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Abstract

In this paper we propose a model for the conditional multivariate density of

integer count variables defined on the set Z
n. Applying the concept of copula

functions, we allow for a general form of dependence between the marginal

processes which is able to pick up the complex nonlinear dynamics of multi-

variate financial time series at high frequencies.

We use the model to estimate the conditional bivariate density of the high

frequency changes of the EUR/GBP and the EUR/USD exchange rates.

JEL classification: G10, F30, C30

Keywords: Integer Count Hurdle, Copula Functions, Discrete Multivariate

Distributions, Foreign Exchange Market



1 Introduction

In this paper we propose a model for the multivariate conditional density of integer

count variables. Our modelling framework can be used for a broad set of applica-

tions to multivariate processes where the primary characteristics of the variables are:

first, their discrete domain spaces, each being the whole space Z; and second, their

contemporaneous dependence.

Although econometric modelling of univariate processes with a discrete support has

been studied extensively, the multivariate counterpart is still underdeveloped. Most

of the existing approaches (e.g. Kocherlakota & Kocherlakota (1992) Johnson, Kotz

& Balakrishnan (1997)) concentrate on the parametric modelling of multivariate dis-

crete distributions with a nonnegative domain and a nonnegative contemporaneous

dependence only. Alternatively, Cameron, Li, Trivedi & Zimmer (2004) exploit the

concept of copula functions to derive a more flexible form of the bivariate distribu-

tion for non-negative count variables that allows for both a positive or a negative

dependence between the discrete random variables. The multivariate integer count

hurdle model (MICH ) proposed here can be viewed as an combination of the copula

approach by Cameron et al. (2004) with the Integer Count Hurdle (ICH) model of

Liesenfeld, Nolte & Pohlmeier (2006), which allows for the dynamic specification of

a univariate conditional distribution with discrete domain Z.

Quite a number of applications of the MICH model are conceivable in many aca-

demic disciplines. Most apparent are applications to high frequent financial data,

which are characterized by a set of contemporaneously correlated trade marks, many

of them are discrete in nature at high or ultra high frequency. In empirical studies

on financial market microstructure, characteristics of the multivariate time-varying

conditional densities (moments, ranges, quantiles, etc.) are crucial. For instance,

with our model we are able to derive multivariate conditional volatility or liquidity

measures. As an application, we propose a model for the bivariate process of ex-

change rate changes sampled at one minute frequency. Other possible applications

would be, for example, modelling joint movements of stock transaction prices or the

changes of the bid and ask quotes of selected financial instruments.

The discreteness of price changes plays an important role for financial theory and

applications. Huang & Stoll (1994), Crack & Ledoit (1996) and Szpiro (1998) among
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others, show that discrete price changes imply a ray shaped pattern in the scatter plot

of returns against one period lagged returns, which is referred to as the “compass

rose”. The compass rose can found for many financial instruments on different

markets, such as futures (Lee, Gleason & Mathur (1999)), exchange rates (Gleason,

Lee & Mathur (2000), Szpiro (1998) ) and stocks (Crack & Ledoit (1996), Antoniou

& Vorlow (2005)).

It has several implications for the dynamics of the data generating process of as-

set returns which may render naively applied statistical tests such as the Brock,

Dechert, Scheinkman & LeBaron (1996) test (Krämer & Runde (1997)), random

walk tests or simple autocorrelation estimates (Fang (2002)), invalid. Moreover,

GARCH models estimated for such data may be misspecified (Amilon (2003)) and

the assumption of a geometric Brownian Motion as the true price process can at

least be questioned, which has consequences, for instance, for option pricing (Ball

(1988)) and the discrimination between the market microstructure noise and the

underlying price process in the realized volatility literature (Andersen, Bollerslev,

Diebold & Labys (1999), Oomen (2005), Hansen & Lunde (2006)). Furthermore,

Vorlow (2004) analyzes to which extent such patterns can be exploited for forecast-

ing issues. Our approach nicely contributes to this literature since the MICH is able

to pick up complex nonlinear structure such as the compass rose in a multivariate

setting.

