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Abstract

A class of semiparametric fractional autoregressive GARCH models (SEMIFAR-

GARCH), which includes deterministic trends, difference stationarity and station-

arity with short- and long-range dependence, and heteroskedastic model errors, is

very powerful for modelling financial time series. This paper discusses the model

fitting, including an efficient algorithm and parameter estimation of GARCH error

term. So that the model can be applied in practice. We then illustrate the model

and estimation methods with a few of different finance data sets.

Keywords: Financial time series, GARCH model, SEMIFAR model, parameter estimation, kernel

estimation, asymptotic property.

1 Introduction

For some financial time series, several “trend generating” mechanisms may occur simultaneously.

Semiparametric fractional autoregressive models (SEMIFAR) (Beran and Feng, 2002a, 2002b)

has been introduced for modelling different components in the mean function of a financial time

series simultaneously, such as nonparametric trends, stochastic nonstationarity, short- and long-

range dependence as well as antipersistence. Let d ∈ (−0.5, 0.5) be the fractional differencing

parameter, m ∈ {0, 1} be the integer differencing parameter, B be the backshift operator,

φ(B) = 1 − φ1B − · · · − φpB
p and ψ(B) = 1 + ψ1B + · · · + ψqB

q be polynomials in B with no
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common factors and all roots outside the unit circle, and ǫt be while noise, then SEMIFAR can

be defined as

φ(B)(1 −B)d{(1 −B)mYt − g(xt)} = ψ(B)ǫt.

SEMIFAR includes ARIMA (p,m, 0) model and the fractional autogressive process (Hosking,

1981, Granger and Joyeux, 1980). However, the assumption of while noise on ǫ of SEMIFAR

ignores possible heteroskedasticity of financial time series. Often financial time series exhibit

conditional heteroskedasticity, i.e. the volatility (or conditional variance) of a financial process

often depends on the past information but the mean may not. Well known models for modelling

conditional heteroskedasticity are the autoregressive conditional heteroskedastic (ARCH, Engle,

1982) and generalized ARCH (GARCH, Bollerslev, 1986) models. Since then many extensions

of the ARCH and GARCH models are introduced into the literature. Engle, Lilien and Robins

(1987) extended the ARCH model to the ARCH in mean (or ARCH-M) model, where the

conditional standard deviation also effects the mean of the observations. The ARCH-M model

can be analogously generalized to a GARCH-M model. Another well known extension of the

GARCH model is the exponential GARCH (EGARCH) introduced Nelson (1991), where the

GARCH property is defined for the log-transformation of the volatility. A FARIMA-GARCH

model to model long memory in the mean and conditional heteroskedasticity in the volatility is

introduced by Ling and Li (1997).

However, there is little research on SEMIFAR-GARCH model except Beran and Feng (2001)

which describes the model and derives the asymptotic normality of trend term estimation only.

Some important problems for the practical implementation of this model, e.g., estimation of the

unknown parameters and the development of a data-driven algorithm, were not discussed. In

this paper we provide a full implementation of a SEMIFAR-GARCH model for financial time

series. We will extend the SEMIFAR model to a SEMIFAR-GARCH model, which is the same

as SEMIFAR model but under the additional assumption that the innovation process {ǫi} fol-

lows a GARCH model. Section 2 describes the SEMIFAR-GARCH model, which extends the

FARIMA-GARCH model. Stochastic nonstationarity is also considered in the model. Section

3 designs a three-stage fitting algorithm for the SEMIFAR-GARCH mode. Section 4 discusses

the asymptotic normality and consistency of the model functionals and parameters estimation.

Section 5 provides an comprehensive algorithm for SEMIFAR-GARCH model. Section 6 illus-

trate the model and estimation methods by the analysis of three different finance data sets and

examples. Section 7 concludes the paper.
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2 The Model

In the following, the notation SEMIFAR also stands for a slight generalization of the SEMIFAR

model with an additional MA (moving average) component in the short-range dependence part.

Similarly to the SEMIFAR model, the SEMIFAR-GARCH model is defined by

φ(B)(1 −B)d{(1 −B)mYt − g(xt)} = ψ(B)ǫt (2.1)

with

ǫt = zth
1
2
t , ht = α0 +

r
∑

i=1

αiǫ
2
t−i +

s
∑

j=1

βjht−j , (2.2)

where d ∈ (−0.5, 0.5) is the fractional differencing parameter, m ∈ {0, 1} is the integer differ-

encing parameter, xt = t/n is the re-scaled time, g : [0, 1] → ℜ is a smooth function, zt are

i.i.d. standard normal random variables, α0 > 0, α1, ..., αr, β1, ..., βs ≥ 0, d ∈ (−0.5, 0.5), B is

the backshift operator, φ(B) = 1 − φ1B − · · · − φpB
p and ψ(B) = 1 + ψ1B + · · · + ψqB

q are

polynomials in B with no common factors and all roots outside the unit circle. The fractional

differencing operator (1 − B)d is the same as defined before. For m = 0, model (2.1) and (2.2)

may be thought of as an extension of model (7) and (8) in Ling and Li (1997) by replacing the

constant mean with a nonparametric trend function.

