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Abstract 
 
 Although there has been much attention in recent years on the effects of additive 
background risks, the same is not true for its multiplicative counterpart.  We consider 
random wealth of the multiplicative form xy , where x  and  are statistically 
independent random variables.  We assume that 

y
x  is endogenous to the economic agent, 

but that  is an exogenous and nontradable background risk, which represents a type of 
market incompleteness.  Our main focus is on how the presence of the multiplicative 
background risk  affects risk-taking behavior for decisions on the choice of 

y

y x .  We 
characterize conditions on preferences that lead to more cautious behavior.   
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Multiplicative Background Risk 

 
 

1.  Introduction 

 

 Consider a risk-averse economic agent whose preferences can be represented 

within an expected-utility framework via the continuously differentiable utility function 

u.  The agent must decide upon choice parameters for a random variable representing 

final wealth, x .  For example, x  might represent wealth from an individual’s portfolio of 

financial assets, or x  might represent random corporate profits based on management 

decisions within the firm. 

 A fair amount of attention in recent years has examined how decisions on x  

might be affected by the addition of an additive risk ε~ , where ε~  and x  are statistically 

independent.  Thus, final wealth or profits can be written as .  The market is 

assumed to be incomplete in that 

x ε+

ε~  is not directly insurable.  For example, ε~  might 

represent future wage income subject to human-capital risks; or ε~  might represent an 

exogenous pension portfolio provided by one’s employer.  Although it is interesting to 

examine the interdependence between x  and ε~ , the case of independence is of special 

interest and provides for many interesting observations.  In order to focus on the risk 

effects, rather than wealth effects, it is often assumed that 0~ =εE , where E denotes the 

expectation operator.  In such a case, ε~  is often called a “background risk.”  Since any 

non-zero mean for ε~  can be added to the x  term, this assumption does not reduce the 

applicability of the model.  Our purpose in the present paper is to examine the effects of 

introducing a “multiplicative background risk” into the individual’s final wealth 

distribution. 

 The modern literature on additive background risk stems from the papers of 

Kihlstrom, et al. (1981), Ross (1981) and Nachman (1982).  These papers focus on 

interpersonal behavior comparisons, mainly addressing the question:  “If I am willing to 
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pay more than you to rid myself of any fair lottery, would I still be willing to do so in the 

presence of an additive background risk?”  Doherty and Schlesinger (1983) incorporated 

the analysis into intrapersonal models of decision making under uncertainty, focusing on 

differences in optimal behavior with vs. without a background risk.  The literature 

underwent somewhat of a renaissance in the 1990’s thanks to new theoretical tools 

provided by Pratt and Zeckhauser (1987), Kimball (1990) and Gollier and Pratt (1996).   

 One canonical hypothesis concerning additive background risk is that the 

riskiness of ε~  leads to a more cautious behavior towards decisions on x .  For example, 

Guiso, et al. (1996) use Italian survey data to show that individuals with a riskier 

perception of their (exogenously managed) pension wealth react by investing relatively 

more in bonds in their personal accounts.  However, this conclusion need not always be 

the case in theory, unless particular restrictions on preferences are met.  Eeckhoudt and 

Kimball (1992) first examined this direction of research.  Rather than review the large 

body literature for the case of additive background risks, we refer the reader to the 

excellent comprehensive presentation of this material in Gollier (2001). 

 Surprisingly, very little attention has been given to the case where the background 

risk is multiplicative.  Indeed, if one were to ask the reader to think of possible types of 

background risks, we believe that examples with multiplicative types of background risk 

would be at least as prevalent as additive ones.  Our goal in this paper is to provide a 

theoretical foundation for models with a multiplicative background risk.  Under what 

conditions on preferences will the presence of a multiplicative background risk compel 

the agent to behave more cautiously in making decisions about the endogenous wealth 

variable x ? 

 To this end, let  be a random variable on a positive support that is statistically 

independent of 

y

x .  We consider final wealth to be given by the product xy .  The random 

variable  is considered to be exogenous to the individual and is not insurable.  

Numerous examples of such multiplicative risks include the following: 

y
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1. Let x  be the pre-tax profits of a firm and let  represent the firm’s retention 

rate net of taxes, where tax rates are random due to tax-legislation uncertainty.  

y

 

2. Let x

y

 be the random wealth in an individual’s financial portfolio in period one, 

and let  denote the return on a mandatory (and exogenously managed) annuity 

account that uses proceeds from x  in period two. 
 

3.  Let x  denote nominal wealth or profit and let  denote an end-of-period price 

deflator.   

y

 

4.  Let x  denote profit in some foreign currency for which forward contracts or 

options are not available and let  denote the end-of-period exchange rate. y
 

5.  Let x  denote the random quantity of output for a farm commodity and let  

denote an exogenous random per-unit profit.   

y

 

 In order to isolate the risk effects of , we will assume that =1 throughout this 

paper.  For the case where  has a mean that differs from one, we can incorporate this 

mean into 

y Ey

y

x  via a deterministic scaling effect.1  Since , the assumption 

that =1, together with the independence of 

(y −1xy x x= + )

Ey x and , guarantees that y xy  is riskier than 

x  alone in the sense of Rothschild and Stiglitz (1970).  We will refer to , defined in 

this manner with =1, as a “multiplicative background risk.”  

y

Ey

 We should point out at the outset that the results for the multiplicative case do not 

simply mirror those of the additive case.  For instance, consider a simple portfolio 

example with an allocative choice between risky stocks and risk-free bonds.  The 

                                                 
f1 Thus, for instance, in our irst example above we can let x~ represent after-tax profits based on the 

expected tax rates and let y~ represent a deviation from the expected after-tax retention rates.  Or, in the 
second example let x~ denote wealth including expected annuity returns and let y~ denote a multiplicative 
excess-return adjustment.   
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individual has an initial wealth of 100 and the risk-free rate is assumed to be rf = 0.05.  

The return on the stock portfolio is assumed to be log-binomial with an expected return 

of  and a standard deviation of  (implying that, in a binomial model, 

stocks either return about 33% or lose about 10%, each with an equally likely chance).  

Utility is assumed to belong to the HARA class with 

0.11Er = 0.20σ =

21
2( ) ( )x a −= − +u x , where a is a 

constant chosen such that x+a remains positive over relevant wealth levels.  We note that 

preferences satisfy decreasing absolute risk aversion (DARA) for any choice of a, 

whereas relative risk aversion will be increasing [decreasing, constant] whenever a is 

positive [negative, zero].  We examine the addition of two alternative sources of 

background risk.  The first is an additive background risk, for which final wealth is either 

increased or decreased by 30, each with probability one-half.  The second is a 

multiplicative background risk, for which wealth is either increased or decreased by 30 

percent, each with a probability one-half.  The optimal portfolio choices are illustrated in 

the following table. 

