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A large body of finance literature addresses the mispricing of options.  Rubinstein (1994), 

Jackwerth and Rubinstein (1996), and Jackwerth (2000), among others, observed a steep 

index smile in the implied volatility of S&P 500 index options that suggests that out-of-the-

money (OTM) puts are too expensive.  Indeed, a common hedge-fund policy is to sell OTM 

puts.  Coval and Shumway (2001) found that buying zero-beta at-the-money (ATM) 

straddles loses money.  Constantinides, Jackwerth, and Perrakis (2008) provided empirical 

evidence that both OTM puts and calls on the S&P 500 index are mispriced by showing that 

they violate stochastic dominance bounds put forth by Constantinides and Perrakis (2002). 

In this paper, we provide out-of-sample tests of option mispricing, net of transaction 

costs and bid-ask spreads.  Specifically, we identify American call and put options on the 

S&P 500 index futures that violate the stochastic dominance bounds of Constantinides and 

Perrakis (2007) as potentially profitable investment opportunities.  In out-of-sample tests 

over 1983-2006, we show that trading policies that exploit these violations provide higher 

Sharpe ratios than policies without option trading.  We also show that the expected utility of 

any risk averse investor, net of transaction costs and bid-ask spreads, increases when 

exploiting such option trading.  Below, we highlight novel features of our approach. 

First, we use the Chicago Mercantile Exchange (CME) data base on S&P 500 

futures options, 1983-2006, which is clean and spans a long period.  Much of the earlier 

empirical work on the mispricing of index options is based on data on the S&P 500 index 

options that comes from two principal sources: the Berkeley Options Database (1986-1995) 

that provides relatively clean transaction prices, but misses important events over the past 12 

years, such as the 1998 liquidity crisis, the dot-com bubble, and its 2000 burst; and the 

OptionMetrics (1996-2006) data base which, however, is of uneven quality and contains 

only end-of-day quotes. 

Second, we identify mispriced options with a screening mechanism that uses 

minimal assumptions about market equilibrium.  This mechanism is based on the stochastic 

dominance bounds of Constantinides and Perrakis (2007).  These bounds identify 

reservation purchase and reservation write prices such that any risk averse investor may 

increase her expected utility by including the option that violates these bounds in her 

portfolio.  The bounds are valid for any distribution of the underlying asset and 
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accommodate jumps.  They also recognize the possibility of early exercise of American 

options. 

The only necessary assumption about the market for the validity of these bounds is 

that there exists a class of traders holding portfolios containing only the S&P 500 index and 

the riskless asset.1  Ample evidence exists that this assumption holds for US markets.  

Numerous surveys have shown that a large number of US investors follow indexing policies 

in their investments.  Bogle (2005) reports that in 2004 index funds accounted for about one 

third of equity fund cash inflows since 2000 and represented about one seventh of equity 

fund assets.  The S&P 500 index is not only the most widely quoted market index, but has 

also been available to investors through exchange traded funds for several years.  We find 

that any such investor would improve her utility by including in her portfolio an option 

identified as mispriced by the stochastic dominance bounds. 

As a third novel feature, we assess the profitability of our trading policy by 

employing the powerful statistical tests of stochastic dominance by Davidson and Duclos 

(2000 and 2006) which can deal with option returns even in a setting where we do not make 

assumptions about the preferences of the investors.  These tests compare the profitability of 

the optimal trading policies of a generic S&P 500 index investor with and without the option 

in a setting that recognizes the possibility of early exercise of the futures option.  These 

profitability comparisons are valid from the perspective of any risk averse investor.  By 

contrast, the ubiquitous Sharpe ratio measure of portfolio performance is valid only from the 

perspective of a mean-variance investor and suffers from well known problems when used 

to assess non-normal returns such as those encountered in portfolios that include options. 

Finally, both the bounds employed in detecting mispriced options and the portfolio 

returns explicitly take into consideration bid-ask spreads and trading costs.  Once a trading 

opportunity is detected, we execute the trade by buying at the next ask price or selling at the 

next bid price. 

We use historical data on the underlying S&P 500 index returns in order to estimate 

the bounds.  We use several empirical estimates of the underlying return distribution, all of 

them observable at the time the trading policy is implemented.  For each one of these 

                                                 
1 The mean-variance portfolio theory that gives rise to the Sharpe ratio measure of portfolio performance is 
based on the stronger assumption that every investor holds the market portfolio and the risk free asset. 
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estimates we evaluate the corresponding bounds over the period 1983-2006, and then 

identify the observed S&P 500 futures options prices that violate them.  For each violation, 

we identify the optimal trading policy of a generic investor with and without the mispriced 

option, using the observed path of the underlying asset till option expiration and recognizing 

realistic trading conditions such as possible early exercise and transaction costs.  We 

identify the profitability of the pair of policies for each observed violation, and then conduct 

stochastic dominance comparison tests over the entire sample of violations. 

We find a substantial number of violations of the upper bounds, but relatively few 

violations of the lower bounds.  Since the frequency of violations of the lower bounds is too 

low for statistical inference, we focus on violations of the upper bounds.  The results are 

strongly supportive of mispricing. 

The paper is organized as follows.  In Section 1, we present the restrictions on 

futures option prices imposed by stochastic dominance and discuss the underlying 

assumptions.  In Section 2, we describe the data and the empirical design.  In Section 3, we 

present the empirical results and discuss their robustness.  We conclude in Section 4. 

 

 

1 Restrictions on Futures Option Prices Imposed by Stochastic Dominance 

 

We assume that market agents are heterogeneous and investigate the restrictions on option 

prices imposed by one particular class of agents that we simply refer to as “traders”.  We 

allow for other agents to participate in the market but this allowance does not invalidate the 

restrictions on option prices imposed on traders. 

We consider a market with several types of financial assets.  First, we assume that 

traders invest only in two of them, a bond and a stock with natural interpretation as a market 

index.2  Subsequently, we assume that traders can invest in a third asset as well, an 

American call or put option on the index futures.  The bond is risk free and has total return 

                                                 
2 Essentially, we model buy-and-hold investors who trade infrequently and incur low transaction costs.  At 
least for large investors who earn a fair return on their margin, transaction costs are even lower in the index 
futures market than the stock market.  In practice, however, buy-and-hold investors invest in the stock and 
bond markets because of the inconvenience and cost of the frequent rolling over of short-term futures 
contracts and the illiquidity of long-term futures and forward contracts. 
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R.  The stock has ex dividend stock price tS  at time t and pays cash dividend tSγ  , where 

the dividend yield γ is deterministic.  The total return on the stock, ( )1(1 ) /t tS Sγ ++ , is 

assumed i.i.d. with mean SR .  The call or put option on the index futures has strike K and 

expiration date T .  The underlying futures contract is cash-settled and has 

maturity ,F FT T T≥ .  We assume that the futures price tF  is linked to the stock price by the 

approximate cost-of-carry relation ( ) ( )1 , ,
F FT t T t F

t t t tF R S t Tγ ε ε ε− − −= + + ≤ ≤ , where 

the basis risk variables { }tε  are distributed independently of each other and of the stock 

price series{ }tS . 

Transfers to and from the cash account (bond trades) do not incur transaction costs.  

Stock trades decrease the bond account by transaction costs equal to the absolute value of 

the dollar transaction, times the proportional transaction costs rate, , 0 1≤ <k k .  Option 

trades incur transaction costs, exchange fees, and price impact which are incorporated in 

what we refer to as their bid and ask prices. 

We assume that traders maximize generally heterogeneous, state-independent, 

increasing, and concave utility functions.  We further assume that each trader’s wealth at the 

end of each period is monotone increasing in the stock return over the period.  For example, 

a trader who holds 100 shares of stock and a net short position in 200 call options violates 

the monotonicity condition, while a trader who holds 200 shares of stock and a net short 

position in 200 call options satisfies the condition.  Essentially, we assume that the traders 

have a sufficiently large investment in the stock, relative to their net short position in call 

options (or, net long positions in put options), such that the monotonicity condition is 

satisfied. 

We do not make the restrictive assumption that all market agents belong to the class 

of utility-maximizing traders.  Thus, our results are robust and unaffected by the presence in 

the market of agents with beliefs, endowments, preferences, trading restrictions, and 

transaction costs schedules that differ from those of the utility-maximizing traders modeled 

in this paper. 

A trader enters the market at time zero with 0x  dollars in bonds and 0y  dollars in ex 

dividend shares of stock.  We consider two scenarios.  In the first scenario, the trader may 
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trade the bond and stock but not the options.  The trader makes sequential investment 

decisions at discrete trading dates t ( 0,  1... , 't T= ), where ', ' FT T T T≥ ≥ , is the finite 

terminal date.  The trader’s objective is to maximize expected utility, ' '[ ( )]T TE u W , where 

WT' is the trader’s net worth at date T'.3  Utility is assumed to be concave and increasing and 

defined for both positive and negative terminal worth, but is otherwise left unspecified.  We 

refer to this trader as the index (and bond) trader, IT, and denote her maximized expected 

utility by ( )0 0 0,ITV x y . 