As in the SEMIFAR model, the two differencing parameters m and d may be summarized

in one parameter δ = m+ d. The innovation process defined in (2.2) follows a GARCH model

(Bollerslev, 1986). It is assumed that
∑r

j=1 αj +
∑s

j=1 βj < 1, which ensures that there exists

a strictly and second order stationary solution ǫt of (2.2) with variance

σ2
ǫ = var (ǫt)

=
α0

1 −∑r
i=1 αi −

∑s
j=1 βj

(2.3)

(see Theorem 2 in Bollerslev, 1986).

For the derivation of the asymptotic properties it is further assumed that E(ǫ4i ) < ∞, which

implies the above condition
∑r

j=1 αj +
∑s

j=1 βj < 1. A necessary and sufficient condition which

guarantee the existence of the 2m-th moments for the special case of a GARCH(1, 1) model with

normal innovations zt was also found in Bollerslev (1986). Necessary and sufficient conditions

which guarantee the existence of higher order moments of a GARCH model in more general
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cases may be found in Ling and McAleer (2002) (see also Ling and Li 1997, Chen and An 1998

and He and Teräsvirta 1999a). Model (2.1) and (2.2) are a variety of the SEMIFAR model by

replacing the i.i.d. innovations there with the GARCH innovations defined in (2.2).

Denote by θ = (σ2
ǫ , δ, φ1, ..., φp, ψ1, ..., ψq , α0, α1, ..., αr, β1, ..., βs)

T = (ηT, λT)T the parameter

vector, where η = (σ2
ǫ , δ, φ1, ..., φp, ψ1, ..., ψq)

T is the parameter vector for the FARIMA part

of the process and λ = (α0, α1, ..., αr , β1, ..., βs)
T for the GARCH part. Also denote by θ∗ =

(σ2
ǫ , d, φ1, ..., φp, ψ1, ..., ψq , α0, α1, ..., αr , β1, ..., βs)

T and η∗ = (σ2
ǫ , d, φ1, ..., φp, ψ1, ..., ψq)

T, which

are the same as θ and η respectively but with δ being replaced by d. Denote the unknown

value of θ∗ by θ∗0 = (φ0
1, ..., φ

0
p, ψ

0
1 , ..., ψ

0
q , d

0, α0
0, α

0
1, ..., α

0
r , β

0
1 , ..., β

0
s )

T, which is assumed to be in

the interior of a compact set Θ∗. Note however, under model (2.1) and (2.2), σ2
ǫ is determined

by (2.3) and is hence not an independent unknown parameter. We aim to develop efficient

estimation for g (or its derivatives) and θ from the observations y1, ..., yn. This will be discussed

in details next section.

3 The Semiparametric Estimation Procedure

In this section we propose to estimate the SEMIFAR-GARCH model in three stages: Firstly,

estimate the trend function g nonparametrically; secondly, estimate the FARIMA parameter

vector η from the residuals; and thirdly, to estimate the GARCH parameter vector λ from the

inverted innovations obtained from the residuals by means of a FARIMA model with η̂. Under

the three steps, nonparametric estimators of g(ν), the ν-th derivatives of g, can also be carried

out after Step 2 by replacing the unknown parameter vector η with η̂.

This semiparametric estimation procedure is proposed based on the following lemmas.

Lemma 1. Assume that Yt is a stationary FARIMA-GARCH process as defined in Ling and

Li (1997), i.e. model (2.1) and (2.2) holds with m = 0 and g(x) ≡ µ, where µ is an unknown

constant. Assume further that var (ǫt) = E(ǫ2t ) = σ2
ǫ is an unknown constant and that E(ǫ4t ) <

∞. Then the asymptotic properties of the MLE of η are independent of the unknown GARCH

parameter vector λ.

Lemma 1 is a straightforward consequence of Theorem 3.2 of Ling and Li (1997). This lemma
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shows that η and λ can be estimated separately from the original data. Hence the FARIMA

parameters in the FARIMA-GARCH model can be estimated at first using a proper package

such as S+GARCH (e.g. the S-PLUS function arima.fracdiff). Let ĝ be the estimator of g, the

following lemma shows that the asymptotic properties of ĝ(x) are independent of λ.

Lemma 2. Assume that g(x) in (2.1) is at least (p+ 1)-times differentiable and that the other

conditions of Lemma 1 hold. Then the asymptotic properties of a local polynomial estimator of

g(ν) (ν ≤ p) are independent of the unknown GARCH parameter vector λ.

Lemma 2 is a consequence of the results in Theorems 5 and 6 of Beran and Feng (2001). See

also Theorem 2 below. Lemmas 1 and 2 together show that

Lemma 3. Let Yt be defined by (2.1) and (2.2) with the GARCH innovations such that var (ǫt) =

E(ǫ2t ) = σ2
ǫ and E(ǫ4t ) <∞. Assume that other regularity conditions on the FARIMA model, the

bandwidth and the smoothness of g hold. Then a SEMIFAR algorithm can be directly used for es-

timating g(ν) and η in the SEMIFAR-GARCH model without changing the asymptotic properties

of these estimators.