 
TABLE 1:  Bond Proportions:  Multiplicative vs. Additive Background Risk 

(All utility is DARA within the HARA class, 21
2( ) ( )x a −= − +u x , initial wealth = 100) 

(Relative risk aversion is constant for a=0, increasing for a=+25 and decreasing for a=-25) 
 
Utility  Background Risk Proportion in Bonds 
a = 0     None    55% 

   Additive   66% 
    Multiplicative  55% 

 
a = +25    None    45% 

   Additive   54% 
    Multiplicative  41% 

 
a = -25     None    66% 

   Additive   78% 
    Multiplicative  70% 
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 In each case in the above example, the proportion of wealth invested in risk-free 

bonds increases when an additive background risk is included.2  Since DARA inside of 

the HARA class of preferences also implies standard risk aversion (Kimball 1993), we 

know that bond proportions will always increase with an additive background risk.  

However, as the example shows, a multiplicative background risk might cause the bond 

proportion to shrink.  In particular, when a = 25, so that we have both DARA and 

increasing relative risk aversion – hardly considered unusual cases – we then have a 

lower proportion of wealth invested in the risk-free bond.  That is, the investor reacts to 

the multiplicative background risk by taking a more aggressive position in stocks.   

Our paper will show how each of the situations in the example above can be 

determined qualitatively (i.e. whether more or fewer bonds are purchased in the presence 

of a background risk) before calculating the optimal portfolios.  The fact that the 

qualitative effects might be predetermined by the parameters of the model implies that 

care must be taken when modeling various economic and/or financial phenomena.  For 

example, seemingly innocuous assumptions made about preferences might actually 

predispose a model to achieve particular results. 

We begin in the next section by introducing the basic framework.  We next 

examine some conditions on preferences that lead to more (or less) cautious behavior 

towards x  in the presence of a multiplicative background risk .  In section 4, we derive 

rather technical necessary and sufficient conditions on preferences such that a 

multiplicative background risk will always lead to more cautious behavior: a condition 

that we label “multiplicative risk vulnerability.”  In section 5, we define the affiliated 

utility function as the composite of utility with the exponential function.  This allows us 

to translate several results from the case of additive background risk to our model with 

y

                                                 
2  Note that, even for the cases with no background risk, since relative risk aversion is decreasing in a, we 
have the bond proportion falls as a rises.  Our point in the table, however, is to compare the levels of bonds 
between various types of background risk for a fixed value of a. 
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multiplicative background risk.  In particular, necessary and sufficient conditions on the 

affiliated utility are presented such that a multiplicative background risk will always lead 

to more cautious behavior.  Section 6 extends the usefulness of the conditions placed on 

the affiliated utility function by determining equivalent properties of the individual’s 

actual utility function.  Section 7 briefly looks at comparative risk aversion, before we 

offer some concluding remarks.  

 

2.  The Basic Model 

 

 Consider a risk-averse economic agent with utility function u.  We wish to 

determine how the addition of a multiplicative background risk y~  affects decision 

making on x~ .  Both x~  and y~  are assumed to be strictly positive a.s.  Let F and G denote 

the (cumulative) distribution functions associated with the random variables x~  and y~  

respectively.  Since x~  and y~  are independent, we can write expected utility as the 

iterated integral  

 

(1) . 
0 0

( ) ( ) ( ) ( ) [ ( )F GEu xy u xy dG y dF x E E u xy
∞ ∞

= ≡∫ ∫ ]

                                                

Define the derived utility function, see Nachman (1982)3, as the interior integral given in 

equation (1).  That is, 

 

(2)  
0

( ) ( ) ( ) ( )G Gv x u xy dG y E u xy
∞

≡ =∫

 

 
3 Actually, Nachman considers a more general relationship between x~  and y~ .  We adapt his measure to 
the case of multiplicative risks.  The derived utility function for the additive case is described earlier by 
Kihlstrom, et al. (1981).  
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Trivially,  is increasing and concave since u is.  Thus, equation (1) can be written 

as .  Decisions on 

)(xvG

) F GE v=( ( )Eu xy x x~  made in the presence of the multiplicative risk y~  

under utility u are isomorphic to decisions made on x~  in isolation under the risk-averse 

utility .   Let Γ()(xvG x ) denote the set of positive random variables y~  such that y~  is 

statistically independent from x~  and =1.  Our focus here is in determining conditions 

on the utility function u such that the derived utility function, , is more risk averse 

than u for all 

Ey

)(xvG

y~ ∈ Γ ( x ).  In other words, we wish to determine conditions on u that will 

guarantee that 

 

(3)  
2" ( ) [ "( ) ] "( )

' ( ) [ '( ) ] '( )
G G

G G

v x E u xy y u x
v x E u xy y u x

− − −≡ ≥      ∀ .x 4  

 

To avoid excessive notation, we will dispense with the subscripts and simply 

write v(x) and , where we assume ( )Eu xy y~  is an arbitrary member of Γ( x~ ).  We will let 

rv(x) and ru(x) denote the measure of absolute risk aversion for v and u respectively, i.e. 

the left-hand-side and right-hand-side of inequality (3) respectively.   

Since we are involved with a multiplicative background risk, it is often 

convenient to consider the corresponding measures of relative risk aversion, Rv(x) ≡xrv(x) 

and Ru(x) xr≡

Ru

u(x).  Obviously, for any positive wealth level x,  if and only if 

.   

)()( xrxr uv ≥

)()( xxRv ≥

For arbitrary x, straightforward manipulation of (3) shows that 

 

(4)  
0

'( )( ) [ ( ) ]
[ '( ) ]v u u
u xy yR x E R xy R (xy)dη (y)

E u xy y

∞

= ≡ ∫ x

                                                

 

 

 
4 In order to keep the mathematics simple, we will take “more risk averse” to be in the weak sense of Pratt 
(1964).  
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where 
y

x
0

(y)
[ '( ) ]G

u'(xt)tdG(t)
E u xy y

η ≡ ∫ . 

 

Note that η  is itself a well-defined probability distribution.  We define  to 

denote the expectation operator based on the probability distribution , which is a 

type of risk-adjusted probability measure.

)(yx xÊ

)(yxη

[ ( )v u

5  Thus, we see that relative risk aversion for v 

is a weighted average of relative risk aversion for u, namely ˆ( ) ]R x E= R xy . 

 

3.  Risk Aversion Properties 

 

 From equation (4), it follows trivially that v inherits constant relative aversion 

(CRRA), whenever u exhibits CRRA.  More explicitly, if ( )uR x xγ= ∀ , then 

xxRv ∀γ=)(  as well.  Since it then also follows that r , we see that u 

and v are equivalent utility representations under CRRA.  This is not surprising, since any 

optimal choice of an endogenous 

xx ∀)(rx vu =)(

x~  also will be optimal for yx~ , for every constant 

positive level of y under CRRA preferences. 