In the second scenario, as in the first scenario, the trader enters the market at time 

zero with 0x  dollars in bonds and 0y  dollars in ex dividend shares of stock, but (in addition 

to the first scenario) immediately writes an American futures call option with maturity 

, FT T T≤ , where C  are the net cash proceeds from writing the call.4  We assume that the 

trader may not trade the call option thereafter.5  At each trading date t ( 0,  1... ,t T= ) the 

trader is informed whether or not she has been assigned (that is, assigned to act as the 

counterparty of the holder of a call who exercises the call at that time).  If the trader has been 

assigned, the call position is closed out, the trader pays tF K−  in cash, and the value of the 

cash account decreases from tx  to ( )t tx F K− − .  The trader makes sequential investment 

decisions with the objective to maximize expected utility, ' '[ ( )]T TE u W .  We refer to this 

trader as the option (plus index and bond) trader, OT, and denote her maximized expected 

utility by ( )0 0 0,OTV x C y+ . 

                                                 
3 Alternatively, the objective may be the maximization of the discounted sum of the utility of consumption 

( )t tu c at each trading date, including the terminal date.  In this case, the terminal date may be finite or 
infinite.  Although the Constantinides and Perrakis (2007) bounds are derived under the terminal wealth 
objective, they remain valid without any reformulation under the alternative objective. 
4 The reservation write price of a call is derived from the perspective of a trader who is marginal in the 
index, the bond, and only one type of call or put option at a time.  Therefore, these bounds allow for the 
possibility that the options market is segmented. 
5 The reservation write price of a call is derived under this constrained policy.  Under this policy, the 
investor increases her expected utility by writing a call at price C  and refraining from trading the call 
thereafter.  If the constraint on trading the call is relaxed, the policy which the investor follows under the 
constraint policy remains feasible and increases her expected utility by writing a call at price C .  
Therefore, C  remains an upper bound on the reservation write price of a call.  Whereas the upper bound 
may be tightened when the constraint on trading the call is relaxed, there is no known tighter bound that is 
preference free.  For further discussion on this point, see Constantinides and Perrakis (2007). 
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For a given pair ( )0 0,x y , we define the reservation write price of a call as the value 

of C  such that ( ) ( )0 0 0 0 0 0, ,OT ITV x C y V x y+ = .  The interpretation of C is the write price of 

the call at which the trader with initial endowment ( )0 0,x y  is indifferent between writing 

the call or not.  Constantinides and Perrakis (2007) state a tight upper bound on the 

reservation write price of a European futures call option that is independent of the trader’s 

utility function and initial endowment and independent of the early exercise policy on the 

calls: 

 

( ) ( )1

2

1, , max , ,
1t t t t

kC F S t N S t F K
k

+
⎡ ⎤= −⎣ ⎦−

, t T≤ .  (1) 

 

The function ( , )N S t  is defined as follows: 

 

( ) ( )11 1
1 1( , ) ( ) [max{ 1 , ( , 1)} ], 1

0, .

F FT t T t
S t t tN S t R E R S K N S t S S t T

t T
γ ε− − −− − −

+ += + + − + = ≤ −

= =
 

 (2) 

 

The economic interpretation of the call upper bound is as follows.  If we observe a call bid 

price above the reservation write price, C , then any trader (as defined in this paper) can 

increase her expected utility by writing the call. 

Transaction costs on the index have only a small effect on the upper bound.  

Specifically, without transaction costs on the index, the upper bound is 

( )max , ,t tN S t F K⎡ ⎤−⎣ ⎦ ; with transaction costs on the index, the upper bound merely 

increases by the multiplicative factor ( ) ( )1 21 / 1k k+ − .  The explanation is that this 

particular bound is based on a comparison of the utility of an index trader and the utility of 

an option trader.  Both traders follow the trading policy which is optimal for the index trader 

but is generally suboptimal for the option trader.  This policy incurs very low transaction 

costs because the trader trades infrequently, as shown in Constantinides (1986). 
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If we further assume that the trader can buy a call at price ( ), ,t tC F S t  or less and 

trade the futures and do so costlessly, we obtain the following put upper bound:6 

 

( ) ( ) ( ), , , , ,T t
t t t t tP F S t C F S t R F K t T− −= − + ≤ .   (3) 

 

The interpretation of the put upper bound is as follows.  If we observe a put bid price above 

the reservation write price P , then any trader can increase her expected utility by writing 

the put. 

Constantinides and Perrakis (2007) also stated a tight lower bound on the reservation 

purchase price of an American futures put option.  The cash payoff of the put exercised at 

time t is tK F− , t T≤ .  As in the case of a call option, we define the reservation purchase 

price of a put as the value of P  such that the trader with initial endowment ( )0 0,x y  is 

indifferent between purchasing the put or not.  The following is a tight lower bound on the 

reservation purchase price of an American futures put option that is independent of the 

trader’s utility function and initial endowment: 

 

1-( , , )  max - ,  ( ,  ) ,
1t t t t

kP F S t K F M S t t T
k

⎡ ⎤≡ ≤⎢ ⎥+⎣ ⎦
.   (4) 

 

The function ( ),M S t  is defined as follows: 

 

( ) ( ) ( ) ( ) ( )1 1 1
1 1, max 1 , , 1 | , 1

0, .

F FT t T t
S t t tM S t R E K R S M S t S S t T

t T

γ ε− − − − − −
+ +

⎡ ⎤⎡ ⎤= − + − + = ≤ −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
= =

 (5) 

 

                                                 
6 We prove equation (3) by noting that an investor achieves an arbitrage profit by buying a call 
at ( ), ,t tC F S t , writing a put at ( ), , ,t tP P P F S t> , selling one futures, and lending ( )T t

tK R F− −− .  In the 
proof, we ignore the daily marking-to-market on the futures until the exercise of the put or the options’ 
maturity, whichever comes first. 
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If we observe a put ask price below the reservation purchase price P , then any trader can 

increase her expected utility by buying the put.  As in the case of the upper call bound, 

transaction costs on the index have only a small effect on the lower put bound. 

If we further assume that the trader can write a put at price ( , , )t tP F S t  or more, and 

trade the futures and do so costlessly, then we obtain the following call lower bound, with 

corresponding interpretation:7 

 

( ) ( ) ( ), , , , ,T t
t t t t tC F S t P F S t R F K t T− −= + − ≤ .   (6) 

 

If we observe a call ask price below the reservation purchase price C , then any trader can 

increase her expected utility by buying the call. 

 

 

2 Empirical Design 

 

We describe our empirical design, starting with a description of the data, the calibration of a 

tree of the daily index return, and the construction of the portfolio of the index trader (who 

does not trade in the option) and of the option trader.  This allows us to introduce the well-

known Sharpe ratio test and we discuss the problems associated with using this test.  To 

address problems with the Sharpe ratio test, we introduce tests based on second order 

stochastic dominance. 

 

2.1 Data and estimation 

We obtain the time-stamped quotes of the 30-calendar-day S&P 500 futures options and the 

underlying 1-month futures for the period February 1983-July 2006 from the Chicago 

Mercantile Exchange (CME) tapes.  This results in 247 sampling dates.  We obtain the 

interest rate as the three-month T-bill rate from the Federal Reserve Statistical Release.  The 

data sources are described in further detail in Appendix A. 

                                                 
7 We prove equation (6) by noting that an investor achieves an arbitrage profit by writing a put at 
( ), ,t tP F S t , buying a call at ( ), , ,t tC C C F S t< , selling one futures, and lending ( )T t

tK R F− −− . 
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For the daily index return distribution, we use the historical sample of log returns 

from January 1928 to January 1983.  However, when looking forward for each of our 247 

option sampling dates, we adjust the first four moments of the index return distribution in 

various ways which we now describe in detail.  We set the mean index return at 4% plus the 

observed 3-month T-bill rate instead of estimating the mean index return from the data in 

order to mitigate statistical problems in estimating the mean.8  We implement this by adding 

a constant to the observed logarithmic index returns so that their sample mean equals the 

above target.  We estimate the 3rd and 4th moments of the index return as their sample 

counterparts over the preceding 90 days. 

Finally, we estimate both the unconditional and conditional volatility of the index 

return as follows.  We estimate the unconditional volatility as the sample standard deviation 

over the period January 1928 to January 1983.9  We estimate the conditional volatility in 

three different ways: (1) the sample standard deviation over the preceding 90 trading days;10 

(2) the at-the money (ATM) implied volatility (IV) on the preceding day, adjusted by the 

mean prediction error for all dates preceding the given date (typically some 3%), where we 

drop from the preceding days all 21 pre-crash observations; and (3) the GARCH volatility 

using GARCH coefficients estimated for S&P 500 daily returns over January 1928 to 

January 1983 applied to residuals observed over the 90 days preceding each sample date to 

form projections of the volatility realized till the option expiry date.  In Table 1, we report 

statistics of the prediction error of the above volatility estimates.  The best overall predictors 

are the adjusted ATM IV and the 90-day historical volatility. 