Assume that g is at least (p + 1)-times differentiable. Following Beran and Feng (2001), we

propose to estimate g with a p-th order local polynomial or a k-th order kernel method with

k = p+1. Detailed description on this approach may be found in that work and will be omitted

here to save space. The trend function can also be estimated following other nonparametric

approaches, e.g., smoothing splines. Note that the SEMIFAR-GARCH model may be rewritten

as a semiparametric regression model with the FARIMA-GARCH error process. Following (2.1)

and (2.2) we have, for m = 0

Yt = g(xt) + ξt, t = 1, ..., n, (3.1)

and for m = 1

Ut = g(xt) + ξt, t = 2, ..., n, (3.2)

where Ut = Yt − Yt−1, t = 2, ..., n, and

ξt = (1 −B)−dφ−1(B)ψ(B)ǫt (3.3)

is a FARIMA-GARCH process, where ǫt are the GARCH innovations as defined in (2.2).
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Let ĝ(xt) = ĝ(xt;m) denote the kernel estimator of g obtained from (3.1) or (3.2) form = 0 and

m = 1 respectively with the bandwidth h, where it is assumed that h→ 0, nh→ ∞ as n→ ∞.

Consider now ǫt as a function of η. For given p, q and a trial value of η = (d, φ1, ..., φp, ψ1, ..., ψq)
T,

where δ = m+ d. Denote by

et(η) =
t−m−2
∑

i=0

ai(η)[ci(η)Yt−i − ĝ(xt−i;m)] (3.4)

the (approximate) residuals. Although ǫt in the SEMIFAR-GARCH model is non-Gaussian, the

approximate maximum likelihood estimator proposed by Beran (1995) also applies under the

assumption E(ǫ4t ) < ∞, because now ǫt and ǫ2t − ht are both martingale-differences (see also

the results on the parameter estimation in the FARIMA-GARCH model given by Ling and Li,

1997). In this case the estimator is indeed a quasi maximum likelihood estimate. For given p

and q, η̂ is estimated from et by minimizing

Sn(η) =
1

n

n
∑

i=m+2

e2i (η) (3.5)

w.r.t. η̂. Let m̂ = [δ̂ + 0.5] and d̂ = δ̂ − m̂. This procedure can be carried out for p = 0, 1, ..., P

and q = 0, 1..., Q, where P and Q are the maximal orders of the AR and MA parts, which will

be considered here. Then p and q can be selected following the BIC rule

p̂ = arg min{BIC(p, q); p = 0, 1, ..., P}

and

q̂ = arg min{BIC(p, q); q = 0, 1, ..., Q},

where

BIC(p, q) = n log(σ̂2(p, q) + (log n)(p+ q), (3.6)

and σ̂2
ǫ is the estimate of var (ǫt) given by

σ̂2
ǫ =

1

n

n
∑

t=m+2

e2t (η̂). (3.7)

It is well known that p̂ and q̂ obtained in this way are consistent; see the details from Beran,

Bhansali and Ocker (1998).

Now, assume that η̂ is a consistent estimator of η, then the et(η̂) are approximations of the

unobservable GARCH innovations ǫt. The parameter vector λ can be estimated from et(η̂)
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following the standard maximum likelihood method for a GARCH model. Following Bollerslev

(1986), the (unobservable) conditional Gaussian log-likelihood function based on ǫt is given by

(ignoring constants)

L∗(λ) =
1

n

n
∑

t=1

lt, where lt = −1

2
ln(ht(ǫ;λ)) − ǫ2t

2ht(ǫ;λ)
. (3.8)

Denote by λ∗ the maximizer of L∗(λ). Note however that λ∗ is not available. Hence we define

the approximate log-likelihood function in the current context by

L̂(λ) =
1

n

n
∑

t=1

lt, where lt = −1

2
ln(ht(e(η̂);λ)) − e2t

2ht(e(η̂);λ)
, (3.9)

where η̂ is as defined above. Similar to the estimation of η̂, the proposed approximate MLE of λ

is λ̂, the maximizer of L̂(λ). The symbols ht(ǫ;λ) and ht(e(η̂);λ) are used to indicate that, for

given value of λ, these functions also depend on the innovations or their approximations. Given

et, λ̂ can be calculated using a standard package for estimating the GARCH model simply by

replacing ǫt with et. In this work the S+GARCH package will be used.

4 Asymptotic Results

The asymptotic behavior of ĝ(ν) under model (3.1) were studied by Beran and Feng (2001).

Part of the asymptotic results on ĝ(ν) are represented in the following. The analysis given in the

following involves infinite past history of Yt and ǫt. For simplicity, we assume that the presample

values of Yt and ǫt are zero, and choose the presample values of ht and ǫ2t to be
∑n

m+2 ê
2
t /n.

This simplification will not affect the asymptotic properties of the proposed estimators.