 From equation (4), we also see that  will be everywhere greater than [less 

than] one if  is everywhere greater than [less than] one.  This result is more than 

just a technicality.  Since many results in the literature on choice under uncertainty 

specify a global condition that either >1 or <1, such results also will hold in 

the presence of a multiplicative background risk, since  also will satisfy the 

appropriate property.   More generally, equation (4) provides bounds for , such that 

given any , with distribution function G,  

)(xRv

)(xRu

( )y ∈Γ

)(xRu )(xRu

)(xRv

)(xRv

x

{ } { }inf ( ) ( ) sup ( ) ( )u v uR xy R x R xy y Supp G≤ ≤ ∀ ∈ . 

                                                 
5  If we have a representative agent model, and if we confine ourselves to a fixed value of x, this measure is 
simply the “risk-neutral probability measure.”  The random variable [ '  in equation (4) 
is the Radon-Nikodym derivative of this measure with respect to G, again conditional on a fixed value of x.  
To simplify notation below, we will write simply , since the x subscript should be understood. 

( ) ] / [ '( ) ]u xy y E u xy y

Ê
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 We next wish to examine conditions under which (3) holds )~(~ xy Γ∈∀ , i.e., we 

want to know when v is more risk averse than u.  We may consider conditions for which 

this holds locally, with , by examining the equivalent condition 

.  Our approach is to consider this last inequality for a particular value of 

x, by applying 

)()( xrxr uv ≥

)()( xRxR uv ≥

xη  as in equation (4).  If the value of x chosen is arbitrary, so that 

, then we are done.  In the rest of this section, we extend equation (4) 

to directly obtain sufficient conditions for which v is more (or less) risk averse than u.  In 

the following sections of the paper, we introduce two additional approaches to the 

problem. 

x∀xRxR uv ≥ )()(

 Suppose that Ru(x) is (not necessarily strictly) convex.  Since )(yxη  is a 

probability distribution, it follows from Jensen’s inequality and equation (4) that 

 

(5)  ˆ ˆ( ) ( ) ( ),v u uR x ER xy R xEy≡ ≥   

 

where 

 

(6)  
0 0

'( )ˆ ( ) ( ).
[ '( ) ]x
u xy yEy yd y y dG y

E u xy y
η

∞ ∞

= =∫ ∫  

 

Next, note that 

 

(7)  
2 ( ) [ '( ) ] '( )[1 ( )]u
u xy u xy y u xy R xy
x y y

∂ ∂= = −
∂ ∂ ∂

.  

 

The sign of (7) tells us whether increases in the level of y will increase or decrease 

the marginal utility of x.  The derivative in (7) will be everywhere positive [negative] if 

 in the support of G.  This implies that increases in y reduce the yxyRu ∀>< 1][)(
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marginal utility of x whenever , and increases in y increase the marginal utility of x 

whenever .   

1uR >

1uR <

1,
=

Êy 1 if uR

)(xRu

)(G), y ∈

xyu

xyu

Ru

1

Êy

 Since '( )
[ '( ) ]
u xy y

E u xy y 
E 
  we see from (6) and (7), for example, that  

everywhere implies that the probability measure 

1uR >

)(yxη  puts relatively more weight on 

lower values of y than does the true probability measure G(y).  The opposite is true if 

.  We thus obtain the following result from (6) and (7). 1uR <

 
Lemma 1: . ( ) 1 ( )Ey xy y Supp G= ∀ ∈

We are now ready to prove the following result: 

 

Proposition 1:  Suppose that  is convex and that one of the following conditions 

holds ∀ : )(( FSuppx × Supp

 (i)  (R >1 and  is decreasing, ) uR

or (ii) (R <1 and  is increasing. ) uR

Then v is more risk averse than u. 

 

Proof: Since  is convex, it follows from equation (4) that )(x ˆ( ) ( )v uR x R xEy≥

ˆ( )u u

 by 

Jensen’s inequality.  If , then <1 from Lemma 1.  Hence, uR > Êy ( )R xEy R≥

1uR <

x  

under the assumption of decreasing relative risk aversion (DRRA).  If , then it 

follows from Lemma 1 that >1.  Hence, ˆ( ) (u )uR xEy R x≥  under the assumption of 

increasing relative risk aversion (IRRA).  Thus we have  whenever 

condition (i) or (ii) holds. ▄ 

)() xRu≥(xRv

 

Interestingly, if we have CRRA preferences, we have already seen that u and v are 

equivalent regardless of whether or not relative risk aversion exceeds one.  If relative risk 

aversion is increasing in wealth, as originally postulated by Arrow (1971) and empirically 
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supported by much literature, most recently by Guiso and Paiella (2001), then v will be 

more risk averse than u whenever Ru is convex and less than 1.  If Ru is everywhere 

greater than 1 and exhibits increasing relative risk aversion, we cannot use Proposition 1 

to verify that v is more risk averse than u.  Indeed, if we have Ru>1 and if Ru is (not 

necessarily strictly) concave, it is easy to show that v is then less risk averse than u.  

Indeed, the following two cases are easy to show.  

 

Proposition 2:  Suppose that  is concave and that one of the following conditions 

holds ∀ : 

)(xRu

)(G)(),( SuppFSuppyx ×∈

 (i)  (R >1 and  is increasing, )xyu uR

or (ii) (R <1 and  is decreasing. )xyu uR

Then v is less risk averse than u. 

 

Proof: The proof is similar to Proposition 1 and left to the reader. ▄ 

 

 Of course, whether risk aversion exhibits constant-, increasing-, or decreasing 

relative risk aversion, or none of these, is an empirical question.  Certainly constant 

relative risk aversion is very common in equilibrium asset-pricing models.  But empirical 

support also exists for both increasing relative risk aversion (e.g. Guiso and Paiella 

(2001)) and for decreasing relative risk aversion (e.g. Ogaki and Zhang (2001)).  Whether 

relative risk aversion might be concave or convex in wealth has not received much 

attention at all until fairly recently.  For example, Aït-Sahalia and Lo (2000) examine 

S&P 500 option prices to find some evidence of an oscillating level of relative risk 

aversion, although they do find R to be decreasing and convex at relatively low levels of 

wealth.6  Aït-Sahalia and Lo (2000) also review much of the literature examining whether 

                                                 
6  See also Jackwerth (2000). 
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relative risk aversion is greater- or less-than one, with most support these days finding 

R>1. 

 To illustrate Proposition 1 and 2, consider the following examples: 

 

Example 1: Let u  where .  This is the case of constant absolute risk 

aversion (CARA).  In this case 

kxex −−=)( 0>k

'( )uR x = k  and .  Thus,  is increasing and is 

both convex and concave.  If we consider 

''( ) 0uR x =

x

uR

~  and y~  such that   

, then  is more risk averse than u by Proposition 1.  