The data used in the application part of the paper are one minute changes of the

EUR/GBP and the EUR/USD midquotes. Figure 1 shows its bivariate histogram.

The changes of exchange rates are discrete, since bid or ask quotes of the GBP and

the USD against the EUR can jump by a multiple of a fixed tick size of 0.0001 EUR

only. The bid quotes (and the ask quotes, analogously) are aggregated to the one

minute level by taking the average of the highest and the lowest best bid within

that minute, resulting in a smallest bid quote change of 0.00005 EUR, so that the

smallest observable midquote change amounts to 0.000025 EUR.
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Figure 1: Bivariate histogram of the tick changes of the EUR/GBP and the EUR/USD

exchange rates.

Due to the discreteness of the bivariate process, the surface of the histogram is

rough, characterized by distinct peaks with the most frequent outcome (0, 0) having

a sample probability of 2.02%, that corresponds to the simultaneous zero movement

of both exchange rates. The discrete changes of the variables are positively corre-

lated, since the positive (negative) movements of the EUR/GBP exchange rate go

along with the positive (negative) movements of the EUR/USD exchange rate more

frequently.

The sequence of the paper is organized as follows. In Section 2 we describe the

general framework of our multivariate modelling approach. The description of the

theoretical settings customized with respect to modelling the bivariate density of

exchange rate changes follows in Section 3. There, we also present the results of

empirical application as well as some statistical inference. Section 4 discusses the

results and concludes.
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2 The General Model

Let Yt = (Y1t, . . . , Ynt)
′ ∈ Z

n, with t = 1, . . . , T , denote the multivariate process of

n integer count variables and let Ft−1 denote the associated filtration at time t− 1.

Moreover, let F (y1t, . . . , ynt|Ft−1) denote the conditional cumulative density function

of Yt and f(y1t, . . . , ynt|Ft−1) its conditional density. Each marginal process Ykt,

k = 1, . . . , n is assumed to follow the ICH distribution of Liesenfeld et al. (2006) and

the dependency between the marginal processes is modelled with a copula function.

2.1 Copula Function

The copula concept of Sklar (1959) has been extended by Patton (2001) to condi-

tional distributions. In that framework the marginal distributions and/or the copula

function can be specified conditional on Ft−1, so that the conditional multivariate

distribution of Yt can be modelled as:

F (y1t, . . . , ynt|Ft−1) = C(F (y1t|Ft−1), . . . , F (ynt|Ft−1)|Ft−1), (1)

where F (ykt|Ft−1)denotes the conditional distribution function of the kth compo-

nent and C(·|Ft−1) the conditional copula function defined on the domain [0, 1]n.

This approach provides a flexible tool for modelling multivariate distributions as it

allows for the decomposition of the multivariate distribution into the marginal dis-

tributions, which are bound by a copula function, being solely responsible for their

contemporaneous dependence.

If the marginal distribution functions are continuous, the copula function C is unique

on its domain [0, 1]n, because the random variables Ykt, k = 1, . . . , n are mapped

through the strictly monotone increasing functions F (ykt|Ft−1) onto the entire set

[0, 1]n. The joint density function can then be derived by differentiating C with

respect to the continuous random variables Ykt, as:

f(y1t, . . . , ynt|Ft−1) =
∂n

C(F (y1t|Ft−1), . . . , F (ynt|Ft−1)|Ft−1)

∂y1t . . . ∂ynt

, (2)

However, if the random variables Ykt are discrete, F (ykt|Ft−1) are step functions and

the copula function is uniquely defined not on [0, 1]n, but on the Cartesian product

of the ranges of the n marginal distribution functions, i.e.,
⊗n

k=1 Range(Fkt) so that

it is impossible to derive the multivariate density function using equation (2).