Theorem 1. Let Yi follow the semiparametric regression model (3.1), where the errors ξt are

generated by (3.3) with innovation process {ǫt} following the GARCH model (2.2), which is

assumed to be strictly stationary such that E(ǫ4t ) <∞. Let kernel K be a symmetric probability

density having compact support [-1 1]. ĝ(ν)(t) (ν ≤ p) is obtained by solving the locally weighted

least squares problem

Q =
n
∑

i=1

{

Yi −
p
∑

j=1

bj(ti − t)j
}2

K(
ti − t

b
).

Under the regularity conditions on continuity of g(ν), the following results hold.
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i) Let t = ch with 0 ≤ c ≤ 1. For all d ∈ (−0.5, 0.5), assume that nb(2k+1−2d)/(1−2d) → ∆2

as n→ ∞, for some ∆ > 0, then

(nb)1/2−dbν(ĝ(ν)(t) − g(ν)(t))
D−→ N(∆D,V (c, d)), (4.1)

where D = g(k)(t)βc

k! , and b is the bandwidth. V (c, d) = limn→∞Vn(c, δ, b) exists with

Vn(c, δ, b) = (nb)−1−2δ
n0+n1
∑

n0−nc

K(ν,k,c)(
ti − t

b
)K(ν,k,c)(

ti − t

b
) γ(i − j),

and K(ν,k,c) is the asymptotically equivalent boundary kernel for estimating g(ν) (Rupport

and Wand, 1994). βc =
∫

hjK(ν,j,c)(u)du.

ii) The asymptotically optimal bandwidth that minimizes the asymptotic MISE is given by

hA = CAn
(2d−1)/(2k+1−2d) (4.2)

with

CA =

[

2ν + 1 − 2d

2(k − ν)

[k!]2V

I(g(k))β2
(ν,k)

]1/(2k+1−2d)

, (4.3)

where it is assumed that I(g(k)) > 0 and V = V (1, d) = V (d) and β = βc with c = 1.

We now check that some sufficient conditions on the asymptotic normality are fulfilled. This

is ensured by the following lemma.

Lemma 4. Let ξt be generated by (3.3) with d ∈ (−0.5, 0.5). Assume that the innovation process

{ǫt} is generated by the GARCH model (2.2), which is strictly stationary such that E(ǫ4t ) <∞.

And assume further that φ(B) and ψ(B) have no common factors and all roots of them lie

outside of the unit circle. Then, for the sample mean ξ̄ of ξt, we have

n1/2−dξ̄
D→ N(0, V (d)),

where

V (d) = σ2
ǫ

|ψ(1)|2
|φ(1)|2

Γ(1 − 2d)

(2d + 1)

sin(πd)

πd
. (4.4)

Lemma 4 shows that the sample mean ξ̄ = 1
n

∑n
t=1 ξt of a FARIMA-GARCH process defined

in (3.3) is asymptotically normal, if E(ǫ4t ) < ∞, which extends the results of Theorem 8
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ii) in Hosking (1996) to nonstationary processes. Under the condition E(ǫ4t ) < ∞, we have
∑r

j=1 αj +
∑s

k=1 βk < 1 (see Lemma 2.2 in Chen and An 1998) and that ǫt is a square integrable

martingale-difference w.r.t (Ft, t ∈ {−∞, ...,−1, 0, 1, ...,∞}), where Ft is the σ-field generated

by the information in the past. And hence ǫt is an uncorrelated white noise. The autocovariance

function γξ(k) of the FARIMA-GARCH process ξt is given in Beran (1994). Furthermore, He

and Teräsvirta (1999a) showed that, under the condition E(ǫ4t ) < ∞, the autocorrelation func-

tion of the squared process ǫ2t decays exponentially. This is easy to understand, because now the

squared process ǫ2i is itself a second order stationary process having an ARMA representation

with all roots of its characteristic polynomials lying outside the unit circle. See equations (6) and

(7) in Bollerslev (1986). More detailed results on this topic may be found in He and Teräsvirta

(1999b) for second order GARCH models.

The asymptotic properties of the estimation of the FARIMA parameter vector η in the

SEMIFAR-GARCH model are the same as those of the corresponding parameter estimates in an

extended SEMIFAR model with a MA component in the short-range dependent part. Further

we could prove the consistency of m̂ as well as η̂,

Theorem 2. Assume that {ǫt} is a GARCH process defined by (2.2) with E(ǫ4t ) <∞ and that

the conditions of Theorem 1 hold. Then we have

i) m̂
p−→ m0, provided b = O(nα) with 0 < α < 1 such that (p + 1)α+ d > 0 and

ii)
√
n(η̂∗ − η0

∗)
D−→ N(0,Σ), if 0 < α < 1/2 such that (p+ 1)α + d > 1/4, where

Σ = 2D−1 (4.5)

is as defined in Theorem 1 in Beran (1995).