However, if , then 

kxy /1<

and

∈∀ ),( yx

( ) (GF SuppSupp ×

1xy >

) xyRu (

),(/ yxk ∈∀

vand

Supp)×

1) <

(Supp F )(G ( )u 1R xy v>  is less risk 

averse than u by Proposition 2.   

 

Example 2: Let u  where .  We restrict 2)( kxxx −= 0>k 1
2kx <  so that marginal 

utility is positive.  This is the case of quadratic utility.  It is straightforward to show that 

 and that  is both strictly increasing and convex.  Moreover, 

 if 

1)− R21(2)( −= kxkxxRu

1)( <xyRu

u

1
4 ( , )k Supp( upp( )) Sxy x y< ∀ F ×

v

G∈ , so that v  is more risk averse 

than  by Proposition 1.  In other words,  is more risk averse than  over the first half 

of the relevant (upward-sloping) range of the quadratic utility function.  On the other 

hand, if 

u u

1 1
4 2k k ( , )xy x∀ ( )GFSupp

uR

y ∈< <  , then , but we cannot 

apply Proposition 1 (since  is increasing) or Proposition 2 (since  is convex). 

( ) Supp× (uR x

u

)y

R

1>

 Both utility functions above belong to the so-called HARA class of utility, as does 

CRRA utility.7  Since we already showed that u  and v  are equivalent under CRRA, we 

see that no general results seem to apply to the HARA class of utility.  However, we have 
more tractability in the shape of Ru under HARA.  Let 1( ) ( )xu x γ

γξ η −= + , where 0x
γη + >  

and (1 ) 0ξ γ
γ
− > .  Straightforward calculations show that 2'( ) ( )x

uR x γη η −= +  and that 

                                                 
7  Utility belongs to the HARA class if [r(x)]-1 is linear in x. 
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12"( ) [ ( ) ] '( )x
u uR x γ γη −= − + R x .  Thus, for the case of constant absolute risk aversion 

(γ → ∞ '( )u), we obtain R x =

"( ) 0uR x >

k

u

 and , as in Example 1.  If we have increasing 

absolute risk aversion, then we must have γ < 0 and η > 0.  It follows that  and 

, so that we must have R

''( ) 0uR x =

sgn "(

'( ) 0uR x >

u increasing and convex, as is the case with our 

quadratic utility in Example 2.  On the other hand, if we have decreasing absolute risk 

aversion (DARA), then γ > 0.  Hence, ) sgn '( )uR x R= − x .  Consequently, we must 

have Ru either (i) constant, (ii) decreasing and convex, or (iii) increasing and concave.  

Consequently, if preferences are DARA within the class of HARA utility functions, it 

follows that we might have v either more risk averse than u, less risk averse than u or 

equally as risk-averse as u.  In particular, corresponding to cases (i) - (iii) above: 

1u

1u >

1uR >

y

(i) If u satisfies CRRA, then v and u are equivalent. 

(ii) If R > , as well as decreasing, then v is more risk averse than u by 

Proposition 1. 

(iii) If R , as well as increasing, then v is less risk averse than u by 

Proposition 2. 

Note that  in our example in the introduction of this paper (see Table 1) and that 

conditions (i), (ii) and (iii) above apply to the three cases considered in our example, with 

a=0, a=-25 and a=+25 respectively. 

 

4.  Multiplicative Risk Vulnerability 

 

 Let the support for  be contained in some positive interval [a,b].  As a direct 

analogue to Gollier and Pratt (1996), who examine the case of additive risks, we define 

preferences as being multiplicatively risk vulnerable if for every positive wealth variable 
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x  and every , that is for every  independent of ( )y ∈Γ x y x  with , the derived 

utility function v is more risk averse than u.  In other words, any (independent) 

multiplicative background risk with a mean equal to one always causes an individual with 

multiplicatively risk-vulnerable preferences to behave in a more cautious manner towards 

risk 

1Ey =

x .8 

0 ⇒

( )ym∃ ∈

]b

) [ ( )y R xy '( )u x

In this section, we present a necessary and sufficient condition for utility to be 

multiplicatively risk vulnerable.  Since this condition is rather complex, we turn in the 

next section to some sufficient conditions on preferences to guarantee multiplicative risk 

vulnerability.  We also show how our condition relates to the Gollier and Pratt conditions 

for the case of additive background risks.   

Before proceeding, we require the following Theorem, which is due to Gollier and 

Kimball (1996).  A proof of this Theorem also can be found in Gollier (2001). 

 

Diffidence Theorem (Gollier and Kimball):  Let Λ denote the set of all random variables 

with support contained in the interval [a,b]  and let f and g be two real-valued functions.  

The following two conditions are equivalent:  

  (i)  For any  , ( ) ( )y Ef y Eg y∈Λ = ≥ 0.

 (ii)   such that    ( ) [ , ].g y mf y a b≥ ∀ ∈

 

 We now are ready to show the following result. 

 

Proposition 3:  Utility is multiplicatively risk vulnerable if and only if for every x>0 and 

every ,  [ ,y a∈

(8)   . '( ( )] ( 1) '( ) 0u u uu xy R x y xR x− − − ≥

                                                 
8  Although aesthetically unappealing, the limitation to bounded supports is not particularly restrictive.  We 
already limit x  and y

b
 to be positive, and for any ε>0, we can always find a value for b such that the 

probability that  is less than ε.   y >
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Proof:  From the definition of multiplicative risk vulnerability, we need to examine 

properties on preferences such that  

(9) 
2[ ''( ) ]( ) ( )

[ '( ) ]v u
E u xy xyR x R
E u xy y

−= ≥ x ,   x y∀∀  with . 1Ey =

This is equivalent to finding conditions on u such that 

(10) . 21 [ ''( ) ] ( ) [ '( ) ] 0uEy E u xy xy R x E u xy y= ⇒ − − ≥

∀

By the Diffidence Theorem, this statement is equivalent to finding a scalar m, such that 

 

(11) , 2''( ) ( ) '( ) ( 1)uu xy xy R x u xy y m y y− − ≥ −

or equivalently, 

 

(12) ( ) ( )[sgn( 1)] '( ) [sgn( 1)]
1

u uR xy R xy u xy y y
y

 −− ≥ − 
m− . 

Considering , we see that the only candidate for m is 1y →

(13) ( )[ '( ) ] '( ) '( )
1

u
u

dR xym u xy y u x xR x
dy y

= =
=

. 

 
Replacing m in (11) above completes the proof.          ▄ 

 

 Note that the steps in the proof of Proposition 3 would also follow if we reversed 

the initial inequality in (9) above.  We thus immediately have the following result, 

showing a necessary and sufficient condition for v to be less risk averse than u. 