 

2.2 Calibration of the index return tree and calculation of the option bounds 

We model the path of the daily index return till the option expiration on a T-step tree, where 

T is the number of trading days in that particular month.11  The tree is recombining with m 

                                                 
8 Short-horizon forecasts of the conditional mean equity premium are notoriously unreliable.  Fama and 
French (2002), Constantinides (2002), and Dimson, Marsh and Staunton (2006) estimated the adjusted 
unconditional mean equity premium to be 4-6% per year.  For our main results, we set the mean return at 
4% plus the observed 3-month T-bill rate.  We also report results when we set the mean return at 6% plus 
the observed 3-month T-bill rate. 
9 We have also estimated the unconditional volatility over the 24 years prior to January 1983.  The results 
remain essentially unchanged and are not reported in the paper. 
10 We have also estimated the conditional volatility over the preceding 360 days.  The results remain 
essentially unchanged and are not reported in the paper. 
11 For example, if the 3rd Friday of July is on July 27, we record the price of the July option on June 27, 
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branches emanating from each node.  Every month we calibrate the tree by choosing the 

number of branches and the return at each node to match the first four moments of the daily 

index return distribution, as described in Appendix B. 

The upper and lower bounds on the call and put prices are given in equations (1)-(6).  

We numerically calculate the bounds by iterating backwards on the calibrated tree. 

 

2.3 Portfolio construction and trading 

For each monthly stock return path, we employ the following trading policies.  For the index 

trader (who manages a portfolio of the index and the risk free asset in the presence of 

transaction costs), we employ the optimal trading policy, as derived in Constantinides 

(1986) and extended in Perrakis and Czerwonko (2007) to allow for dividend yield on the 

stock.  Essentially, this policy consists of trading only to confine the ratio of the index value 

to the bond value, /t ty x , within a no-transactions region, defined by lower and upper 

boundaries.  We derive these boundaries for the following parameter values: one-way 

transaction cost rate on the index of 0.5%; annual return volatility of the index of 0.1856, the 

sample volatility over 1928-1983; interest rate equal to the observed 3-month T-bill date; 

risk premium 4%; and constant relative risk aversion coefficient of 2.12  For this set of 

parameters, the lower and upper boundaries are 0 0/ 1.2026y x =  and 1.5259, respectively.  

At the beginning of each month and before the trader trades in options, we set 0x =73,300 

and 0y = 100,000, which corresponds to the midpoint of the no-transactions region, 

0 0/y x = 1.3642. 

For the option trader (who manages a portfolio of the option, index, and the risk free 

asset in the presence of transaction costs), we employ the trading policy which is optimal for 

the index trader but is generally suboptimal for the option trader.  Recall that the goal is to 

demonstrate that there exist profitable investment opportunities for the option trader.  Given 

this goal, it suffices to show that there exist profitable investment opportunities for the 

                                                                                                                                                 
which is 30 calendar days earlier.  (If June 27 is a holiday, we record the price on June 26.)  If there are 21 
trading days between June 27 and July 27, we model the path of the daily index return till the option 
expiration on a 21-step tree. 
12 We clarify that the upper and lower stochastic dominance bounds on option prices apply to any risk 
averse trader, independent of her particular degree of risk aversion.  In our empirical work, we make an 
assumption about the relative risk aversion coefficient in order to calculate the boundaries of the no-
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option trader even if the option trader follows a generally suboptimal policy.  We set 0x  and 

0y  to the same values as for the index trader.  However, this portfolio composition changes, 

depending on the assumed position in futures options, as explained in Appendix C. 

We focus on the cases where the basis risk bound, ε , is 0.5% of the index price.  

Over the years 1990-2002, 95% of all observations have basis risk less than 0.5% of the 

index price.  For reference purposes, we also consider the case 0ε = .  As to be expected, 

when we suppress the basis risk, the bounds are tighter and there appear to be more 

violations. 

 

2.4 Description of the empirical tests 

For each one of our methods of estimating the bounds, we obtain 247 monthly portfolio 

returns for the index trader and the option trader, respectively.  Our goal is to test whether 

the portfolio profitability of the index and option traders are statistically different in the 

months in which we observe violations of the bounds. 

In our first set of tests, we compare the Sharpe ratios of the two portfolios.  Despite 

the well-known limitations of the Sharpe ratio, we report these results because the Sharpe 

ratio is one of the most popular measures of portfolio performance.13  We use the approach 

of Jobson and Korkie (1981) with the Memmel (2003) correction that accounts for different 

variances of the two portfolios.  Details of the test are described in Appendix D. 

In our second set of tests, we compare the returns of the two portfolios in terms of 

the criterion of stochastic dominance, which states that the dominating portfolio is preferred 

by any risk-averse trader, independent of distributional assumptions such as normality and 

preference assumptions such as quadratic utility.  Specifically, we test the null hypothesis 

20 :  H OT IT/ , which states the option trader’s portfolio return does not stochastically 

dominate the index trader’s portfolio return, against the alternative hypothesis 

2:AH OT IT , which states the option trader’s portfolio return stochastically dominates the 

                                                                                                                                                 
transactions region for a specific trader.  We present results for relative risk aversion 2 and 10. 
13 The Sharpe ratio ignores moments of the return distribution beyond the mean and variance and this is 
theoretically justified only the special cases where either investors have quadratic utility or the portfolio 
returns are normally distributed.  The latter assumption is obviously violated in portfolios that include 
options. 
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index trader’s portfolio return.  We report the results of tests proposed by Davidson and 

Duclos (2006), using the algorithm developed by Davidson (2007). 

An earlier test, proposed by Davidson and Duclos (2000), tests the null hypothesis 

20 :H OT IT against the alternative, which is that either 2IT OT  or that neither one of 

the two distributions dominates the other.  Hence, rejection of the null hypothesis fails to 

rank the two distributions in the absence of information on the power of the test, which is 

generally not available.  We report results of this test as well because it has certain statistical 

advantages over the Davidson and Duclos (2006) test.  Appendix D provides details for both 

tests. 

 

 

3 Empirical Results 

 

In Section 3.1, we describe the empirical results.  We compare the portfolio return of an 

option trader who writes overpriced calls, puts, or straddles at their bid price with the 

portfolio return of an index trader who does not trade in the options over the period 1983-

2006.  In out-of-sample tests, we find that the return of an option writer stochastically 

dominates the index trader’s return, net of transaction costs and the bid-ask spread.  We also 

find that the Sharpe ratio of the option trader’s return is higher than the Sharpe ratio of the 

index trader’s return and the difference is often statistically significant.  In Section 3.2, we 

establish that the empirical results are robust.  In Section 3.3, we demonstrate that trading 

policies triggered by violations of the stochastic dominance bounds consistently outperform 

naïve filter rules of buying low and selling high. 

 

3.1 Results 

In Figure 1, we plot the four bounds for one-month options, expressed in terms of the 

implied volatility, as a function of the moneyness, 0/K F .  We set 20%σ =  and 0ε = .  

The figure also displays the 95% confidence interval, derived by bootstrapping the 90-day 

distribution.  Regarding the upper bounds, we observe that the call upper bound is tighter 

than the put upper bound.  Also, the call and put upper bounds are tighter when the (K/F) 

ratio is high, that is when the calls are OTM or the puts are ITM.  Regarding the lower 
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bounds, we observe that the put lower bound is tighter than the call lower bound.  Also, the 

call and put lower bounds are tighter when the (K/F) ratio is low, that is when the calls are 

ITM or the puts are OTM. 

In Figure 2, we display the time pattern of actual violations of the call upper bound.  

For all different ways of estimating volatility, we observe violations after significant down 

moves in the index, i.e., when we expect the implied volatility of traded options to be high.  

We do not present time patterns for the remaining three bounds since we do not observe 

many violations of these bounds. 

In Table 2, we present the cases of call and put bid prices violating their upper 

bound, when we set the basis risk bound at 0.5% of the index price.  We do not present the 

cases of call and put ask prices violating their lower bound because we do not have a 

sufficient number of such violations to be able to draw statistical inference, as we observed 

in Figure 2.  We find a higher frequency of violations of the upper call bound than of the 

upper put bound since the upper call bound is tighter than the upper put bound, as we 

observed in Figure 1. 

The Sharpe ratio of the call trader’s return is uniformly higher than the Sharpe ratio 

of the index trader’s return, irrespective of the mode of predicting the volatility as an input 

to the call upper bound.  When the call upper bound is calculated using the adjusted IV or 

the GARCH volatility, the difference in Sharpe ratios exceeds 9% annually and is 

statistically significant at the 10% level.  There are far fewer violations of the put upper 

bound and, therefore, the results are statistically weaker.  Nevertheless, when using the 

unconditional prediction of volatility as an input to the put upper bound, we find 23 

violations of the put upper bound and the put trader’s portfolio has a Sharpe ratio that 

exceeds the index trader’s portfolio by 12.8%, statistically significant at the 10% level.  

These Sharpe ratio preliminary results motivate and reinforce our main results on stochastic 

dominance which are discussed next. 

