂n. Also note that the asymptotic distribution of θ̂ does not depend on
σ2

ε . To simplify presentation, and also since the focus here is on estimation
of θ, we will therefore assume that σ2

ε(u) is known and constant.

Remark 2 Note that in general V depends on θo. This property is inherited
from the maximum likelihood estimator for the the stationary case (see e.g.
Yajima 1985, Fox and Taqqu 1986, Dahlhaus 1989, Giraitis and Surgailis
1990), since V is identical to the corresponding asymptotic covariance matrix
of the MLE. An exception is, for instance, the fractional ARIMA(0, d, 0)
model (see example 1 below).

Remark 3 FARIMA(p, d, q) processes are very flexible with respect to ap-
proximating linear dependence structures (i.e. the underlying spectral den-
sity). The difference operator (1 − B)d incorporates a pole at the origin of

the form cf |λ|−2d. The ARMA part of fX(λ) fARMA(λ) =
∣∣ψ(e−iλ)/ϕ(e−iλ)

∣∣2
approximates the bounded part of a spectral density by a trigonometric ratio-
nal function of degrees p and q. This approximation can be made arbitrarily
close, uniformly in λ. In practice, p and q have to be estimated from data.
Beran et al. (1998) showed that an appropriate version of the AIC or BIC
can be used in spite of the presence of long memory.

Remark 4 While FARIMA(p, d, q) processes provide flexible models of the
spectral density whenever second order stationarity can be assumed exactly or
in good approximation (for instance locally), time dependence of the parame-
ters increases flexibility in another direction. It allows for structural changes
in the dependence structure.
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Example 1 For the rectangular kernel K(x) = 1
2
1{|x| ≤ 1}, and a local

fractional ARIMA(0, p, d) process, the asymptotic variance of
√
nb(d̂−do(uo))

is equal to

V =
6

π2

1

2
=

3

π2
≈ 0.304. (22)

Specifically, for the simulations in section 4.1, we consider d(u) = 0.05+0.4u3

and εt iid N(0, σ2
ε). In this case, assumptions (A1)-(A7) can be verified as

follows: (A1), (A3) and (A6) are known from maximum likelihood estimation
for the stationary case (see e.g. Fox and Taqqu 1986, Dahlhaus 1989, Giratis
and Surgailis 1990); (A2) follows, since d(u) ∈ (0, 1

2
) for all u ∈ [0, 1]; (A4)

follows, since in this case Dn ∈ R+ is proportional to n so that D
− 1

2
n S̈D

− 1
2

n →d

c > 0 follows from the law of large numbers and E [∂2/∂θ2ε2
t |θ=θo] > 0; (A5)

follows, since Dn and hence also λn is proportional to n; (A7) follows from
results in extreme value theory for stationary Gaussian processes (see e.g.
Embrechts et al. 1997 and Hüsler et al. 2003).

3 Asymptotic mean squared error and band-

width choice

An important question that needs to be addressed whenever nonparametric
smoothing is applied is the choice of a suitable bandwidth. In theorem 1,
no indication is given regarding the bias E[d̂(u)] − d(u), and the general
conditions on the bandwidth are not specific enough for practical purposes.
The importance of data-driven bandwidth choice is is illustrated by figure
1. A stationary fractional ARIMA(0, 0.4, 0) process of length n = 250 is
simulated (figure 1a) and do(u) ≡ 0.4 is estimated by (9) using the bandwidth
b = 1

4
n−1/5. The dotted line in figure 1b is the resulting estimate of do(u).

Obviously, the bandwidth is too small as the estimated curve is mostly far
from do = 0.4 and varies erratically between very weak (d̂(u) = 0.15) and
very strong (d̂(u) = 0.45) long-range dependence. A similar example is given
in figure 2. Here, n = 1000 and d(u) = 0.05 − 0.4u3. Again, the dotted line
representing the estimate with b = 1