 

Corollary to Proposition 3:  Derived utility v is less risk averse than u, where ( ) , if 

and only if for every x>0 and every ,  

y ∈Γ x

≤

[ , ]y a b∈

(14)   . '( ) [ ( ) ( )] ( 1) '( ) '( ) 0u u uu xy y R xy R x y u x xR x− − −
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 Propositions 1 and 2 can be derived directly from Proposition 3 and its Corollary.  

While we do not wish to re-prove our earlier results, we nevertheless illustrate one of the 

proofs here, since it helps to understand the necessary and sufficient conditions above.  

For the sake of concreteness, let us consider the case where relative risk aversion is 

convex as in Proposition 1.  In addition, assume that y>1.  The case where y<1 is similar.  

Under the assumptions in Proposition 1(i) or (ii), it follows that 

 

(15) ( ) ( ) '( )'( ) '( )
'( )

u u
u u

R xy R x u xR x R
xy x u xy y

 − ≥ ≥ − 
x

                                                

. 

The first inequality above follows from the convexity of relative risk aversion.  The 

second inequality follows from (7) in two particular cases:  it follows if relative risk 

aversion is greater than one and decreasing, or if relative risk aversion is less than one 

and increasing.  But (8) is easily seen to follow from (15), so that Proposition 1 follows.  

In a similar manner, it is easy to derive Proposition 2 from the Corollary to Proposition 3. 

 Before continuing further, we should point out that decreasing relative risk 

aversion is not necessary for Proposition 3 to hold, whereas Gollier and Pratt (1996) 

provide a condition similar to (8), that together with decreasing absolute risk aversion is 

necessary and sufficient for (additive) risk vulnerability.9  The source of this discrepancy 

is that Gollier and Pratt consider additive background risks with nonpositive means.  In 

particular, their (additive) risk vulnerability is defined as the condition on preferences 

such that the derived utility function  is more risk averse than u x  for 

any independent additive background risk  with .  The fact that the mean of the 

background risk can be negative is what requires decreasing absolute risk aversion in 

their model.  In our multiplicative analogue, we could consider multiplicative background 

( ) ( )w x Eu x ε≡ +

ε Eε

( )

0≤

 

0 ε
9  The additional Gollier and Pratt condition for the additive case, with independent background risk 

, can be written as u x , which is seen to be similar 
to our condition (8).  This condition alone (without assuming decreasing absolute risk aversion) is both 
necessary and sufficient if we restrict ourselves to zero-mean additive background risks, as the authors 
point out. 

, Eε ε = '( )[ ( ) ( )] '( ) '( ) 0 ,u u ur x r x u x r x xε ε ε+ + − − ≥ ∀
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risks  for which ; that is, all “universally undesirable” multiplicative background 

risks.  In this case, it follows trivially that we would need to add decreasing relative risk 

aversion to condition (8) to ensure that all of these background risks lead to a more risk-

averse behavior. 

y 1Ey ≤

(ln ),x

u u θ∀ ∈

û

ˆ (ln
ˆ (ln )
u x
u x
′′
′

1<

 

5.  The Affiliated Utility Function 

 

 In this section, we obtain additional results by considering ln( ) ln lnxy x= +

ˆ

ln

y .  

This allows us to adapt several results from the case of additive background risks.  In 

order to accomplish this, we introduce the affiliated utility function, u , which we define 

such that for all .  Equivalently, we can substitute ˆ( )u x u= 0>x xθ =

)ln(lnˆ) yxuxy +=

 to write 

.  In other words, u  is the composite of u with the exponential 

function.  Although  is increasing, it need not be concave.  Since u , 

we will examine the additive risks 

ˆ( ) ( )eθθ ≡ ˆ

y

(

x ~ln~ln  in this section. +

 Let r  denote the absolute risk aversion for  i.e. .  

Straightforward calculations show that 

)(ˆ θ ),(ˆ θu )(ˆ/)(ˆ)(ˆ θ′θ′′−=θ uur

 

(16) ) ˆ( ) 1 1 (ln )u uR x r= − = + . x

  

Note that  implies that .  Thus, if , then  

exhibits risk-loving behavior and is convex.  This is not surprising given the construction 

of the affiliated utility function. 

)(xRu 0)(lnˆ <xru 01)( <∀< xxRu û

 If u  is more concave than the natural logarithm function,  will be concave.  

That is, u  will be everywhere risk averse if and only if  is everywhere more risk averse 

û

ˆ u
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than log utility.10  If , then u  is risk neutral.  Note that u  does not represent 

anyone’s utility of wealth, however.  To refer to u  as “risk averse, risk loving or risk 

neutral” is only a technical convenience, since in all cases, we are assuming that true 

preferences  are risk averse.  Still, by examining the nature of 

xxu ln)( = ˆ ˆ

ˆ

u r̂

θ)

, we will be able to 

adapt several existing results on additive background risk to the multiplicative case. 

(

,1
1

1 γ= γ−
γ− x

( )uR x

≠

γ−1
1

,0

=

)1
γ

γ−= eθ

γ
 
 
 

                                                

 

 A few examples can help to illustrate the relationship between utility functions 

and the corresponding affiliated utility functions: 

 

  (i)  If u(x) = x, so that preferences are risk neutral, then , which is risk 

loving with constant absolute risk aversion. 

θ= eû

 
 (ii)  If 1,0)( γ>xu , so that preferences exhibit constant relative 

risk aversion with γ= , then θγ−=θ )1()(ˆ eu .  Note that affiliated utility 

functions exhibit constant absolute risk aversion of degree γ-1, which is risk 

averse only if γ>1. 

 

(iii)  If bxbbxxxu 2
12 ,)( <>−=

θ2be

, so that utility is quadratic, then 

. θ −θ)(ˆ eu

 

 (iv)  The above examples are all special cases of HARA utility.  Let 

0,0,)()( (1 >>+η+ηξ ξ
γ

γ−
γ

xxxu .  Then 
1

ˆ( ) .u
γ

θ ξ η
−

= +  

 

 
10 If we consider background risks for which , an increase in the riskiness of ln 0E y = y  will cause the 
mean of y  to increase.  Such an increase will represent a mean-utility preserving increase in risk for 
someone with logarithmic utility.  As a result, the change in background risk will be detrimental 
[beneficial] to someone with .  See Diamond and Stiglitz (1974). 1 [ 1]u uR R> <
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 Define v x .  From the definition of v(x) in (2) and of u  

above, it follows that .  In a manner analogous to equation (16) we can 

derive 

ˆ ˆ(ln ) (ln ln )Eu x y≡ +

ˆ(ln ) ( )v x v x=

ˆ

 

(17) 
ˆ ''(ln ln ) ˆ( ) 1 1 (ln )
ˆ '(ln ln )v v

Eu x yR x r
Eu x y

+= − ≡ +
+

x . 

 

From (16) and (17), we easily obtain the following result. 