The DD (2000) test does not reject the hypothesis 0 2:H OT IT , which states that 

the option trader’s return dominates the index trader’s return; and rejects the hypothesis 

0 2:H IT OT , which states that the index trader’s return dominates the option trader’s 

return.  Thus, we unfortunately cannot decide between dominance of the OT strategy or a tie 

where we cannot establish dominance one way or another.  Luckily, the DD (2006) test 
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allows us to make stronger claims of dominance.  The DD (2006) test strongly rejects the 

null hypothesis 0 2:H OT IT/ , which states that either the index trader’s return dominates 

the option trader’s return or that neither distribution dominates the other.  The p-values of 

the hypothesis 0 2:H IT OT/  are equal to one and are not reported here.  Here, we can 

uniquely establish dominance of the OT strategy. 

Next, we explore the performance of the policy of writing overpriced calls through 

the policy of writing straddles.  Straddles are popular trading policies and have been 

previously investigated in the literature.  For example, Coval and Shumway (2001) show 

that a long ATM straddle on the S&P 500 index or the S&P 100 index produces substantial 

negative returns.14  Each month, we look for call bid prices that lie above the upper call 

bound.  If we find at least one call bid prices that lie above the upper call bound and if we 

find at least one put bid price (irrespective of whether the put bid price violates the put upper 

bound or not) we proceed as follows.  We short equal fractions of the calls that violate the 

call upper bound, such that the fractions add up to one; we short equal fractions of the puts 

for which we have bid prices, such that the fractions add up to one; and we sell one futures 

on the index.  The results are reported in Table 3, panel A.  The annualized Sharpe ratio 

differentials are large and significant at the 5% or 1% level.  These results are consistent 

with the results of Coval and Shumway (2001).  The DD (2000) test does not reject the 

hypothesis 0 2:H OT IT .  It often rejects the hypothesis 0 2:H IT OT , but not 

consistently so.  Finally, the DD (2006) test strongly rejects the hypothesis 0 2:H OT IT/ .  

We conclude that the results in Table 3, panel A, are consistent with those in Table 2. 

We note that the numbers of cross-sections for which short straddles are traded in 

Table 3, panel A, is significantly lower than the corresponding numbers for calls is Table 2.  

Since, in our approach, the straddle sales are solely determined by the violations of the call 

upper bound, we increase the number of cross-sections by relaxing the requirement that the 

put sale has to occur at the same strike price as that of the call that triggers the violation.  

Instead, we require that the moneyness of the put remains within 0.98-1.02 times the 

moneyness of the triggering call.  The first put quote within this bound following the call 

                                                 
14 The paper of Coval and Shumway (2001)) focuses on the relation between the CAPM beta and the return 
of straddles and, as such, differs from our goal of measuring the performance of straddles, net of bid-ask 
spreads and through the broader criterion of stochastic dominance. 
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violations is included in the ensuing straddle position.  The results for this approach are 

presented in Table 3, panel B.  Compared to Table 3, panel A, we observe an improvement 

in the stochastic dominance tests results and a systematic increase in the Sharpe ratios. 

Since the results for straddles imply that the call upper bound is an efficient selector 

of overpriced puts, we apply this selection criterion to all available put quotes.  Specifically, 

for every put bid we derive the call upper bound.  Then we sell the put if its implied 

volatility exceeds the corresponding quantity for the call upper bound.  The results are 

reported in Table 2, panel C.  The returns of the put selling policy stochastically dominate 

the returns of the index trader’s portfolio, irrespective of the way in which volatility is 

estimated.  The put selling policies produce Sharpe ratios that are higher than the Sharpe 

ratios of the index trader’s portfolio returns, irrespective of the way in which the volatility is 

estimated; the Sharpe ratio differences are statistically significant when the volatility is 

estimated as the adjusted IV or as the GARCH volatility. 

 

3.2 Robustness tests 

In Tables 4-9, we demonstrate that the results of Tables 2 and 3 are robust.  Table 4 differs 

from Table 2 only in that the basis risk is set at zero, 0ε = , instead of bounding the basis 

risk by 0.5ε = .  There are now more options across the board violating the bounds because 

all the bounds become tighter: the upper bounds are lowered and the lower bounds are 

raised.  We present the cases of call and put bid prices violating their upper bound.  We do 

not present results for the cases when the call and put ask prices violate their lower bound 

because we still do not have a sufficient number of such violations to be able to make 

statistical inference. 

Since the upper call and put bounds are lower, the options trader is less selective 

than before in writing options that violate their upper bounds and we find that the 

differences of the Sharpe ratios are smaller in Table 4 than in Table 2.  However, since there 

are more observations in Table 4, the differences of the Sharpe ratios are statistically more 

significant than in Table 2.  The DD (2000) test does not reject the hypothesis 

0 2:H OT IT  and rejects the hypothesis 0 2:H IT OT .  Finally, the DD (2006) test 
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strongly rejects the hypothesis 0 2:H OT IT/ .  We conclude that the results in Table 3 are 

consistent with those in Table 2. 

Table 5 differs from Table 3 on straddles only in that the basis risk is set at zero, 

0ε = , instead of bounding the basis risk by 0.5ε = .  Again, we conclude that the results in 

Table 5 are consistent with those in Table 3. 

Table 6 differs from Table 2 only in that the relative risk aversion coefficient is set at 

10 instead of 2.  Since the upper and lower stochastic dominance bounds on option prices 

are independent of the trader’s utility, we observe the same number of violations in Table 6 

as we do in Table 2.  The change in the risk aversion coefficient does change the boundaries 

of the no-transactions region and, therefore, the trading policy of the index trader and the 

option trader.  The Sharpe ratio differences are substantially higher in Table 6 but these 

differences are not statistically significant.  (Recall that the differences in Panels A and B of 

Table 2 are only marginally significant).  The stochastic dominance results in writing calls 

are as strong in writing calls and stronger in writing puts. 

Table 7 differs from Table 2 only in that the expected premium on the index is set at 

6% instead of 4%.  The differences in Sharpe ratios are comparable to those in Table 2 but 

these differences are not statistically significant.  The stochastic dominance results in writing 

calls are as strong in writing calls and stronger in writing puts.  We conclude that the results 

in Table 2 are robust to the assumption that the expected premium on the index is 4%. 

Table 8 differs from Table 2 only in that we exclude from the sample the seven 

month from October 1987 to April 1988 in order to abstract from effects associated with the 

crash.  The difference in Sharpe ratios between the returns of the option trader and index 

trader are comparable to those in Table 2, but are not statistically significant.  The stochastic 

dominance results in writing calls and puts are the same as in Table 2.  This is partly due to 

the fact that stock prices recovered on the days following the crash and the October return 

on the index is flat. 

The bounds that are used in identifying mispriced options in our empirical work are 

calculated with parameter inputs which are point estimates and vary for each time point of 

our sample for all but the historical method of estimating the bounds.  These varying 

parameters imply that the screening rules for mispriced options become conditional on the 

time point of our sample.  Since the earlier tests do not recognize this conditionality, we 
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develop in Appendix E an alternative set of tests that explicitly take into account the time 

varying nature of our sample and conclude that conditional and unconditional tests lead to 

same conclusions.  The results are reported in Table 9 and discussed in Appendix E.  They 

are also consistent with the main results of Table 2 and supportive of the mispricing 

hypothesis, even though they are derived with a different method. 

 

3.3 Comparison with naïve trading 

The option trading policies triggered by violations of the stochastic dominance bounds 

superficially resemble a well-known naïve trading policy of buying (or selling) an option 

when its IV is at the low (or, high) end of the IV distribution of options within a certain 

range of moneyness.  In this section, we demonstrate that a particular form of this naïve 

trading policy consistently underperforms the earlier trading policies triggered by violations 

of the stochastic dominance bounds. 

We derive the 90th, 97.5th, 10th, and 2.5th percentiles of the IV distribution for a given 

range of moneyness by applying the method of Yu and Jones (1998).15  Table 10 presents 

the results for the naïve trading policy.  In all trading policies, we mirrored the policies 

applied for the option trader (OT).  We observe that the number of cross-sections for which 

we find ‘quantile violations’ is relatively low.  This observation is caused by the clustering 

of violations in some cross-sections.  We conclude that the naïve trading policy detects 

parallel shifts in the implied volatility instead of singling out unusual observations in the 

majority of cross-sections.  These shifts appear to be inefficient: the naïve bounds only 

capture some of these parallel shifts in implied volatility, namely violations at the top.  The 

naïve trading policy performs well on the sell side but performs disastrously on the buy side, 

as shown by the stochastic dominance statistics and Sharpe ratios. 