Theorem 2 shows that, under suitable conditions on the bandwidth and other regularity

conditions, η̂ is always
√
n-consistent. In this case the effect of η̂ on λ̂ is negligible. In the

following, we will assume that the stronger conditions on the bandwidth as stated in Theorem

2 ii) hold, so that the error in η̂ does not have any effect on λ̂. Under this condition, η̂ can be

simply replaced by the true unknown vector η0 to simplify the representation given below. We

define

ẽt(η
0) =

t−1
∑

i=0

ai(η
0)[(1 −B)m

0
Yt−i − g(xt−i)], (4.6)
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which are also not observable, because g is unobservable. Let

Ωλ = E

[

1

2h2
t (ẽ(η

0);λ)

∂ht(ẽ(η
0);λ)

∂λ

(

∂ht(ẽ(η
0);λ)

∂λ

)T
]

(4.7)

and Ω0, the value of Ωλ at λ = λ0, denote the information matrix. For the proposed approximate

MLE of the GARCH parameter vector, λ̂, we have

Theorem 3. Assume that the conditions of Theorem 2 ii) hold. Then we have

i) There exists a MLE λ̂ satisfying ∂L̂(λ)/∂λ = 0 and λ̂
p−→ λ0 as n→ ∞.

ii)
√
n(λ̂− λ0)

D−→ N(0,Ω−1
0 ), where Ω0 is as defined above.

Now, define

L̃(λ) =
1

n

n
∑

t=1

lt, where lt = −1

2
ln(ht(ẽ;λ)) − ẽ2t

2ht(ẽ;λ)
. (4.8)

Denote by λ̃ the maximizer of L̃(λ), which is again not available, since ẽt(η
0) are unknown.

Following the results in Ling and Li (1997), λ̃ is
√
n-consistent. Hence results given in Theorem

3 will hold, if we can show that λ̂ − λ̃ = op(n
−1/2). Note that the conditions on the GARCH

model ensure that λ0 is in the interior of a compact set Λ. To prove Theorem 3, we will introduce

the following lemmas, which are required to calculate the difference between λ̂ and λ̃.

Lemma 5. Under the assumptions of Theorem 3 we have

ht(e(η
0);λ) − ht(ẽ(η

0);λ)
.
= Op(e

2
t (η

0) − ẽ2t (η
0)) ∀λ ∈ Λ. (4.9)

Lemma 5 gives an interesting results for quantifying the order of magnitude of the difference

between the estimates of the conditional variance with the two approximations of the innovations,

ht(e(η
0);λ) − ht(ẽ(η

0);λ), which shows that this order is the same as that of (e2t (η
0) − ẽ2t (η

0)).

The following lemma extends the results of Lemma 5 to quantify the order of magnitude of

the difference between the first derivatives of ht obtained using the two different approximations

of ǫt, i.e. et and ẽt, respectively.
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Lemma 6. Under the assumptions of Theorem 3 we have, ∀λ ∈ Λ, the first element of

∂ht(e(η
0);λ)

∂λ
− ∂ht(ẽ(η

0);λ)

∂λ

is zero and the other elements of it are all of the order Op(e
2
t (η

0) − ẽ2t (η
0)).

5 Data-driven Algorithms

Based on the asymptotic results obtained in the last section the following algorithm in S-PLUS

is proposed for the practical implementation of the SEMIFAR-GARCH model.

1. Carry out one of the data-driven SEMIFAR algorithms, e.g., AlgB in Beran and Feng

(2002b), to the observations to obtain ĝ(xt) and η̂;

2. Calculate the residuals rt = yt − ĝ(xt) and invert rt using η̂t into ǫ̂t, the approximations

of ǫt;

3. For r = 0, 1, ..., rmax and s = 0, 1, ..., smax, estimate λ̂(r, s) using S+GARCH and calculate

BIC(r, s).

4. Choose the couple {r̂, ŝ} that minimizes the BIC. We obtain the fitted GARCH model.

Where the BIC will be used to select the orders of the GARCH model, while the definition

of the BIC in S+GARCH will be used, which is given by

BIC(r, s) = −2 log(maximized likelihood) + (log n)(r + s+ 2). (5.1)

Remark 1. The estimated parameter vectors for the FARIMA and the GARCH models are

asymptotically independent. In the case without a trend function, these two models can hence be

selected either separately or jointly. In the SEMIFAR-GARCH model it is however inconvenient,

if we want to select the two models at the same time. Hence they are selected separately.

It is easy to show that the results of Theorems 1 through 3 hold for ĝ(xt), η̂ and λ̂ obtained

following the above algorithm. Furthermore, all results on the selected bandwidth as given in
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theorems in Beran and Feng (2001) hold for the bandwidth selected following this algorithm,

since these results are independent of the GARCH parameter vector λ. Details on these results

will be omitted to save space. Simulation studies on this algorithm were also not carried out,

because the first step of this algorithm is exactly a SEMIFAR algorithm and the other steps are

simply a procedure for fitting a parametric GARCH model from the approximated innovations.

If for a data set it happens to be r̂ = 0 and ŝ = 0, then the fitted model reduces to a SEMIFAR

model.

6 Applications

In this section the proposal will be applied to modelling some well known financial time series.