4
n−1/5 is far from the true function do(u)

and fluctuates quite erratically.
To simplify presentation, we restrict attention to the one-dimensional case

with θ(u) = do(u) ∈ (0, 1
2
). An asymptotic formula for the mean squared

error of d̂(uo) is given by
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Figure 1: A simulated fractional ARIMA(0,0.4,0) series (figure 1a) and es-
timates of do(u) (figure 1b) using an initial bandwidth b = 0.25n−1/5, and
two bandwidths obtained after 2 and 11 iterations of the plug-in algorithm
defined in section 4.2.
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Figure 2: A simulated locally stationary fractional ARIMA(0,d,0) series (fig-
ure 2a) of length n = 1000 with do(u) = 0.05 + 0.4u3, and estimates of d(u)
(figure 2b) using an initial bandwidth b = 0.25n−1/5, and two bandwidths
obtained after 2 and 11 iterations of the plug-in algorithm defined in section
4.2.
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Theorem 2 Let d ∈ C2[0, 1] and d
′′
(uo) �= 0. Then under the assumptions

of theorem 1, we have, as n→ ∞,

1. Bias:

E[d̂(uo)] − do(uo) = b2
1

2
d

′′
(uo)

∫ 1

−1

K(x)x2dx+ o(b2) (23)

2. Variance:

var[d̂(uo)] = (nb)−1J−1(do)

∫ 1

−1

K2(x)dx+ o((nb)−1) (24)

3. Mean squared error:

MSE(do) = E[(d̂−do)2] = b4C1+(nb)−1C2+o
{
max(b4, (nb)−1)

}
(25)

with

C1(uo) =

[
1

2
d

′′
(uo)

∫ 1

−1

K(x)x2dx

]2

(26)

and

C2(uo) = J−1(θo)

∫ 1

−1

K2(x)dx (27)

Theorem 2 implies the following asymptotically optimal bandwidth.

Corollary 1 Under the assumptions of theorem 2, the asymptotic mean
squared error is minimized by

bopt(uo) = n−1/5C3(uo) (28)

with

C3(uo) =

[
C2(uo)

4C1(uo)

]1/5

(29)

The resulting MSE is then of the order O(n−4/5).

Remark 5 The formulas for MSE and bopt are analogous to results in non-
parametric regression with iid errors, as well expressions known for locally
stationary AR(p) processes (see e.g. Dahlhaus and Giraitis 1998). This may
be surprising at first sight, since we are dealing with long-memory processes
and d(u) cannot be estimated directly by kernel or local polynomial regression.
The result is in sharp contrast to regression smoothing with long-memory er-
rors. There, the optimal bandwidth depends on d and is of a larger order
than n−1/5 (Hall and Hart 1990, Ray and Tsay 1997, Beran and Feng 2002).
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Remark 6 A globally optimal bandwidth for estimating d(u) in an interval
[δ, 1 − δ] ⊂ [0, 1] may be defined by minimizing the integrated mean squared
error

IMSE = b4
∫ 1−δ

δ

C1(u)du+ (nb)−1

∫ 1−δ

δ

C2(u)du. (30)

In general, globally optimal bandwidth choice is easier to implement in prac-
tice, since d

′′
can be arbitrarily close to zero, thus leading to highly variable

(and possibly infinite) bandwidths (see e.g. Brockmann 1993, for further
comments on local bandwidth choice).

Remark 7 An estimated curve d̂(u), obtained from (9), may be smoothed
further by applying kernel or local polynomial smoothing directly to d̂(u).
This can be done without a noticeable change of the mean squared error,
provided that the same bandwidth bopt is used.

Remark 8 Theorem 2 can easily be generalized to FARIMA(p, d, q) pro-
cesses with p and q arbitrary. The only difference is that the asymptotic
variance of d̂ is no longer parameter free.

Remark 9 An extension of the results that would be of interest is to consider
locally stationary FARIMA models with stable innovations. Since second
moments do not exist, this would require another estimation approach. For
instance, Stoev and Taqqu (2005), consider wavelet based estimaton (also see
Stoev et al. 2002).

Remark 10 Theorems 1 and 2 can be used to obtain pointwise confidence
intervals for d(u). Note that, for the optimal bandwidth the squared bias is of
the same order as the variance. To construct confidence intervals in this case,
an estimate of the bias is required. To obtain simultaneous confidence bands,
a functional limit theorem or appropriate computational methods, such as
bootstrap, would be needed. For short-memory processes, bootstrap methods
in the context of nonparametric regression have been considered for instance
in Härdle and Marron (1991) and Hall (1992). Tribouley (2004) considers
the same problem using wavelet estimates . In the long-memory context con-
sidered here, the question of simultaneous confidence intervals is an open
problem. In particular, bootstrap procedures are considerably more complex
than under independence or short memory (see e.g. Lahiri 2003).
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b = bsmall b = blarge b = bopt asymptotic formula

n4/5αn(b)
n = 250 0.019 0.383 0.031 0.044
n = 500 0.007 0.500 0.054 0.044
n = 1000 0.017 0.565 0.048 0.042

n4/5βn(b)
n = 250 0.300 0.248 0.227 0.176
n = 500 0.320 0.248 0.229 0.176
n = 1000 0.334 0.185 0.208 0.170

n4/5IMSE∗(b)
n = 250 0.319 0.631 0.258 0.220
n = 500 0.327 0.748 0.283 0.219
n = 1000 0.351 0.751 0.256 0.212