 
 

                                                 
15 The quantile regression is a kernel regression in two dimensions, in our case in the dimensions of 
moneyness and IV.  As is usual in a kernel regression, the critical part is in determining the kernel 
bandwidth.  To determine this quantity in the moneyness dimension, we use the Leave-One-Out method, as 
described in Härdle (1990), for which we use the transformation given in Table 1 in Yu and Jones (1998).  
To determine the bandwidth in the implied volatility dimension, we use (12) in Yu and Jones (1998).  As 
our sample to derive the critical quantile function, we use five past observations with 30 days to maturity.  
Using ten past observations yields similar results, not reported here.  We verified that in-sample the 
likelihood of observations outside any critical quantile q is close to ( )min , 1q q− . 
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4 Concluding Remarks 
 

We search for mispriced American call and put options on the S&P 500 index futures by 

employing stochastic dominance upper and lower bounds on the prices of options.  We 

identify call and put bid prices on index futures that violate the upper bounds and call and 

put ask prices that violate the lower bounds.  We find a substantial number of violations of 

the upper bounds, but relatively few violations of the lower bounds.  Since the frequency of 

violations of the lower bounds is too low for statistical inference, we focus on violations of 

the upper bounds. 

We compare the portfolio return of an option trader who writes overpriced calls or 

puts at their bid price with the portfolio return of an index trader who does not trade in the 

options over the period 1983-2006.  In out-of-sample tests, our main result is that the return 

of a call or put writer stochastically dominates (in second order) the index trader’s return, net 

of transaction costs and the bid-ask spread.  The dominance holds under a variety of 

methods in estimating the underlying return distribution.  It also holds with or without the 

assumption that the portfolio returns are drawn from the same distribution each period. 

We also find that the Sharpe ratio of the call trader’s return is uniformly higher than 

the Sharpe ratio of the index trader’s return and is often statistically significant.  The Sharpe 

ratio of the put trader’s return is uniformly higher than the Sharpe ratio of the index trader’s 

return but the results are less statistically significant.  Finally, the policy of writing straddles 

produces returns that strongly stochastically dominate the index trader’s return and have 

substantially higher Sharpe ratios.  The results are supportive of the hypothesis that the 

options identified by violations of the CP (2007) bounds are mispriced. 
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Appendix A: Data 

We obtain the time-stamped quotes of the one-month S&P 500 futures options and the 

underlying one-month futures for the period February 1983-July 2006 from the CME tapes.  

From the futures prices, we calculate the implied S&P 500 index prices by applying the 

cost-of-carry relation ( ) ( )1
F FT t T t

t t tF R Sγ ε− − −= + + , assuming away basis risk, 0tε ≡ .16  We 

obtain the daily dividend record of the S&P 500 index over the period 1928-2006 from the 

S&P 500 Information Bulletin and convert it to a constant dividend yield for each 30-day 

period.  Before April 1982, dividends are estimated from monthly dividend yields.  We 

obtain the interest rate as the three-month T-bill rate from the Federal Reserve Statistical 

Release.  We estimate the variance of the basis risk, ( )var tε , from the observed futures 

prices and the intraday time-stamped S&P 500 record obtained from the CME. 

We rescale the index price tS  by the multiplicative factor 0100,000 / S  so that the 

index price at the beginning of each 30-day period is 100,000.  Accordingly, we rescale the 

futures price, index futures option price, and strike by the same multiplicative factor. 

We consider options maturing in 30 calendar days, which results in 247 sampling 

dates.17  Since the first maturity of serial options was in August 1987, the first 19 periods 

occur with quarterly periodicity.  Overall, we record 36,921 raw call quotes and 42,881 raw 

put quotes.  After eliminating obvious data errors, we apply the following filters: minimum 

15 cents for a bid quote and 25 cents for an ask quote; K/F ratio within 0.96-1.08 for calls 

and within 0.92-1.04 for puts; and matching the underlying futures quote within 15 seconds.  

Part of the data is lost due to the CME rule of flagging quotes, i.e. bids (asks) are flagged 

only if a bid (ask) is higher (lower) than the preceding bid (ask); in addition, no transaction 

data is flagged.  We recover a large part of the data by analyzing the sequence between 

consecutive bid-ask flags; however, this recovery is not possible in all cases.  As a result of 

the applied filters, we obtain 29,822 quotes for calls and 30,281 quotes for puts in our final 

                                                 
16 Recall that our goal is to compare the investment policies, of the index trader and the option trader.  
Since both policies stipulate approximately the same stock component, the effect of this component cancels 
each other out.  Also, it is a common empirical approach to derive the index value from the index futures; 
see, for example, Jackwerth and Rubinstein (1996). 
17 The 30-day rule eliminates the occurrence of the October crash from our sample.  Therefore, we use one 
40-day period to have the crash (the 248th observation) and verified that the inclusion of the crash does not 
alter our results. 
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sample.  These quantities translate into roughly 60 data points for all strikes for either bid or 

ask prices for an average day. 

 

Appendix B: Calibration of the index return tree 

We model the paths of the daily index return on a recombining tree with m branches 

emanating from each node.  Every month we calibrate the tree, including m, to match the 

2nd, 3rd and 4th moments of the daily index return distribution.  For the 3rd and 4th moments, 

we always use the observed sample moments over the 90 preceding calendar days. 

In the first step of our algorithm, we pick a value for the number of branches m and 

group the sample of daily returns in a histogram with m bins of equal length (on the log 

scale) such that the extreme bins are centered on the extreme observed returns.  The center 

of each bin then becomes a state in the equally spaced lattice, with the ordered states and the 

corresponding probabilities denoted respectively as ix  and ip , 1...i m= .  In the second step, 

we impose the desired first three moments by altering the lattice from the step one.  We 

derive the adjustments by solving the following set of three non-linear equations that are 

simply three moment conditions for the quantities a, b, and c: 
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where ( )exp μ  and 2σ  are the first and second target moments, respectively, 3μ̂  is the 
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first indicator function ensures that the constant c is added only to the probabilities in the 

right tail of the distribution; the second one ensures that the constant c is added only to the 

positive probabilities.18,19  Note that the affine transformation of the log-states ix  preserves 

the equal distance between the adjacent states, which is necessary for the lattice to 

recombine. 

To match the fourth sample moment 4μ̂ , we resort to varying m, the number of 

nodes in the lattice.  With each new m the initial distribution derived from a histogram 

changes providing some variability in the fourth moment after the adjustments resulting 

from solving (B.1).  After a search over a range of m’s, we pick this distribution which has 

the lowest absolute difference between its kurtosis and the sample kurtosis 4μ̂ .  It turns out 

that this search procedure ends up with acceptably small errors in matching 4μ̂  for the data 

that we use.  For the four volatility prediction modes we apply in our work, the relative error 

on the fourth moment had the following characteristics:  median 0.003%, 99th percentile 

0.105%, maximum 1.659% across 973 observations while we constrained the lattice size m 

to be no larger than 201.20 

Instead of using a histogram in the first step above, we could start building our 

lattice by discretizing a kernel-smoothed distribution.  However, since the kernel smoothing 

would involve more parameter choices and would result in a significantly larger lattice size 

to attain accuracy similar to the one of our method, we retain a preference for the histogram 

approximation.21 

 

                                                 
18 By grouping the observation in the histogram as a rule we end up with states in our lattice that have zero 
probabilities.  We don’t investigate here the precise recombination pattern of a lattice with zero-probability 
states; we observe, however, that the number of zero-probability states remains relatively constant as the 
number of convolutions of the lattice with itself increases, resulting in a decreasing proportion of such 
states as the time period increases. 
19 Note that the presented adjustment of the probabilities in the right tail may not yield an admissible solution, 
i.e. we may end up with some negative probabilities.  If this is the case, we introduce an analogous adjustment 
in the left tail of the distribution.  
20 This lattice size appears unattractive to derive recursive conditional expectations.  However, the use of 
fast Fourier transforms results in a fairly short processing time.  See Cerny (2004). 
21 A critical parameter in the kernel density estimation is the kernel bandwidth.  In addition, since the 
density estimate of the log-returns covers the real line, the scope of the discretized distribution would need 
to be chosen. 
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Appendix C: Trading policy 

We consider calls with moneyness (K/S) within the range 0.96-1.08 and puts within the 

range 0.92-1.04.  If we observe n call bid prices violating the call upper bound, each with 

different strike price, the option trader writes 1/ n  calls of each type with the underlying 

futures corresponding to the index value of 0y .  The trader transfers the proceeds to the 

bond account: 0 1
/n

ii
x x C n

=
= +∑  and 0y y= . 

If we observe n put ask prices violating the put lower bound, each with different 

strike price, the option trader buys 1/ n  puts of each type and finances the purchase out of 

the bond account: 0 1
/n

ii
x x P n

=
= −∑  and 0y y= . 

However, when there is a violation of the upper put bound and the option trader 

writes puts, the trader also sells one futures contract for each written put.  The intuition for 

this policy may be gleaned from the observation that the combination of a written put and a 

short futures amounts to a synthetic short call.  In fact, the upper put bound in equation (3) is 

derived from the upper call bound in equation (2) through the observation that if we can 

write a put at a sufficiently high price we violate the upper call bound by writing a synthetic 

call.22 

Finally, when there is a violation of the lower call bound and the option trader buys 

calls, the trader also sells one futures contract for each purchased call.  The intuition is the 

same as above. 