Two approaches have been proposed to overcome this problem. The first is the

continuisation method suggested by Stevens (1950) and Denuit & Lambert (2005),
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which is based upon generating artificially continued variables Y ∗
1t, . . . , Y

∗
nt by adding

independent random variables U1t, . . . , Unt (each of them being uniformly distributed

on the set [−1, 0]) to the discrete count variables Y1t, . . . , Ynt and which does not

change the concordance measure between the variables (Heinen & Rengifo (2003)).

The second method, on which we rely, has been proposed by Meester & J.MacKay

(1994) and Cameron et al. (2004) and is based on finite difference approximations

of the derivatives of the copula function, thus

f(y1t, . . . , ynt|Ft−1) = ∆n . . . ∆1C(F (y1t|Ft−1), . . . , F (ynt|Ft−1)|Ft−1), (3)

where ∆k, for k ∈ {1, . . . , n}, denotes the kth component first order differencing

operator being defined through

∆kC(F (y1t|Ft−1), . . . ,F (ykt|Ft−1), . . . , F (ynt|Ft−1)|Ft−1) =

C(F (y1t|Ft−1), . . . , F (ykt|Ft−1), . . . , F (ynt|Ft−1)|Ft−1)

−C(F (y1t|Ft−1), . . . , F (ykt − 1|Ft−1), . . . , F (ynt|Ft−1)|Ft−1).

The conditional density of Yt can therefore be derived by specifying the cumulative

distribution functions F (y1t|Ft−1), . . . , F (ynt|Ft−1) in equation (3).

2.2 Marginal Processes

The Integer Count Hurdle (ICH) model that we propose for the modelling of the

marginal processes, is based on the decomposition of the process of the discrete

integer valued variable into two components, i.e., a process indicating whether the

integer variable is negative, equal to zero or positive (the direction process) and a

process for the absolute value of the discrete variable irrespective of its sign (the

size process). We present here the simplest form of the ICH model and we refer to

Liesenfeld et al. (2006), reprinted in this volume, for a more elaborate presentation.

Let πk
jt, j ∈ {−1, 0, 1} denote the conditional probability of a negative P(Ykt <

0|Ft−1), a zero P(Ykt = 0|Ft−1) or a positive P(Ykt > 0|Ft−1) value of the integer

variable Ykt, k = 1, . . . , n, at time t. The conditional density of Ykt is then specified

as

f(ykt|Ft−1) = πk
−1t

1l {Ykt<0} · πk
0t

1l {Ykt=0} · πk
1t

1l {Ykt>0} · fs(|ykt| |Ykt 6= 0,Ft−1)
(1−1l {Ykt=0}),

where fs(|ykt| |Ykt 6= 0,Ft−1) denotes the conditional density of the size process, i.e.,

conditional density of an absolute change of Ykt, with support N\{0}. To get a par-

simoniously specified model, we adopt the simplification of Liesenfeld et al. (2006),
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that the conditional density of an absolute value of a variable stems from the same

distribution irrespective of whether the variable is positive or negative.

The conditional probabilities of the direction process are modelled with the autore-

gressive conditional multinomial model (ACM) of Russell & Engle (2002) using a

logistic link function given by

πk
jt =

exp(Λk
jt)

∑1
j=−1 exp(Λk

jt)
(4)

where Λk
0t = 0, ∀t is the normalizing constraint. The resulting vector of log-odds

ratios Λk
t ≡ (Λk

−1t, Λ
k
1t)

′ = (ln[πk
−1t/π

k
0t], ln[πk

1t/π
k
0t])

′ is specified as a multivariate

ARMA(1,1) model:

Λk
t = µ + B1Λ

k
t−1 + A1ξ

k
t−1. (5)

µ denotes the vector of constants, and B1 and A1 denote 2 × 2 coefficient matrices.