For all examples log-transform of the original observations will be used. By doing this, the

residuals of the SEMIFAR model stand automatically for the (trend adjusted) log-returns. The

proposed algorithm is applied in this section to some data examples. For estimating the SEMI-

FAR model, the AlgB in Beran and Feng (2002b) is used. The trend is estimated by local linear

regression using the Epanechnikov kernel as weight function. For the short-memory part, only

an AR component is considered as in the original SEMIFAR model. The AR model is chosen

from p = 0, 1, ..., 5, and the GARCH model from r = 0, 1, 2 and s = 0, 1, 2, by means of the BIC.

Figure 1(a) shows that the log-transformation of the time series of the daily world copper

price from January 03, 1995 to September 30, 2003, downloads from the web site of the London

Metal Exchange. It is expected that the errors of such a price time series are antipersistent. The

selected order of the autoregressive part is p̂ = 0, i.e. there is no significant short-range depen-

dence in this time series. The fitted SEMIFAR results show that this time series is integrated

with a significant nonparametric drift (Figure 1(a)). And the residuals are significantly antiper-

sistent. Figure 1(b) shows the estimated innovations (ǫ̂t) obtained by inverting the residuals.

We can see that there is clear conditional heteroskedasticity in this series. Further calculations

show that all fitted GARCH models are strongly significant. A GARCH(1, 2) model with

ĥt = 1.082 · 10−5 + 0.1238ǫ̂2t−1 + 0.2507ĥt−1 + 0.5695ĥt−2 (6.1)

was selected following the BIC. The estimated conditional standard deviations (ĥ
1/2
t ) and the

standardized innovations (ẑt := ǫ̂t/ĥ
1/2
t ) are shown in Figures 1(c) and 1(d). The series in Figure
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Figure 1: The daily world copper price (log-scaled) and the trend (a), the inverted innovations

(b), the GARCH conditional SD (c), the standardized innovations (d) and acf’s of the squared,

nonstandard and standardized innovations (e and f).

1(d) is re-scaled with corresponding sample standard deviation so that it is comparable with

that shown in Figure 1(b). Figures 1(e) and 1(f) show the autocorrelations of the squared series

ǫ̂2t and ẑ2
t . We see that ǫ̂2t are clearly correlated but ẑ2

t are almost uncorrelated, which shows the

goodness of the fitted model.

The other two examples are the log-transformed series of the daily Standard and Poor 500

(S&P 500) Index from January 01, 1997 to August 23, 2000 and the series of the daily exchange

rates between Euro and US Dollar (Euro/USD) from January 04, 1999 to October 31, 2003. For

the S&P 500 series only observations in a relatively short time period are used to avoid possible

nonstationarity in the variance/covariance in this series. The fitted results show that both of

13



these two series, like for the first example, are integrated with a significant nonparametric trend.

The selected order of the autoregressive part is again p̂ = 0. The long-range dependence in the

third example is not significant and just slightly significant in the second example. For both

series, a GARCH(1, 1) model was selected from the estimated innovations. The fitted GARCH

conditional variance is

ĥt = 1.132 · 10−5 + 0.0948ǫ̂2t−1 + 0.8308ĥt−1 (6.2)

for the S&P 500 series, and

ĥt = 6.387 · 10−7 + 0.0196ǫ̂2t−1 + 0.9649ĥt−1 (6.3)

for the Euro series. Figures 2 and 3 show the same results as those given in Figure 1 for these

two examples respectively. From Figure 3 we see that the GARCH effect in the Euro series is

not clear. This means that the Euro/USD exchange rates can well be modelled by a SEMIFAR

model with no short- or long-range dependence but with a clearly significant, nonparametric

trend. Furthermore, it can be shown that the marginal distribution of the Euro/USD exchange

rates series is not far from a normal distribution.

The selected bandwidth ĥ, the estimates m̂, d̂ together with the 95%-confidence intervals of

them and other statistics are summarized in Table 1.

Table 1: Estimation results for all examples

Series ĥ m̂ d̂ & 95%-CI p̂ r̂ ŝ trend

Copper 0.1405 1 -0.0819 [-0.1146, -0.0492] 0 1 2 sign.

S&P 500 0.2592 1 -0.0590 [-0.1088, -0.0091] 0 1 1 sign.

Euro/USD 0.1279 1 -0.0007 [-0.0448, 0.0433] 0 1 1 sign.
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Figure 2: The same results as shown in Figure 1 but for the S&P 500 series.
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Figure 3: The same results as shown in Figure 1 but for the Euro/USD series.
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7 Conclusions

This paper extends the SEMIFAR model to a SEMIFAR-GARCH model, so that conditional

heteroskedasticity in financial time series can also be modelled by the SEMIFAR model. A

semiparametric estimation procedure is proposed. Asymptotic results on the SEMIFAR model

are extended to the current proposal. It is shown in particular that the same asymptotic results

obtained in Beran and Feng (2001) for the SEMIFAR model with i.i.d. normal innovations hold

for the SEMIFAR-GARCH model under the much weaker condition that the GARCH innovation

process has finite fourth moments. These theoretical results and the important property that

the estimates of the FARIMA and GARCH parameter vectors are independent of each other,

allow us to apply the data-driven SEMIFAR algorithms to estimate the trend and the FARIMA

parameters in the SEMIFAR-GARCH model. It is proposed to estimate the GARCH parameter

from the approximated GARCH innovations calculated by inverting the final residuals. Data

examples show that the proposed algorithm works well. Further extensions of the SEMIFAR

model are also possible. For instance, a seasonal component can also be introduced into the

mean function to model daily periodicity in high-frequency financial data.