Table 1: Simulated values of n4/5 times the squared bias, variance and
IMSE∗ for a fractional ARIMA(0,d,0) model with d(u) = 0.05 + 0.4u3.
The results are based on one hundred simulations.

4 Data examples and computational aspects

4.1 Simulations

To examine in how far the asymptotic formulae apply to finite samples, a
small simulation study is carried out. For n = 250, 500 and 1000, one hundred
simulations of a locally stationary FARIMA(0, d, 0) with d(u) = 0.05 + 0.4u3

are carried out. Estimates of d(u) are based on (9) with K(x) = 1
2
1{−1 ≤

x ≤ 1}. For each simulated series, d is estimated for uj = 0.2+Δ · j/n where
Δ = 20 and 0.2 ≤ uj ≤ 0.8. The optimal bandwidth is defined by minimizing
the corresponding discrete approximation of the asymptotic IMSE over the
range [0.2, 0.8], given by

IMSE∗
n(b) = b4

Δ

n

∑
j

C1(uj) + (nb)−1 Δ

n

∑
j

C2(uj) (31)

= αn(b) + βn(b) (32)

For comparison, estimates based on a smaller and a larger bandwidth, namely
bsmall = 1

2
bopt and blarge = 2bopt respectively, are calculated. The following

simulated values are listed in table 1: a) the rescaled integrated squared bias,
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Figure 3: Boxplots of estimates of d(u) for different values of u and the three
bandwidths bsmall, bopt and blarge respectively. The results are based on one
hundred simulations of a locally stationary fractional ARIMA(0,d,0) series
of length n = 500 and d(u) = 0.05 + 0.4u3.
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Figure 4: True function d(u) and averages of d̂(u) for the three bandwidths
bsmall, bopt and blarge respectively. The results are based on one hundred
simulations of a locally stationary fractional ARIMA(0,d,0) series of length
n = 500 and d(u) = 0.05 + 0.4u3.
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Figure 5: Simulated locally stationary fractional ARIMA(0,d,0) series with
d(u) = 0.05 + 0.4u3.
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n4/5αn(b); b) the rescaled integrated variance, n4/5βn(b) and c) n4/5IMSE∗
n(b).

For comparison, the theoretical values obtained from theorem 2 are also
given. The results indicate that, for bopt, the simulated values are reason-
ably close to the asymptotic approximation, even for moderate sample sizes.
The results also show a considerably higher mean squared error for estimates
based on bsmall and blarge. The reason is a large variance for bsmall and a large
bias for blarge respectively. The best results are obtained for bopt. This is also
illustrated in figure 3 with boxplots of the three estimates for different values
of uo. Figure 5 shows a typical simulated series of length n = 500. Visually, it
seems very difficult to notice any deviations from stationarity. Nevertheless,
the simulated averages of d̂(u) (figure 4) are close to the true curve for bsmall

and bopt.

4.2 Computational issues

For observed time series, the constant Copt, and hence bopt, are unknown and
have to be estimated. In the context of nonparametric regression with iid
errors, various data driven methods for bandwidth choice are known (see
e.g. Gasser et al. 1991, Herrmann et al. 1992). Similar algorithms may
be applied here. For instance, a simple iterative plug-in algorithm can be
defined as follows.

Algorithm 1 • Step 1: Set j = 0 and set bj equal to an initial band-
width.

• Step 2: Estimate d(.) using the bandwidth bj.

• Step 3: For each uo, fit a local polynomial regression βo(uo)+β1(uo)(u−
uo)+

1
2
β2(uo)(u−uo)

2 directly to d̂(u) (plotted against u) using a suitable
bandwidth b2.