The early exercise policy of a call is based on the function N in equation (2).  The 

early exercise policy of a put is based on the function M in equation (5).  However, 

whenever the option trader is short an option, each period we derive the functions N and M 

based on the forward-looking distribution of daily returns, i.e. these functions are derived 

under the empirical distribution of the daily index returns between the option trade and the 

option maturity.  Effectively, we endow the counterparty of the option trader with 

information on the 2nd, 3rd, and 4th moments of the forward distribution, while imposing the 

                                                 
22 In implementing the trading policy of either writing puts or buying calls, the option trader buys or sells a 
futures contract as well and this violates the assumption made in Section 1 that the option trader does not 
trade in futures.  Even when we relax the assumption on trading in futures, in practice, traders manage their 
portfolio by trading in the index because of the inconvenience and cost of the frequent rolling over of short-
term futures contracts and the illiquidity of long-term futures and forward contracts. 
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first moment.  The early exercise policy of a call or put is simplified by the observation that 

the decision is a function only of time and the ratio of the strike price to the index level. 

 

Appendix D: The Sharpe ratio and the Davidson-Duclos (2000, 2006) tests 

For the Sharpe ratio tests, we use the approach of Jobson and Korkie (1981) with the 

Memmel (2003) correction that accounts for different variances of the two portfolios.  

Specifically, given the sample of N realizations of the index trader’s (IT) and option trader’s 

(OT) portfolio outcomes with ˆOTμ , ˆ ITμ , 2ˆ OTσ , 2ˆ ITσ , ,ˆ IT OTσ  as their estimated excess means, 

variances, and covariances, we test the hypothesis 0 ˆ ˆ ˆ ˆ: 0OT IT IT OTH μ σ μ σ− ≤  with the test 

statistic ẑ , which is asymptotically standard normal: 
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DD (2000) provide a test of the null hypothesis 0 : 2H OT IT  in terms of the 

maximal and minimal values of the extremal test statistic, ( )T z .  The null is not rejected, if 

the maximal value of the statistic is positive and statistically significant and the minimal 

value of the statistic is either positive or negative and statistically not significant. 

The variable z denotes the logarithm of end-of-the-month wealth of a trader, where 

the subscripts IT and OT distinguish between the index trader and the option trader.  The 

statistic ( )T z  is defined as follows: 
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The maximal and minimal values of the statistic are calculated as a maximum and minimum 

of (D.3) over a set of points of z as explained below.  Stoline and Ury (1979) provide tables 

for the distribution of the maximal and minimal value of ˆ( )T z , which is not standard at the 

levels 1, 5 and, 10%.  In principle, the number of points in this joint support over which the 

test may be performed needs to be restricted since a ‘large’ number of these points violates 

the independence assumption between the ˆ( )T z s,.  Therefore, we compute these statistics 

for 20 points equally spaced in the log-transformed joint support of ITW  and OTW , which 

corresponds to k = 20 in the Stoline and Ury (1979) tables. 

DD (2006) provide a test of the null hypothesis 0 :  2H OT IT/ .  The test statistic is 

the same as in DD (2000), except that instead of the extremal T-statistic we are now 

interested in the minimal T-statistic.  This statistic is computed for the values of z that are 

sample points within the restricted interval, i.e. in this interval we have coupled log-

transformed observations of ITW  and OTW .  As opposed to the DD (2000) test, there is no 

restriction on the number of these points and we compute the minimal value of ˆ( )T z , in the 

restricted interval.23  If the minimal value is negative, the null of non-dominance is accepted.  

Otherwise, there exists a bootstrap approach for the derivation of the p-values for the null 

                                                 
23 It may be shown that ( )T z  is monotonic between the sample points; therefore the minimal value of 
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hypothesis, which is described in detail in DD (2006) and Davidson (2007).  In our tests, we 

use 999 bootstrap replications in order to derive the p-values in the tables. 

There is a cost in adopting the DD (2006) null, because, as it can be analytically 

shown, this null cannot be rejected over the entire support of the sample distribution.  DD 

(2006) overcame this problem by restricting the interval over which the null may be rejected 

to the interior of the support, excluding points at the edges.  They then showed by simulation 

that inferences on the basis of this restricted interval constitute the most powerful available 

inference on the existence of stochastic dominance.  We follow their suggestion on the 

method for restricting the interval, which we also test on simulated data.24 

 

Appendix E: Conditional versus unconditional tests 

For each time point of our sample we generate artificially samples of stock return paths 

drawn from a bootstrapped distribution constructed from the (approximately 22) observed 

daily stock returns till option expiration for each one of the 247 dates t=1,…, 247 in our data 

period.  Such a distribution represents the information that the trader would have used to 

estimate the bounds had she been able to observe it.  For each stock return path of the 

bootstrap we then compute the wealth indices for OT and IT , OTW  and ITW , and generate 

two distributions of these quantities at each date in our period and for each method of 

estimating the bounds; recall that all these estimation methods use only quantities that can 

be observed by the trader before adopting her option position.  Hence, evidence that the 

returns of the option trader dominate the returns of the index trader for “most” of the time 

points of our sample validates the use of the observable distribution for estimating the 

bounds in lieu of the unobservable distribution of the actual stock return paths. 

Since these bootstrapped samples are large, we can treat the samples as the entire 

populations, applying a direct stochastic dominance test based on the integral condition that 

defines stochastic dominance.25  This integral condition takes the following form, for 

,  J OT IT=  and for z denoting the lower limit of the joint support of the two distributions  

 

                                                                                                                                                 
( )T z  may be found only at a sample point. 

24 Details on the restrictions of the test interval are available from the authors on request. 
25 See, for instance, Hanoch and Levy (1969).  Condition (9) can be easily shown, through integration by 
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( )2 2 2( ) ( ) 0,   where ( ) ( )
z
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In the particular case in which we observe the paired wealth levels OTW  and ITW from a 

sample of size N with values ,   1,..., ,   ,JiW i N J OT IT= =  the test statistic 2 ( )JD z becomes 

 

( )2

1

1( )
N

J Ji
i

D z z W
N +

=

= −∑     (E.2) 

 

For the bootstrapped distribution, we calculate the SD2 test statistic from (E.1)-(E.2) 

for the hypothesis 0 2: t tH OT IT   t=1,…, 247 as above and decide on acceptance/rejection 

at a chosen significance level α (say 5%).  Next, we set the variable Zt  to equal one if 

0  false}Prob{H α≤ , and zero otherwise.  The hypothesis Pr ob{ } 0.5t tOT IT >  for any 

t, against the alternative 2Pr ob{ } 0.5t tOT IT ≤  for any t, is accepted if 248

1 tZ β≥∑ , 

where β is chosen according to the desired significance level from the binomial distribution 

with probability p = ½ . 

In Table 9, panel A, we present the results of these conditional tests.  The upper 

panel tests the hypothesis Pr ob{ } 0.5t tOT IT >  for the observed option bid prices that 

violate the call and put upper bounds in equations (1)-(4) under the same conditions as Table 

2.  The results are strongly supportive of the null hypothesis in all but one case for which 

there are too few observations, and are in full agreement with the results of the 

unconditional test of Table 2.  Similar results also hold for the options that violate the option 

upper bounds under the conditions of Table 3, with the basis risk set equal to 0.26 

In Table 9, panel B, we present the results of tests of the hypothesis 

Pr ob{ } 0.5t tOT IT >  for the artificial set of options written at the upper bounds of the call 

and put options, as in the upper panel of Table 6.  Again, the results are strongly supportive 

of the null hypothesis in all cases, with the observed probabilities Pr ob{ }t tOT IT greater 

                                                                                                                                                 
parts, to be equivalent to the better-known form of the integral condition used in most SD studies. 
26 The results are available from the authors on request. 
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than 65% in all but one case and always significantly greater than 50%.27  Hence, 

conditional and unconditional tests agree here as well.  Similar results (available upon 

request) establish the validity of the hypothesis Pr ob{ } 0.5t tOT IT >  for call options 

purchased at the lower bound of equation (6), while for put options purchased at the lower 

bound of equations (4) and (5) the hypothesis is verified in all cases except for / 0.98K F < , 

again as in the unconditional tests. 