Note that the SEMIFAR-GARCH model only has long memory in the mean but does not

have long memory in the volatility. Bailie et al. (1995, 1996) introduced the FIGARCH (frac-

tionally integrated GARCH) process for modelling long memory in the volatility. However, the

FIGARCH is not second order stationary and is not considered as error process in this work. A

stationary process with long memory in the volatility is the fractional LARCH (linear ARCH,

Robinson, 1991 and Giraitis, et al., 2004) model. Hence nonparametric regression with fractional

LARCH errors should be studied so that long memory in the volatility of a financial time series

can be modelled.
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Appendix: Proofs of results

Proof of Lemma 4. The formula of the asymptotic variance of ξ̄ remains unchanged from

case to case, if only the ǫt are uncorrelated (0, σ2) random variables. Hence it is the same as that

for i.i.d. innovations given by Theorems 1 and 8 of Hosking (1996), i.e. var (ξ̄) = n2d−1V (d) for

−1
2 < d < 1

2 , where

V (d) = σ2
ǫ

|ψ(1)|2
|φ(1)|2

Γ(1 − 2d)

(2d + 1)

1

Γ(1 + d)Γ(1 − d)
.

Using the relationships Γ(1 + d) = dΓ(d) and Γ(d)Γ(1 − d) = π
sin(πd) (for d ∈ (−0.5, 0.5) \ {0}),

we obtain the alternative representation of V (d)

V (d) = σ2
ǫ

|ψ(1)|2
|φ(1)|2

Γ(1 − 2d)

(2d + 1)

sin(πd)

πd
,

which is used in this work.

Since ξt defined in (3.3) is a zero mean FARIMA process with innovations ǫi following a

GARCH model, we have

Xi =

∞
∑

k=0

ckǫi−k (A.1)

with ck ∼ |ψ(1)|
|φ(1)| k

d−1 as n → ∞ (see Beran, 1994). Hence, for −0.5 < d < 0.5,
∑∞

k=0 c
2
k < ∞.

This shows that Xi fulfills the conditions of Theorem 4 of Beran and Feng (2001), and so

(ξ1 + · · · + ξn)/σn
D→ N(0, 1).

Observe that

[n1/2−dξ̄ − (ξ1 + · · · + ξn)/σn]
p→ 0,

following Theorem 4 of Beran and Feng (2001) we have

n1/2−dξ̄
D→ N(0, 1).

3

Proof of Theorem 1 i). Following Lemma 4 and noting that the weights wi of a local poly-

nomial estimator satisfy the conditions of Theorem 5 of Beran and Feng (2001), the asymptotic

normality of ĝ(ν)(x) follows from there.

A sketched proof of Theorem 2. i). Note in particular that the necessary condition so

that the consistency of m̂ shown in the proof of Theorem 7.2 in Feng (2004) holds is that η̂
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is consistent in the case with m = m0. This is ensured by the condition on the bandwidth in

Theorem 2 i) and the further assumption E(ǫ4) < ∞. This shows that m̂ is consistent under

the assumptions of Theorem 2.

ii). To show the results given in ii) of Theorem 2 one has to show that the error in η̂ caused

by êt − ǫt is of the order op(n
−1/2). This holds following the same arguments used in the proof

of Theorem 5.2 ii) in Feng (2004), because the orders of magnitude of êt − ǫt are the same for

i.i.d. and GARCH innovations. 3

Proof of Lemma 5.

For any trial value λ = (α0, α1, ..., αr , β1, ..., βs)
′ ∈ Λ, one can rewrite ht(e(η

0);λ) as

ht(e(η
0);λ) = α0



1 −
s
∑

j=1

βj





−1

+





r
∑

j=1

αjB
j





(

1 −
s
∑

k=1

βkB
k

)−1

e2t (η
0)

and ht(ẽ(η
0);λ) as

ht(ẽ(η
0);λ) = α0



1 −
s
∑

j=1

βj





−1

+





r
∑

j=1

αjB
j





(

1 −
s
∑

k=1

βkB
k

)−1

ẽ2t (η
0).

This leads to

ht(e(η
0);λ) − ht(ẽ(η

0);λ) =





r
∑

j=1

αjB
j





(

1 −
s
∑

k=1

βkB
k

)−1

(e2t (η
0) − ẽ2t (η

0))

=





∞
∑

j=1

ajB
j



 (e2t (η
0) − ẽ2t (η

0))

.
= Op(e

2
t (η

0) − ẽ2t (η
0)), (A.2)

where aj are obtained by matching the powers in B, which decay exponentially. Lemma 5 is

proved. 3

Proof of Lemma 6.