• Step 4: For each uo, set d̂
′′
(uo) = 2β2(uo), and calculate an estimate of

Copt(uo) (or a global value Copt minimizing the integrated mean squared
error).

• Step 5: Set j = j+1 and bj = Coptn
−1/5. If bj and bj−1 are very similar

(according to a specified criterion), go to step 6. Otherwise go to step
2.
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• Step 6: Fit a kernel regression with kernel K and bandwidth bj to d̂(u)
directly.

Remark 11 Step 6 is not necessary. The purpose of smoothing the final esti-
mate by direct kernel (or local polynomial) regression is to obtain a somewhat
smoother curve, without changing the essential order of the mean squared er-
ror.

Remark 12 The algorithm is applicable to arbitrary locally stationary long-
memory models, such as for instance FARIMA(p, d, q) with p and q arbitrary.
In general, the asymptotic variance of d̂ depends on the unknown parameters
so that the estimated values of θ̂ parameters have to be plugged in.

Remark 13 The algorithm uses fixed values of p and q. To obtain a fully
automatic procedure, a data driven model choice criterion would have to be
included. Beran et al. (1998) derived a version of the AIC (and BIC) for sta-
tionary FARIMA(p, d, 0) models. For locally stationary models, model choice
is, to a large extent, an open problem. In a recent study, van Bellegem and
Dahlhaus (2006) proposed an AIC-type criterion for short-memory AR(p)
processes with time-varying coefficients, under the assumption that p remains
constant. An adaptation of their ideas to the long-memory context may be
possible, but would require a detailed analysis to avoid artifacts such as over-
fitting and confusion between d and autoregressive parameters (also see Beran
et al. 1998 for comments on the latter problem).

Experience with simulated and real data sets shows that convergence is
reached within a few iterations. To illustrate this, we consider the two simu-
lated examples in figures 1 and 2. The initial bandwidth bo = 1

4
n−1/5 leads to

highly variable estimates. These estimates are misleading, since they suggest
extreme local fluctuations in d. Considerably improved estimates are ob-
tained already after 2 iterations. These estimates remain almost unchanged
by further iterations.

4.3 Data examples

4.3.1 Nile river minima

The yearly minimal water levels of the Nile River (622-1284 AD, Tousson
1925), measured at the Roda Gauge near Cairo, are one of the prime exam-
ples of long-memory processes. The periodogram (in log-log-coordinates, fig-
ure 6b) shows a typical negative slope for all frequencies. It has been noted by
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some authors, however, that the series may not be completely homogeneous
(Beran and Terrin 1994, Beran 1994, Whitcher et al. 2002, Ray and Tsay
2002). In particular, about the first one hundred observations seem to follow
a slightly different pattern. Beran and Terrin (1994) consider, for instance,
the following simple heuristic test of the null hypothesis that d is constant
(also see Beran 1994). A FARIMA(0, d, 0) model is fitted to six disjoint blocks
of 100 observations (first block: t = 1, ..., 100; last block: t = 501, ..., 600).
Under the null hypothesis, the six estimates d̂1, ..., d̂6 are approximately in-
dependent N(0, v)−distributed with v = (100)−16/π2 ≈ 0.00608 so that

the test statistic T =
∑ (

d̂− d̄
)2

/v with d̄ = 6−1
∑
d̂i is approximately

χ2
5−distributed. The observed value is T = 22.8 leading to a p-value of
P (χ2

5 > 22.8) = 0.0004. A local FARIMA(0, d, 0) fit based on the itera-
tive plug-in algorithm defined in the previous section (and the integrated
mean squared error as criterion), confirms this finding (figure 6c). Visually,
the change can be seen by comparing the log-log-periodogram plots of the
first one hundred observations (figure 6d) with the plots for observations 101
through 200 (figure 6e) and 201 through 300 (figure 6f) respectively. Since
the impression is that of a rather abrupt change, local bandwidth choice
may be more appropriate for this data. We therefore also applied the iter-
ative algorithm using locally optimal bandwidths Copt(uo)n

−1/5. The result
in figure 7 does indeed point in favour of an abrupt change. Similar findings
based on statistical tests were obtained e.g. in Beran (1994) and Whitcher
et al. (2002). Whitcher et al. (2002) conjecture that the change in d may be
related to the construction of a new measuring device around 715 AD.