                                                 
27 Similar, although slightly weaker, results also hold for the option upper bounds for the case where there 
is no basis risk in computing the bounds.  
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Table 1 

Prediction Error of Monthly Volatility, 1983-2006 
 

Prediction mode Mean Median St. dev. Skew. Ex. Kurt. 
Unconditional 0.0429 0.0649 0.0680 -1.7300 3.8296 

90-day 0.0095 0.0076 0.0595 0.2687 5.2490 
Adjusted IV -0.0005 0.0002 0.0496 -0.2625 3.4680 

GARCH 0.0177 0.0185 0.0531 0.0936 7.8302 
 

The errors are defined as the difference between the monthly volatility and the volatility predicted by a given 

mode. The unconditional volatility is the sample standard deviation over the period January 1928 to January 

1983.  The 90-day volatility is the sample standard deviation over the preceding 90 trading days.  The adjusted 

IV is the ATM IV on the preceding day, adjusted by the mean prediction error for all dates preceding the given 

date, where we drop from the preceding days all 21 pre-crash observations.  The GARCH volatility is the 

volatility using GARCH coefficients estimated for S&P 500 daily returns over January 1928 to January 1983 

and applied to residuals observed over the 90 days preceding each sample date to form projections of the 

volatility realized till the option expiry date. 
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Table 2 
Returns of Options Trader and Index Trader 

 

Volatility 
prediction 

mode 

# months 
with viol. 

(# months) 

ˆ ˆ

ˆ ˆ
OT IT

OT IT

μ μ

σ σ
−  

DD (2000) p-value DD (2006) 
p-value 

0 2:H OT IT/  
0 2:H OT IT  0 2:H IT OT  

 
A: Call Upper Bound 

Unconditional 43 (247) 0.090 >0.1 <0.01 0 
90-day 101 (247) 0.062 >0.1 <0.01 0 

Adjusted IV 120 (226) 0.086* >0.1 <0.01 0 
GARCH 65 (247) 0.093 >0.1 <0.01 0 

 
B: Put Upper Bound 

Unconditional 23 (247) 0.128* >0.1 >0.1 0 
90-day 16 (247) 0.007 >0.1 >0.1 0.078 

Adjusted IV 4 (226) n/a n/a n/a n/a 
GARCH 9 (247) n/a n/a n/a n/a 

 
C: Put Upper Bound Implied by Call Upper Bound 

Unconditional 39 (247) 0.074 >0.1 <0.05 0 
90-day 68 (247) 0.062 >0.1 <0.01 0 

Adjusted IV 74 (226) 0.152** >0.1 <0.01 0 
GARCH 49 (247) 0.141** >0.1 <0.01 0 

 
Equally weighted average of all violating options equivalent to one option per share is traded at each date.  The 
approach of Jobson and Korkie (1981) with the Memmel (2003) correction is used to test the difference in 
Sharpe ratios of the OT and IT traders.  The symbols * and ** denote a difference in the Sharpe ratios significant 
at the 10% and 5% levels, respectively, in a one-sided test.  P-values for the Davidson-Duclos (2006) test are 
based on 999 bootstrap trials.  The p-values of 0 2:H IT OT/  are equal to one and are not reported here.  
Maximal t-statistics for Davidson-Duclos (DD, 2000) test are compared to critical values of Studentized 
Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal levels of 1, 5, and 10% 
with k = 20 and ν = ∞ . 
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Table 3 

 
A: Returns of Straddles Trader and Index Trader 

Volatility 
prediction 

mode 

# months 
with viol. 
(#months) 

ˆ ˆ

ˆ ˆ
OT IT

OT IT

μ μ

σ σ
−  DD (2000) p-value DD (2006) 

p-value 

0 2:H OT IT/  Straddle Call Put 0 2:H OT IT  0 2:H IT OT  

Unconditional 34 (247) 0.270*** 0.179** 0.204** >0.1 >0.1 0.032 
90-day 66 (247) 0.178** 0.077 0.112* >0.1 >0.1 0.001 

Adjusted IV 73 (226) 0.357*** 0.202** 0.227*** >0.1 <0.05 0.003 
GARCH 41 (247) 0.365*** 0.177** 0.211*** >0.1 >0.1 0.028 

 
 

B: Returns of Strangles Trader and Index Trader 

Volatility 
prediction 

mode 

# months 
with viol. 
(#months) 

ˆ ˆ

ˆ ˆ
OT IT

OT IT

μ μ

σ σ
−  DD (2000) p-value DD (2006) 

p-value 

0 2:H OT IT/  Straddle Call Put 0 2:H OT IT  0 2:H IT OT  

Unconditional 40 (247) 0.346*** 0.153** 0.265*** >0.1 >0.1 0.010 
90-day 81 (247) 0.270*** 0.074 0.206*** >0.1 <0.05 0.000 

Adjusted IV 92 (226) 0.400*** 0.165** 0.324*** >0.1 <0.05 0.003 
GARCH 56 (247) 0.389*** 0.141** 0.271*** >0.1 >0.1 0.007 

 
Equally weighted average of all violating options equivalent to one call and one put per share was traded at 
each date.  Trades were executed whenever there was a call violating the upper bound and a put traded at the 
same strike for the same date.  Equally weighted average of all violating options equivalent to one option per 
share is traded at each date.  The approach of Jobson and Korkie (1981) with the Memmel (2003) correction is 
used to test the difference in Sharpe ratios of the OT and IT traders.  The symbols *, ** and *** denote a 
difference in the Sharpe ratios significant at the 10%, 5% and 1% level, respectively.  P-values for the 
Davidson-Duclos (2006) test are based on 999 bootstrap trials.  The p-values of 0 2:H IT OT/  are equal to one 
and are not reported here.  Maximal t-statistics for Davidson-Duclos (DD, 2000) test are compared to critical 
values of Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal 
levels of 1, 5, and 10% with k = 20 and ν = ∞ .  
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Table 4 
Returns of Options Trader and Index Trader—without Futures Basis Risk 

 

Volatility 
prediction 

mode 

# months 
with viol. 
(#months) 

ˆ ˆ

ˆ ˆ
OT IT

OT IT

μ μ

σ σ
−  

DD (2000) p-value DD (2006) 
p-value 

0 2:H OT IT/  
0 2:H OT IT 0 2:H IT OT

 
A: Call Upper Bound 

Unconditional 68 (247) 0.045 >0.1 <0.01 0 
90-day 157 (247) 0.078* >0.1 <0.01 0 

Adjusted IV 195 (226) 0.084** >0.1 <0.01 0 
GARCH 112 (247) 0.100* >0.1 <0.01 0 

 
B: Put Upper Bound 

Unconditional 36 (247) 0.050 >0.1 <0.05 0 
90-day 52 (247) 0.051 >0.1 <0.01 0 

Adjusted IV 64 (226) 0.074 >0.1 <0.01 0 
GARCH 38 (247) 0.101* >0.1 <0.01 0 

 
The table differs from Table 2 only in that the basis risk is set at zero, 0ε = , instead of bounding the risk by 

0.5ε = .  Equally weighted average of all violating options equivalent to one option per share is traded at each 
date.  The approach of Jobson and Korkie (1981) with the Memmel (2003) correction is used to test the 
difference in Sharpe ratios of the OT and IT traders.  The symbols * and ** denote a difference in the Sharpe 
ratios significant at the 10% and 5% level, respectively, in a one-sided test.  P-values for the Davidson-Duclos 
(2006) test are based on 999 bootstrap trials.  The p-values of 0 2:H IT OT/  are equal to one and are not reported 
here.  Maximal t-statistics for Davidson-Duclos (DD, 2000) test are compared to critical values of Studentized 
Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal levels of 1, 5, and 10% 
with k = 20 and ν = ∞ . 
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Table 5 
Returns of Straddles Trader and Index Trader—without Futures Basis Risk 

 

Volatility 
prediction 

mode 

# months 
with viol. 
(#months) 

ˆ ˆ

ˆ ˆ
OT IT

OT IT

μ μ

σ σ
−  DD (2000) p-value DD (2006) 

p-value 

0 2:H OT IT/  Straddle Call Put 0 2:H OT IT  0 2:H IT OT  

Unconditional 50 (247) 0.187** 0.117* 0.143** >0.1 >0.1 0.020 
90-day 132 (247) 0.178** 0.093* 0.116** >0.1 <0.01 0 

Adjusted IV 166 (226) 0.230** 0.184*** 0.208*** >0.1 <0.01 0 
GARCH 99 (247) 0.315*** 0.190*** 0.235*** >0.1 <0.1 0 

 
The table differs from Table 3 only in that the basis risk is set at zero, 0ε = , instead of bounding the risk by 

0.5ε = .  Equally weighted average of all violating options equivalent to one call and one put per share was 
traded at each date.  Trades were executed whenever there was a call violating the upper bound and a put traded 
at the same strike for the same date.  Equally weighted average of all violating options equivalent to one option 
per share is traded at each date.  The approach of Jobson and Korkie (1981) with the Memmel (2003) correction 
is used to test the difference in Sharpe ratios of the OT and IT traders.  The symbols * ,** and *** denote a 
difference in the Sharpe ratios significant at the 10%, 5% and 1% level, respectively.  P-values for the 
Davidson-Duclos (2006) test are based on 999 bootstrap trials.  The p-values of 0 2:H IT OT/  are equal to one 
and are not reported here.  Maximal t-statistics for Davidson-Duclos (DD, 2000) test are compared to critical 
values of Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal 
levels of 1, 5, and 10% with k = 20 and ν = ∞ . 
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Table 6 
Returns of Options Trader and Index Trader—with Risk Aversion Coefficient 10 

 