 

Lemma 2:  (i) ( ) ( )v uR x R x≥  if and only if , ˆ ˆ(ln ) (ln )v ur x r x≥

and      (ii) ( )tR x  is decreasing if and only if  is decreasing ,  t = u,v. ˆ (ln )tr x

 

Equivalent to (i) above,  if and only if .  For the case 

where , so that  is risk loving, we can still interpret  as meaning “  is 

more risk averse than u ,” but in the sense of being less risk loving. 

)()( xrxr uv ≥ )(lnˆ)(lnˆ xrxr uv ≥

uv rr ˆˆ >1<uR û

ˆ

v̂

 We are now ready to establish an equivalence between the additive risk 

vulnerability of the affiliated utility  and the multiplicative risk vulnerability of u.  

Consider the set of 

û

)~(~ xy Γ∈ , so that 1~ =yE .  We define  as being additively risk 

vulnerable if  for every x and for every 

û

)(lnˆ xrv (lnˆ) xru≥ )~(~ xy Γ∈

1<

.   In other words, u  

is additively risk vulnerable if  is more risk averse than  

for any  with .  Note that, unlike Gollier and Pratt (1996), we do not require that 

 be concave.  The fact that risk aversion of u  is not required becomes important here, 

since the affiliated utility function u  is convex whenever .  In other words, u  may 

be additively risk vulnerable even in this case. 

ˆ

)u xˆ ˆ(lnEu≡

ˆ

(ln ln )v x x y+

ˆ

) ˆ(ln

ˆ

y 1Ey =

û

uR

 From Lemma 2, the following result is immediate: 
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Proposition 4:  Preferences are multiplicatively risk vulnerable if and only if the 

affiliated utility function  is additively risk vulnerable.  û

 

Using Propositions 3 and 4, we can characterize additive risk vulnerability of u  by 

simply translating the inequality in (8) to properties of .  

ˆ

û

 

Corollary to Proposition 4:  Preferences are multiplicatively risk vulnerable if and only if 

(18)  ˆ ˆ ˆ ˆ ˆ'(ln )[ (ln ) (ln )] ( 1) '(ln ) '(ln ) 0 , [ , ].u u uu xy r xy r x y u x r x x y a b− − − ≥ ∀ ∀ ∈

 

If we wish to extend results from the literature on additive background risks to the 

case of multiplicative ones, we need to relate our setting to that of Gollier and Pratt 

(1996).  In addition to not requiring risk aversion, our definition of additive risk 

vulnerability differs from Gollier and Pratt in that we restrict ourselves to additive 

background risks  for which , whereas Gollier and Pratt consider background 

risks such that , using our notation.

ln y

lnE y ≤

1Ey =

0 11  Since , it follows that 

 will satisfy our condition for additive risk vulnerability, whenever u  is risk vulnerable 

in the sense of Gollier and Pratt.  In other words, multiplicative risk vulnerability follows 

whenever  is risk vulnerable in the sense of Gollier and Pratt.

1 ln 0Ey E y= ⇒ ≤

ˆ

                                                

û

û 12   

Since risk vulnerability, and in particular inequality (18), is not an easy trait to 

verify, Gollier and Pratt offer us several useful sufficient conditions for risk vulnerability, 

which they define exclusively for the case where preferences are risk averse.  If we 

restrict utility such that , so that the affiliated utility function  is risk averse, we 1>uR û
 

11  Perhaps surprisingly, Gollier and Pratt’s proof of their necessary and sufficient conditions for their risk 
vulnerability does not require risk aversion.  It requires only that utility be strictly increasing.  This might 
not seem surprising if we note that our proof of Proposition 3 also does not require risk aversion to hold. 
   
12  This can be seen more formally as follows.  Assume, as do Gollier and Pratt, that  is decreasing.  Then 
their necessary and sufficient condition for  to be more risk averse than , for all 

ûr
v̂ û y

ˆ

 with  is 
  This is equivalent to the condition 

in footnote 9 above.  But since  for all y, inequality (18) follows whenever r . 

ln 0E y ≤

0
ˆ ˆ ˆ ˆ ˆ'(ln )[ (ln ) (ln )] (ln ) '(ln ) ln ) 0 , [ , ].u u uu xy r xy r x y u x x y a b− − ≥ ∀ ∀ ∈

1 lny − ≥
'(x r

y 'u <
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may apply some of the Gollier and Pratt results to u .  This leads to the following two 

sufficient conditions on the affiliated utility function  to ensure that preferences u are 

multiplicatively risk vulnerable. 

ˆ

û

(lnr )

 

Proposition 5:  Suppose that .  Then u is multiplicatively risk vulnerable if 

either 

xxRu ∀>1)(

 (i)   is decreasing and convex, ur̂

or (ii)  exhibits standard risk aversion (see Kimball, 1993, and below). û

 

 In some instances, we might be able to check the conditions on the affiliated 

utility function u  in Proposition 5 directly.  However, we typically will find it easier to 

deal with properties of u directly, rather than properties of .  We address this issue in 

the next section. 

ˆ

û

6.  Properties of Utility and Affiliated Utility 

 

 In this section, we examine conditions on the utility function u that must hold if 

its affiliated utility function u  is additively risk vulnerable.  In particular, we first show 

that  is decreasing and convex, whenever  is decreasing and convex.  We 

then show how there is a close relationship between standard absolute risk aversion of the 

affiliated utility function  and standard relative risk aversion of u.  

ˆ

)(xRu û x

û

 We have already established in Lemma 2 that  is decreasing whenever 

 is decreasing.  From equation (16), it follows that 

)(xRu

ˆ (ln )ur x

 

(19) 1 ˆ'( ) '(ln )u uR x r
x

= x  

and 
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(20) 2

1 ˆ ˆ"( ) [ "(ln ) '(ln )]u u uR x r x r
x

= − x . 

 

If  is decreasing and convex, it follows from equation (20) that is also 

convex.  As a consequence, the conditions holding in Proposition 5(i) imply those of 

Proposition 1(i), so that Proposition 1 also might be thought of as a corollary to 

Proposition 5(i). 

ˆ (ln )ur x )(xRu

The property of standard risk aversion, as presented in Kimball (1993), has 

become an integral part of the literature on behavior under uncertainty as based upon the 

expected-utility paradigm.  It is especially useful since it is easily characterized by 

decreasing absolute risk aversion and decreasing absolute prudence, where absolute 

prudence is measured as '''( )( )
''( )

u xp x
u x

= − .  If , preferences are said to be 

prudent.  If the affiliated utility function is standard risk averse, which by definition 

implies that it must be risk averse, we may apply Proposition 5(ii) to conclude that v is 

more risk averse than u.