4.3.2 Tree ring widths

Figure 7a shows a tree ring width series (chronology) of bristlecone pine at
Mammoth Creek, Utah, USA (D. A. Graybill, //ftp.ncdc.noaa.gov). The
periodogram in log-log-coordinates (figure 7b) shows a clear negative slope
near the origin, indicating strong long memory. The estimated function d̂(u)
in figure 7c is essentially monotonically decreasing. The decrease in d is
illustrated in figures 7d through e, with log-log-periodgrams for the years 1
to 400, 901 to 1300 and 1501 to 1900 respectively.
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Figure 6: Nile River minima (622-1284 AD, Tousson 1925), measured at the
Roda Gauge near Cairo: a) observed series, b) log-log-periodogram, c) esti-
mate of d(u) plotted against year, d)-f) log-log-periodograms for observations
1 to 100, 101 to 200 and 201 to 300 respectively.
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Figure 7: Nile River minima (622-1284 AD): Estimate of d(u) based on the
plug-in algorithm with local bandwidth choice.
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Figure 8: Tree ring data (Mammoth Creek, Utah): a) observed series, b)
log-log-periodogram, c) estimate of d(u) plotted against year, d)-f) log-log-
periodograms for observations 1 to 400, 901 to 1300 and 1501 to 1900 respec-
tively.

5 Final remarks

In this paper, some basic issues regarding parameter estimation for locally
stationary long-memory models were addressed. A number of practically
relevant open questions remain. These include simultaneous nonparametric
trend estimation, alternative smoothing techniques and boundary problems.

Appendix

5.1 Assumptions

Let

S̈n(θ) =

to+[nb]∑
t=to−[nb]

K(
t− to(n)

nb
)
∂2

∂θ2
ε2

t (θ) =

to+[nb]∑
t=to−[nb]

S̈t,n(θ).
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and

Dn = E[S̈n(θ)]

=

⎧⎨
⎩

to+[nb]∑
t=to−[nb]

K(
t− to(n)

nb
)E

[
∂2

∂θr∂θs
ε2

t (θ)

]⎫⎬
⎭

r,s=1,...,k

.

We will use the notation θo(u) (u ∈ [0, 1]) for the true parameter curve and
θo = θo(uo) for the value of θo(u) at a specific (rescaled) time point uo ∈ [0, 1].

(A1) A(e−iλ; θ1) ≡ A(e−iλ; θ2) (a.s. with respect to the Lebesgue measure)
implies θ1 = θ2

(A2) θo ∈ Θo ⊂ Θ where Θo is an open set;

(A3) At,n(e−iλ; θ), A(e−iλ; θ), bj(θ) are three times continously differentiable
w.r.t. θ

(A4) Define the δ−neigbourhood Nn(θo, δ) = {θ : (θ− θo)TDn(θo)(θ− θo) ≤
δ2} for some fixed δ ≥ 1. Then D

− 1
2

n (θ)S̈n(θ)D
− 1

2
n (θ) converges in prob-

ability to the k × k identity matrix I uniformly in Nn, with respect to
the Matrix norm ‖x‖ =

∑
i,j |xij |.

(A5) Let λmin(θ
o, n) be the smallest eigenvalue of Dn(θo). Then there exists

a constant cλ > 0 such that

lim inf
n→∞

n−1λmin(θ
o, n) > cλ

(A6)
∂

∂θj

E[ε2
t (θ)] = E

[
∂

∂θj

ε2
t (θ)

]
,

∂2

∂θj∂θk
E[ε2

t (θ)] = E

[
∂

∂θj∂θk
ε2

t (θ)

]

∂3

∂θj∂θk∂θl
E[ε2

t (θ)] = E

[
∂

∂θj∂θk∂θl
ε2

t (θ)

]
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(A7) For any ϑo ∈ Θo let

Yt(ϑ
o) =

∫
eitλA(e−iλ;ϑo)dZε(λ),

εt,Y (ϑo) =
∞∑

j=0

bj(ϑ
o)Xt−j

and

ε̇t,Y (ϑo) =
∂

∂θ
εt,Y (θ)|θ=ϑo

Then
n−1 max

1≤t≤n
[εt,Y (ϑo)ε̇t,Y (ϑo)]2 = op(1)

and

lim
n→∞

E

{
max
1≤t≤n

[εt,Y (ϑo)ε̇t,Y (ϑo)]2
}

= 0

Remark 14 The meaning of assumptions (A1)-(A7) is as follows (see also
remarks in section 2, example 1): (A1) is an identifiability condition; (A2),
(A4), (A5) and (A6) are standard conditions in the context of maximum
likelihood estimation for FARIMA processes; (A3) is needed to carry over
asymptotic results obtained under stationarity to the locally stationary case;
(A7) is needed for applying a limit theorem for martingale differences (Hall
and Heyde 1980).