Following (21) in Bollerslev (1986) we have

∂ht(ẽ(η
0);λ)

∂λ
= z̃t +

s
∑

j=1

βj
∂ht−j(ẽ(η

0);λ)

∂λ
, (A.3)
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where z̃t = (1, ẽ2t (η
0), ..., ẽ2t (η

0), ht−1(ẽ(η
0);λ), ..., ht−s(ẽ(η

0);λ))T. Analogously, we have

∂ht(e(η
0);λ)

∂λ
= zt +

s
∑

j=1

βj
∂ht−j(e(η

0);λ)

∂λ
, (A.4)

where zt = (1, e2t (η
0), ..., e2t (η

0), ht−1(e(η
0);λ), ..., ht−s(e(η

0);λ))T. Denoting by Bzt = zt−1,

Bz̃t = z̃t−1,

B
∂ht(e(η

0);λ)

∂λ
=
∂ht−1(e(η

0);λ)

∂λ

and

B
∂ht(ẽ(η

0);λ)

∂λ
=
∂ht−1(ẽ(η

0);λ)

∂λ
,

we have


1 −
s
∑

j=1

βjB
j





∂ht(ẽ(η
0);λ)

∂λ
= z̃t

and


1 −
s
∑

j=1

βjB
j





∂ht(e(η
0);λ)

∂λ
= zt.

This leads to

∂ht(e(η
0);λ)

∂λ
− ∂ht(ẽ(η

0);λ)

∂λ
=





∞
∑

j=0

cjB
j



 (zt − z̃t)

.
= Op(zt − z̃t). (A.5)

Again, the cj decay exponentially. The first element of zt − z̃t is obviously zero. Results of

Lemma 6 follow from (A.5) and Lemma 5. 3

Proof of Theorem 3.

i) Following the proofs of Theorem 3.1 and 3.2 in Ling and Li (1997), the conditions of Lemma

5.1 in Feng (2004) hold for L̃(λ) under the conditions of Theorem 3. Under these conditions we

also have et(η
0)

p−→ ẽt(η
0) ∀ λ ∈ Λ. Following Lemmas 5 and 6 we have L̂(λ)

p−→ L̃(λ) ∀ λ ∈ Λ.

Following Lemma 5 in Feng (2004) there exists a consistent approximate MLE λ̂ satisfying the

equation ∂L̂(λ)/∂λ = 0 such that

(λ̂− λ̃) = Op(L̂
′(λ̃)). (A.6)

ii) To show the results in this part we have to show L̂′(λ̃) = op(n
−1/2).
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Note that

L̂′(λ̃) =
1

n

n
∑

t=1

1

2ht(e(η0); λ̃)

∂ht(e(η
0);λ)

∂λ

∣

∣

∣

∣

λ=λ̃

(

e2t (η
0)

ht(e2t (η
0); λ̃)

− 1

)

. (A.7)

By means of Taylor series expansion and using the results of Lemmas 5 and 6 we have

1

2ht(e(η0); λ̃)

.
=

1

2ht(ẽ(η0); λ̃)
+Op(ht(e(η0); λ̃) − ht(ẽ(η0); λ̃))

.
=

1

2ht(ẽ(η0); λ̃)
+Op(e

2
t (η0) − ẽ2t (η0)),

∂ht(e(η0);λ)

∂λ

∣

∣

∣

∣

λ=λ̃

.
=
∂ht(ẽ(η0);λ)

∂λ

∣

∣

∣

∣

λ=λ̃

+Op(e
2
t (η0) − ẽ2t (η0)),

where Op denote the order of magnitude of a random vector, and

e2t (η0)

ht(e(η0); λ̃)

.
=

e2t (η0)

ht(e(η0); λ̃)
+Op(e

2
t (η0) − ẽ2t (η0)).

Furthermore, note that

L′(λ̃) =
1

n

n
∑

t=1

1

2ht(ẽ(η0); λ̃)

∂ht(ẽ(η0);λ)

∂λ

∣

∣

∣

∣

λ=λ̃

(

ẽ2t (η0)

ht(ẽ(η0); λ̃)
− 1

)

= 0.

Inserting these results into (A.7), we obtain

L̂′(λ̃)
.
=

1

n

[

n
∑

i=1

1

2ht(ẽ(η0); λ̃)

∂ht(ẽ(η0);λ)

∂λ

∣

∣

∣

∣

λ=λ̃

(

ẽ2t (η0)

ht(ẽ(η0); λ̃)
− 1

)

+Op(e
2
t (η0) − ẽ2t (η0))

]

=: L′(λ̃) + T (A.8)

= T,

where the random vector

T = Op

(

1

n

n
∑

i=1

(e2t (η0) − ẽ2t (η0))

)

. (A.9)

Using calculations similar to those given in the proof of Theorem 5.2 in Feng (2004) we have

T = Op

(

1

n

n
∑

i=1

(e2t (η0) − ẽ2t (η0))

)

= op(n
−1/2). (A.10)

Theorem 3 is proved. 3
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