0)(''' >xu

13 

 We first obtain a preliminary result that will prove useful.  Straightforward 

calculations show that  

 

(22) 
2

2

''( ) '( ) '''( ) '( ) [ ''( )]'( ) ( )[1 ( ) ( )]
[ '( )]u u u u

u x u x xu x u x x u xR x r
u x

− − += = x P x R x− + , 

 

where 
)(''

)(''')(
xu

xxuxPu
−≡  denotes the measure of relative prudence.  Consequently, we 

directly obtain the following result. 

 

                                                 
13  Further properties of standard risk aversion as well as a discussion of much of the literature applying this 
property can be found in Gollier (2001).   

 22



Multiplicative Background Risk 

Lemma 3:    if and only if  . '( ) 0uR x ( ) 1 ( )u uP x R x+

 

 We already know that the affiliated utility function  is risk averse whenever 

.  Lemma 4 shows a condition on the underlying preferences that is equivalent 

to the prudence of .   

û

1)( >xRu

û

 

Lemma 4:  The affiliated utility function u  exhibits prudence, u , if and only 

if 

ˆ θ∀>θ 0)('''ˆ

)(
13)(

xR
xP

u
u −> . 

 

Proof:  Recall that , so that we obtain the following by differentiating with 

respect to ln : 

)()(lnˆ xuxu =

x

  )

)

)

(')(ln'ˆ xxuxu =

  ('')(')(ln''ˆ 2 xuxxxuxu +=

 . (''')(''3)(')(ln'''ˆ 32 xuxxuxxxuxu ++=

Thus, dividing u  by −  we obtain )(ln'''ˆ x 0)(''2 >xux

 

 '''( ) '( )ˆ '''(ln ) 0 3 0
''( ) ''( )

xu x u xu x
u x xu x

> ⇔ − − − >    1( ) 3
( )u

u

P x
R x

−⇔ > .   

                    ▄ 

 

 From Lemmata 3 and 4, we can easily now show the following. 

 

Lemma 5:  If u exhibits decreasing relative risk aversion, the affiliated utility function u  

exhibits prudence. 

ˆ
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Proof:  From Lemmata 3 and 4, the conclusion follows if 1 .  Since 

 is positive, this is equivalent to { , which 

obviously holds.  ▄ 

1)]([3)( −−≥+ xRxR uu

2 2( ) 1} [ ( ) 1] 0uR x R x− + = −)(xRu [ ( )] 2u uR x ≥

 

 We can use the derivatives in the proof of Lemma 4 to calculate the measure of 

absolute prudence for the affiliated utility function.  In particular, we obtain 

 

(23) 
2

1

ˆ ( ) 2'''(ln ) '''( ) 2 ''( )ˆ (ln ) 1 1
ˆ ''(ln ) ''( ) '( ) 1 ( ( ))

u

u

P xu x x u x xu xp x
u x xu x u x R x −

−+≡ − = − − = −
+ −

, 

where the last step follows from dividing both the numerator and denominator in (23) by 

 ).('' xxu

 We are now ready to prove that standard relative risk aversion of u is a necessary 

condition for u  to be standard: ˆ

 

Proposition 6:  Suppose that u  exhibits standard risk aversion. Then  and u 

exhibits standard relative risk aversion; that is, both  and  are positive and 

decreasing.  

ˆ 1)( >xRu

)(xPu )(xRu

 

Proof:  From equation (16), we know that  risk averse implies that .  Since u  

exhibits decreasing absolute risk aversion, it follows from Lemma 2 that u exhibits 

decreasing relative risk aversion.  Thus, we must show that u also exhibits positive and 

decreasing relative prudence.  That relative prudence is positive follows easily from 

Lemma 3.   

û 1)( >xRu ˆ

 Differentiating equation (23) with respect to ln  we obtain x

 

 
1 2

1 2

ˆ [1 ( ( )) ] '( ) [ ( ) 2]( ( )) '( )(ln )
ln [1 ( ( )) ]

u u u u u

u

x R x P x x P x R x R xdp x
d x R x

− −

−

− − −=
−

. 
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Because , it follows that [ (  and, from Lemma 3, that 

.  Thus, it follows that 

1)( >xRu

0>

2)] ( ) 0u uR x R x− >

2)( −xPu
ˆdp(ln )

ln
x

d x
 is negative if and only if 

 

(24) 2

( ) 2'( ) '( ) 0
[ ( )] ( )

u
u u

u u

P xP x R x
R x R x

−< <
−

.  ▄ 

 

 From the proof of Proposition 6, we see that u exhibiting standard relative risk 

aversion is necessary, but not quite sufficient to imply that the affiliated utility function 

 is standard risk averse.  However, we do obtain the following result. û

 

Corollary to Proposition 6:  Let .  If u exhibits standard relative risk aversion 

and the inequality in (24) holds, then the affiliated utility function  is standard risk 

averse.   

1)( >xRu

û

 

Proof:  Since , it follows from equation (16) that .  Standard relative 

risk aversion of u implies, from Lemma 2, that  exhibits decreasing absolute risk 

aversion.  It also follows, from Lemma 5, that u .  Since (24) holding implies that u  

also exhibits decreasing absolute prudence, the Corollary follows.  ▄ 

1)( >xRu ˆ( ) 0r θ >

û

0ˆ ''' > ˆ

 

 From Proposition 6 and its Corollary, it follows that whenever condition (24) 

holds, the following two conditions are equivalent: 

 (i)  Utility u is standard relative risk averse with Ru>1, and 

(ii)  Affiliated utility u  is standard risk averse. ˆ

Since (24) might seem a bit opaque, we provide an illustration of a case where it applies 

in the following example. 
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Example:  Let u belong to the HARA class of utility functions, 1( ) ( )xu x γ
γξ η −= +  and 

suppose that 1γ > .  Now 
1

( )u
xR x

xγη
=

+
.  Thus, it follows easily that u exhibits 

decreasing relative risk aversion if and only if 0η < .  Hence, 1x xγη> + , so that 

.  To see that u exhibits standard relative risk aversion, note that 1)( >xRu

1( )uP x γ
γ
+= ( )u xR .  Thus, u exhibits decreasing relative prudence if and only if u exhibits 

decreasing relative risk aversion.  Thus, u is standard relative risk averse and .  

We now wish to show that  is standard risk averse. 

1)( >xRu

û

 By the Corollary to Proposition 6, we would be done if the inequality in (24) 

holds.  Since both  and , inequality (24) is equivalent to  '( ) 0uP x < '( ) 0uR x <

 

  
1( ) ( ) 2( ) 21

( )[ ( ) 1] ( )[ ( ) 1]
uu

u u u u

R xP x
R x R x R x R x

γ
γγ

γ

+ −−+ > =
− −

 

 
    ⇔ 1( )[ ( ) 1] ( ) 2( )u u uR x R x R x γ

γ+− > −  

 

    ⇔ 2 1) 1]
1uR x[ ( γ

γ
−− >
+

. 