Volatility 
prediction 

mode 

# months 
with viol. 
(#months) 

ˆ ˆ

ˆ ˆ
OT IT

OT IT

μ μ

σ σ
−  

DD (2000) p-value DD (2006) 
p-value 

0 2:H OT IT/  
0 2:H OT IT 0 2:H IT OT

 
A: Call Upper Bound 

Unconditional 43 (247) 0.184* >0.1 <0.01 0 
90-day 101 (247) 0.161 >0.1 <0.01 0 

Adjusted IV 120 (226) 0.222 >0.1 <0.01 0 
GARCH 65 (247) 0.178 >0.1 <0.01 0 

 
B: Put Upper Bound 

Unconditional 23 (247) 0.231 >0.1 >0.1 0.010 
90-day 16 (247) 0.062 >0.1 >0.1 0.094 

Adjusted IV 4 (226) n/a n/a n/a n/a 
GARCH 9 (247) n/a n/a n/a n/a 

 
The table differs from Table 2 only in that the risk aversion coefficient is set to 10, instead of 2.  Equally 
weighted average of all violating options equivalent to one option per share is traded at each date.  The 
approach of Jobson and Korkie (1981) with the Memmel (2003) correction is used to test the difference in 
Sharpe ratios of the OT and IT traders.  The symbol * denotes a difference in the Sharpe ratios significant at the 
10% level in a one-sided test.  P-values for the Davidson-Duclos (2006) test are based on 999 bootstrap trials.  
The p-values of 0 2:H IT OT/  are equal to one and are not reported here.  Maximal t-statistics for Davidson-
Duclos (DD, 2000) test are compared to critical values of Studentized Maximum Modulus Distribution 
tabulated in Stoline and Ury (1979) for three nominal levels of 1, 5, and 10% with k = 20 and ν = ∞ . 
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Table 7 
Returns of Options Trader and Index Trader—with Equity Risk Premium 6% 

 

Volatility 
prediction 

mode 

# months 
with viol. 
(#months) 

ˆ ˆ

ˆ ˆ
OT IT

OT IT

μ μ

σ σ
−  

DD (2000) p-value DD (2006) 
p-value 

0 2:H OT IT/  
0 2:H OT IT 0 2:H IT OT

 
A: Call Upper Bound 

Unconditional 38 (247) 0.068 >0.1 <0.01 0 
90-day 86 (247) 0.045 >0.1 <0.01 0 

Adjusted IV 96 (226) 0.068 >0.1 <0.01 0 
GARCH 58 (247) 0.083 >0.1 <0.01 0 

 
B: Put Upper Bound 

Unconditional 23 (247) 0.117* >0.1 >0.1 0 
90-day 11 (247) 0.008 >0.1 >0.1 0.252 

Adjusted IV 3 (226) n/a n/a n/a n/a 
GARCH 6 (247) n/a n/a n/a n/a 

 
The table differs from Table 2 only in that the risk premium is set to 6%, instead of 4%.  Equally weighted 
average of all violating options equivalent to one option per share is traded at each date.  The approach of 
Jobson and Korkie (1981) with the Memmel (2003) correction is used to test the difference in Sharpe ratios of 
the OT and IT traders.  The symbol * denotes a difference in the Sharpe ratios significant at the 10% level in a 
one-sided test.  P-values for the Davidson-Duclos (2006) test are based on 999 bootstrap trials.  The p-values of 

0 2:H IT OT/  are equal to one and are not reported here.  Maximal t-statistics for Davidson-Duclos (DD, 2000) 
test are compared to critical values of Studentized Maximum Modulus Distribution tabulated in Stoline and Ury 
(1979) for three nominal levels of 1, 5, and 10% with k = 20 and ν = ∞ . 
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Table 8 
Returns of Options Trader and Index Trader—without the Crash Period 

 

Volatility 
prediction 

mode 

# months 
with viol. 
(#months) 

ˆ ˆ

ˆ ˆ
OT IT

OT IT

μ μ

σ σ
−  

DD (2000) p-value DD (2006) 
p-value 

0 2:H OT IT/  
0 2:H OT IT 0 2:H IT OT

 
A: Call Upper Bound 

Unconditional 38 (241) 0.066 >0.1 <0.01 0 
90-day 100 (241) 0.074 >0.1 <0.01 0 

Adjusted IV 119 (220) 0.081 >0.1 <0.01 0 
GARCH 61 (241) 0.082 >0.1 <0.01 0 

 
B: Put Upper Bound 

Unconditional 19 (241) 0.085 >0.1 >0.1 0.081 
90-day 16 (241) 0.007 >0.1 >0.1 0.078 

Adjusted IV 4 (220) n/a n/a n/a n/a 
GARCH 9 (241) n/a n/a n/a n/a 

 
This table differs from Table 2 only in that the seven observations which include the date of the October crash 
and the following six months were excluded.  Equally weighted average of all violating options equivalent to 
one option per share is traded at each date.  The approach of Jobson and Korkie (1981) with the Memmel 
(2003) correction is used to test the difference in Sharpe ratios of the OT and IT traders.  The symbol * denotes a 
difference in the Sharpe ratios significant at the 10% level in a one-sided test.  P-values for the Davidson-
Duclos (2006) test are based on 999 bootstrap trials.  The p-values of 0 2:H IT OT/  are equal to one and are not 
reported here.  Maximal t-statistics for Davidson-Duclos (DD, 2000) test are compared to critical values of 
Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal levels of 1, 
5, and 10% with k = 20 and ν = ∞ . 
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Table 9 
Returns of Options Trader and Index Trader—Non-Stationary Distribution 

 
Panel A: Observed Option Prices 

Volatility prediction 
mode 

Call Upper Bound Put Upper Bound 

# months with 
viol. (# months) 

Proportion 

2OT IT  
# months with 

viol. (# months) 
Proportion 

2OT IT  
Unconditional 43 (247) 0.609** 23 (247) 0.890*** 

90-day 101 (247) 0.634*** 16 (247) 0.806*** 

Adjusted IV 120 (226) 0.649*** 4 (226) n/a 
GARCH 65 (247) 0.608** 9 (247) n/a 

 
Panel B: Option Prices on the Bounds 

Volatility prediction 
mode 

Call Upper Bound 
Proportion  2OT IT  

Put Upper Bound 
Proportion  2OT IT  

Unconditional 0.869*** 0.949*** 

90-day 0.813*** 0.969*** 

Adjusted IV 0.799*** 0.958*** 
GARCH 0.856*** 0.978*** 

 
This table shows the proportion of stochastic dominance tests in which the conditional bootstrapped distribution 
of the option trader’s wealth dominated that of the index trader, as described in Appendix E.  In panel A, the set 
of mispriced options is the same as in Table 2.  In Panel B, the options are written with a price equal to the 
corresponding bound.  The significance levels are for a binomial sign test that the indicated proportion exceeds 
50%.  The symbols ** and *** indicate significance respectively at 5% or better and 1% or better. 
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Table 10 

Returns of Naïve Trader and Index Trader 
 

Trade type 
# months 
with viol. 

(# months) 

ˆ ˆ

ˆ ˆ
OT IT

OT IT

μ μ

σ σ
−  

DD (2000) p-value DD (2006) 
p-value 

0 2:H OT IT/  
0 2:H OT IT 0 2:H IT OT

 
A: 90th or 10th Critical Quantile 

Short call 58 (243) 0.097 >0.1 <0.01 0 
Short put 67 (243) 0.186** >0.1 <0.01 0 
Long call 73 (243) -0.229*** >0.1 >0.1 0.153 
Long put 95 (243) -0.039 >0.1 >0.1 0.150 

 
B: 97th.5 or 2nd.5 Critical Quantile 

Short call 32 (243) 0.156** >0.1 <0.01 0 
Short put 36 (243) 0.215*** >0.1 <0.05 0 
Long call 27 (243) -0.080 >0.1 >0.1 0.222 
Long put 45 (243) 0.059 >0.1 >0.1 0.101 

 
Equally weighted average of all violating options equivalent to one option per share is traded at each date.  The 
approach of Jobson and Korkie (1981) with the Memmel (2003) correction is used to test the difference in 
Sharpe ratios of the OT and IT traders.  The symbols ** and *** denote a difference in the Sharpe ratios 
significant at the 5% and 1% level, respectively, in a one-sided test.  P-values for the Davidson-Duclos (2006) 
test are based on 999 bootstrap trials.  The p-values of 0 2:H IT OT/  are equal to one and are not reported here.  
Maximal t-statistics for Davidson-Duclos (DD, 2000) test are compared to critical values of Studentized 
Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal levels of 1, 5, and 10% 
with k = 20 and ν = ∞ . 
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Figure 1: Illustration of Upper and Lower Bounds on Call and Put Options 

 
Bound were derived for σ = 0.20 imposed on a 90-day distribution for a date in our sample.  95% CI were 
derived by bootstrapping the 90-day distribution and exemplify the bounds dependence on the third and fourth 
distribution moments. 
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 Figure 1: Time Distribution of Observed Violations 

 
The figure displays the violations of the call upper and put lower bounds against 247 dates with app. monthly 
periodicity for the period February 1983-July 2006.  For the adjusted IV distributions, the first 21 dates are not 
in the sample.  The line across the plot is the natural logarithm of the S&P 500 index. 
 