5.2 Proof of theorem 1

Step 1 - consistency: Since data are observed for t = 1, 2, ..., n, estimation
is based on observations for t = to − [nb], ..., to + [nb], and nb3 → ∞, we may
replace Ln(θ) by

Sn(θ) = (nb)−1
∑

K(
t− to(n)

nb
)ε2

t (θ).

Define the k × k matrix
Dn(θ) = E[S̈n(θ)],
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For δ ≥ 1, denote by ∂Nn = {θ : (θ− θo)TDn(θo)(θ− θo) = δ2} the border of
Nn(θo, δ), and by No

n = Nn \ ∂Nn its interior. Then, for θn ∈ ∂Nn(θo, δ),

P (Sn(θn) > Sn(θo)) = P (Ṡn(θo)(θn − θo) +
1

2
(θn − θo)T S̈(θ∗)(θn − θo) > 0)

≥ P ((θn − θo)T S̈(θ∗)(θn − θo) >
δ

2
) − P (Ṡ(θo)(θn − θo) ≤ −δ

4
)

where θ∗ = aθ0 + (1 − a)θn (0 ≤ a ≤ 1) is a vector between θ0 and θn. Since

sup
θ∈Nn

D−1/2
n (θ)S̈n(θn)D−1/2

n (θn) → I

in the norm ‖x‖ =
∑

i,j |xij |, and θ∗n → θo, we may approximate the first
probability by

P ((θn − θo)TD(θo)(θn − θo) >
δ

2
) → 1

(see e.g. Fahrmeier and Kaufmann 1985). The second probability converges
to zero since (nb)−1/2Ṡ(θo) converges in distribution to a zero mean normal
variable and θn −θo is of the order (nb)−1/2. Thus, limP (Sn(θn) > Sn(θo)) =
1 so that with probability approaching to 1, Sn(θ) (θ ∈ Nn) assumes its
minimum in No

n. (By analogous arguments it follows that the minimum is
not attained for θ /∈ Nn, with probability converging to one.) Since No

n is a
shrinking neighborhood of θo, consistency follows. Note also that, because of
convexity of Sn(θ) for large n, the minimum is unique (unless Sn is constant
in an interval) and thus coincides with θ̂n.

Step 2 - asymptotic normality: Without loss of generality we will
assume σ2

ε ≡ 1. By Taylor expansion we have

0 = Ṡn(θ̂) = Ṡn(θo) + S̈n(θo)(θ̂ − θo) +
...
S n(θ∗)(θ̂ − θo)2

with θ∗ = (1 − a)θo + aθ̂ for some a ∈ [0, 1], and hence

(nb)1/2(θ̂ − θo) = M−1(θo)(nb)−1/2Ṡn(θo) + op((nb)
−1/2)

with Mij = E[ε̇(θo)ε̇T (θo)]. Now (nb)−1
∑
K {(t− to(n))/nb} εt(θ

o)ε̇t(θ
o)

may be approximated by

S̃n = (nb)−1
∑

K(
t− to(n)

nb
)

{
εt(θ(

t

n
))ε̇t(θ(

t

n
)) + E [εt(θ

o)ε̇t(θ
o)]

}
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Since εt(θ(
t
n
))ε̇t(θ(

t
n
)) is a martingale difference, (A7) together with theo-

rem 3.2 in Halle and Heyde (1980) implies that
√
nb(S̃n − E [εt(θ

o)ε̇t(θ
o)])

converges in distribution to a zero mean normal variable with covariance
matrix

W = lim
n→∞

1

nb

to+[nb]∑
t=to−[nb]

K2(
t− to
nb

)E

[
ε̇t(θ(

t

n
))ε̇T

t (θ(
t

n
))

]

=

∫ 1

−1

K2(x)dx · J(θo)

with

J(θo) =

[
1

4π

∫ π

−π

∂

∂θr
log f(λ; θo)

∂

∂θs
log f(λ; θo)dλ

]
r,s=1,...,l

Since M = J−1, we have

√
nb(θ̂ − E[θ̂]) →d N(0, J−1(θo)