 

This last inequality follows, since γ>1.  Hence, u  is standard risk averse.  It follows from 

Proposition 5(ii) that the derived utility function v is more risk averse than u. 

ˆ

 If under HARA preferences we assume the property that , it 

follows that γ>1 must hold.  Hence, the additional assumption of standard relative risk 

aversion of u would be both necessary and sufficient to guarantee standard (absolute) risk 

aversion of . 

( ) 1 (0, )uR x x> ∀ ∈ ∞

û
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7.  Comparative Risk Aversion 

 

 A key result in the literature on additive background risk is that the properties of 

constant absolute risk aversion and decreasing absolute risk aversion for utility are 

carried over to the derived utility function.  On the other hand, the property of increasing 

absolute risk aversion does not always carry over.  In this section we show the analogous 

results for relative risk aversion in the case of a multiplicative background risk.  We have 

already seen that v inherits constant relative risk aversion from u.  Indeed, the level of 

constant risk aversion is identical.  To see that the same holds true for decreasing relative 

risk aversion, we can apply the Diffidence Theorem once again.  It is important to note 

that  is not required in Proposition 7.   1Ey =

 

Proposition 7:  Let y~  have a bounded support contained in [a,b].  If u exhibits 

nonincreasing relative risk aversion, then so does the derived utility function 

.  ( ) ( )v x Eu xy≡

 

Proof:  It follows from Lemma 3, that we need to show that, , x∀

 

(25) . ( ) 1 ( ) ( ) 1 ( )u u v vP x R x P x R x≥ + ⇒ ≥ +

That is, we must show that  

 

(26) 
3 2

2

'''( ) ''( ) 1
''( ) '( )

Eu xy y x Eu xy y x
Eu xy y Eu xy y

− −≥ + . 

Inequality (26) is equivalent to the following, where λ  denotes the value of the right-

hand side in (26): 

 

(27) . 2 3[ ''( ) ( 1) '( ) ] 0 [ '''( ) ''( ) ] 0E u xy y x u xy y E u xy y x u xy yλ λ+ − = ⇒ + ≥2
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By the Diffidence Theorem, (27) will hold if we can find a real number m, such that 

 

(28) . 3 2 2'''( ) ''( ) [ ''( ) ( 1) '( ) ] [ , ]u xy y x u xy y m u xy y x u xy y y a bλ λ+ ≥ + − ∀ ∈

The left-hand side of (28) can be written as 

 

(29) [ ]''( ) '( ) '''( ) '( )( ) ( )
'( ) ''( ) u u

xyu xy u xy y xyu xy u xy yR xy P xy
u xy x u xy x

λ λ 
+ = − − 

 
. 

 

Since , it follows from (28) and (29) that )(1)( xRxP uu +≥

 

(30) [ ]3 2 '( )'''( ) ''( ) ( ) 1 ( )u u
u xy yu xy y x u xy y R xy R xy

x
λ λ+ ≥ − − − . 

From (28) and (22), we would be done if we could find an m, such that 

 

(31) [ ] 2'( )( ) 1 ( ) [ ''( ) ( 1) '( ) ]

'( ) [ 1 ( )].

u u

u

u xy yR xy R xy m u xy y x u xy y
x

mu xy y R xy

λ λ

λ

− − − ≥ + −

= − −
 

 

This follows by taking , since we then obtain (31) is equivalent to xm /)1( λ−=

 
(32) [ ] 2( ) 1 ( ) ( 1)[ 1 ( )] [ 1 ( )] 0u u u uR xy R xy R xy R xyλ λ λ λ− − − + − − − = − − ≥

                                                

. 

 

Hence, (25) holds and v exhibits decreasing relative risk aversion.  ▄ 

 

 We next turn briefly to examining some interpersonal characteristics of 

comparative risk aversion.  Kihlstrom, et al. (1981) and Ross (1981) examined these for 

the case of an additive background risk.14  Their results are special cases of more general 

 
14  Actually, Ross considers the background risk to be mean-independent, which is not as restrictive as the 
assumption of independence.   
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results found in Nachman (1982). Nachman is one of the few who considers the case of 

multiplicative background risks as a special case of his general results, albeit briefly.  The 

basic question we address is the following:  If agent 1 is more risk averse than agent 2, 

will this property be preserved in the presence of a multiplicative background risk?  That 

is, if  is more risk averse than u , when will it follow that v  is also more risk averse 

than ?  One result that is quite easy to obtain is the following: 

1u

2v

2 1

 

Proposition 8:  Let u  and u  be risk-averse utility functions such that u  is more risk 

averse than , i.e. 
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Proof:  Follows directly from equation (4).  ▄ 

 

 The proof of Proposition 8 also follows directly from the following more general 

result, which is due to Nachman (1982).  We include the trivial proof above mostly to 

illustrate how our model can also generate these types of results.  We present Nachman’s 

result below for the sake of completeness. 

 

Proposition (Nachman):  Let  and u  be risk-averse utility functions such that u  is 

more risk averse than u , i.e. .  If there exists a function  such that 

 and  is nonincreasing, then v  is more risk averse 

than v . 
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 It follows easily from Nachman’s result that v  will be more risk averse than v  

if either of the utility functions, u  or u , exhibits nonincreasing relative risk aversion.  

This result is a direct counterpart to the result by Kihlstrom, et al. in the case of additive 

background risk.   

a b

a b
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8.  Concluding Remarks 

 

 The notion that markets are complete is a mathematical nicety that does not hold 

true in practice.  Many types of political, human-capital and social risks, as well as some 

financial risks, are not represented by direct contracts.  Obviously, many of these risks 

might be hedged indirectly via so-called “cross hedging.”  However, even when such 

“background risks” are independent of other risks and cannot be “hedged” per se, they 

still may have an impact upon risk-taking strategies that are within the control of the 

economic agent.  Much has been done over the past twenty years in examining the effects 

of additive background risks.  But surprisingly little has been done to systematically 

study economic decision making in the presence of a multiplicative background risk.   

 This paper is a first step towards developing a comprehensive theory of 

background risk in this direction.  As the examples in our introduction illustrate, models 

with such multiplicative background risks are not hard to find within the literature.  

Whereas properties of absolute risk aversion play a key role in analyzing the effects of an 

additive background risk, properties of relative risk aversion are more important in 

examining behavior in the presence of a multiplicative background risk.  However, 

results for the case of a multiplicative background risk do not simply “mirror” those for 

the case where the background risk is additive.  An understanding of the basic concepts 

presented here hopefully might help us understand a multitude of results for which 

standard theories (in the absence of any background risk) yield predictions that seem at 

odds with everyday observations of reality.   

 Since risk aversion captures all the essential information about preferences within 

an expected-utility framework, our focus here has been on comparing risk aversion with 

and without a multiplicative background risk.  As we learn more about these inherent 

properties, we hopefully will be able to find better models to use in the realm of positive 

theories. 
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