∫
K2(x)dx)
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5.3 Proof of theorem 2:

We will use the notation θt,n = θ(t/n) and θo = θo(uo). Consider

0 = Ṡn(θ̂) = (nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

)εt(θ̂)ε̇t(θ̂)

= (nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

)εt(θt,n)ε̇t(θt,n)

+ (nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

){ε̇2
t (θt,n) + εt(θt,n)ε̈t(θt,n)}(θ̂ − θt,n) + op{(nb)−1/2}

= (nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

)εt(θt,n)ε̇t(θt,n)

+ (nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

){ε̇2
t (θt,n) + εt(θt,n)ε̈t(θt,n)}(θ̂ − θo)

+ (nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

){ε̇2
t (θt,n) + εt(θt,n)ε̈t(θt,n)}(θo − θt,n) + op{(nb)−1/2}.

Now, E[εt(θt,n)ε̇t(θt,n)] = E[εto(θo)ε̇to(θo)] = 0 and εt(θt,n)ε̇t(θt,n) is a mar-
tingale difference, so that

(nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

)εt(θt,n)ε̇t(θt,n) = (nb)−1/2Z + op{(nb)−1/2}

where Z is a zero mean normal variable. Also, E[εt(θt,n)ε̈t(θt,n)] = 0 and
εt(θt,n)ε̈t(θt,n) is a martingale difference so that the same approximation ap-
plies to

(nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

)εt(θt,n)ε̈t(θt,n)(θ̂ − θo).

Furthermore, E[ε̇2
t (θt,n)] = E[ε̇2

to(θo)] = J(θo) and

(nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

)ε̇2
t (θt,n)(θ̂ − θo) = J(θo)(θ̂ − θo) + op(1)
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For the other terms we have

(nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

)ε̇2
t (θt,n)(θo − θt,n)

= −(nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

)ε̇2
t (θt,n)(θ

′
(uo)

t− to
n

+
1

2
θ
′′
(uo)

(
t− to
n

)2

+ ...)

= −θ′
(uo)J(θo)(nb)

−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

)
t− to
n

− 1

2
θ
′′
(uo)J(θo)(nb)

−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

)

(
t− to
n

)2

+ op(b
2)

= −b2 1

2
θ
′′
(uo)J(θo)

∫ 1

−1

K(x)x2dx+ op(b
2)

and

− (nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

)εt(θt,n)ε̈t(θt,n)(θo − θt,n)

= (nb)−1

to+[nb]∑
t=to−[nb]

K(
t− to
nb

)εt(θt,n)ε̈t(θt,n)(θ
′
(uo)

t− to
n

+
1

2
θ
′′
(uo)

(
t− to
n

)2

+ ...)

= op(b
2)

Then

J(θo)(θ̂ − θo) − b2
1

2
θ
′′
(uo)J(θo)

∫ 1

−1

K(x)x2dx+ op(b
2) = 0

so that

θ̂ − θo = b2
1

2
θ
′′
(uo)

∫ 1

−1

K(x)x2dx+ op(b
2)

5.4 Proof of corollary 1:

The asymptotic mean squared error is approximated by

MSE(θ̂) = Bias2 + V ariance

= b4C1 + (nb)−1C2 + o
{
max(b4, (nb)−1)

}
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where

C1 =

[
1

2
θ
′′
(uo)

∫ 1

−1

K(x)x2dx

]2

and

C2 = J−1

∫
K2(x)dx

Minimizing w.r.t. b yields
bopt = n−1/5C3

with

C3 =

[
C2

4C1

]1/5

The resulting MSE is then of the order MSE(θ̂) = O(n−4/5).
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[37] Hüsler, J., Piterbarg, V. and Seleznjev, O. (2003). On convergence of the
uniform norms for Gaussian processes and linear approximation problems.
The Annals of Applied Probability, 13(4), 1615–53.

[38] Jensen, M.J. and Whitcher, B. (2000). Time-varying long memory in
volatiliy: detection and estimation with wavelets. Technical Report, EU-
RANDOM.

[39] Kokoszka and Leipus (2003). Detection and estimation of changes in
regime. In: Long-Range Dependence, Paul Doukhan, Murad S. Taqqu,
Georges Oppenheim (eds.). Birkhäuser, Basel, pp. 325-337.
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