In the empirical application, we put the following symmetry restrictions µ1 = µ2, as

well as b
(1)
11 = b

(1)
22 and b

(1)
12 = b

(1)
21 on the B1 matrix to obtain a parsimonious model

specification. The innovation vector of the ARMA model is specified as a martingale

difference sequence in the following way:

ξk
t ≡ (ξk

−1t, ξ
k
1t)

′, where ξk
jt ≡

xk
jt − πk

jt
√

πk
jt(1 − πk

jt)
, j ∈ {−1, 1}, (6)

and

xk
t ≡ (xk

−1t, x
k
1t)

′ =











(1, 0)′ if Ykt < 0

(0, 0)′ if Ykt = 0

(0, 1)′ if Ykt > 0,

(7)

denotes the state vector, whether Ykt decreases, stays equal or increases at time t.

Thus, ξk
t represents the standardized state vector xk

t .

The conditional density of the size process is modelled with an at-zero-truncated

Negative Binomial (NegBin) distribution:

fs(|ykt| |Ykt 6= 0,Ft−1) ≡
Γ(κ + |ykt|)

Γ(κ)Γ(|ykt| + 1)

(

[κ + ωk
t

κ

]κ

− 1

)−1(

ωk
t

ωk
t + κ

)|ykt|

, (8)

where |ykt| ∈ N\{0}, κ > 0 denotes the dispersion parameter and scaling parameter

ωk
t is parameterized using the exponential link function with a generalized autore-

gressive moving average model (GLARMA(p,q)) of Shephard (1995) in the following
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way:

ln ωk
t = δD̃t + λ̃k

t with λ̃k
t = µ̃ + Sk(ν, τ,K) + β1λ̃

k
t−1 + α1ξ̃

k
t−1.

where D̃t ∈ {−1, 1} indicates a negative or positive value of Ykt at time t with the

corresponding coefficient denoted by δ. µ̃ denotes the constant term. β1 as well as

α1 denote coefficients and ξ̃k
t being constructed as

ξ̃k
t ≡ |Ykt| − E(|Ykt| |Ykt 6= 0,Ft−1)

V(|Ykt| |Ykt 6= 0,Ft−1)1/2
,

is the innovation term that drives the GLARMA model in λk
t . The conditional

moments of the at-zero-truncated NegBin distribution are given by

E(|Ykt| |Ykt 6= 0,Ft−1) =
ωk

t

1 − ϑk
t

,

V(|Ykt| |Ykt 6= 0,Ft−1) =
ωk

t

1 − ϑk
t

−
(

ωk
t

(1 − ϑk
t )

)2 (

ϑk
t −

1 − ϑk
t

κ

)

,

where ϑk
t is given by ϑk

t = [κ/(κ + ωk
t )]κ.

Sk(ν, τ,K) ≡ ν0τ +
K

∑

l=1

ν2l−1 sin(2π(2l − 1)τ) + ν2l cos(2π(2l)τ) (9)

is a Fourier flexible form used to capture diurnal seasonality, where τ is the intraday

time standardized to [0, 1] and ν is a 2K + 1 dimensional parameter vector.

7



3 Bivariate modelling of exchange rate changes

Data Description

We apply our model to one minute mid-quote changes of the EUR/GBP and the

EUR/USD exchange rates. The data has been provided by Olsen Financial Tech-

nologies and contains quotes from the electronic foreign exchange interbank market.

The period under study spreads between 6th October (Monday) 2003, 0:01 EST,

and 10th (Friday) October 2003 17:00 EST, resulting in 6,780 observations for both

time series. The sampling frequency of one minute is, on the one side, sufficiently

high to maintain the discrete nature of the data, whereas on the other side, it is low

enough to preserve a significant correlation between the two marginal processes.

The histograms of the two marginal processes are presented in the Figure 2. Both

distributions reveal a fairly large support between between -20 and 20 ticks for the

EUR/GBP and between -30 and 30 ticks for the more volatile EUR/USD exchange

rate. Thus, the discreteness of the quote changes combined with a high number of

zero quote movements (about 13 percent for the EUR/GBP and about 7.5 percent

for the EUR/USD) justifies the ICH-model approach of Liesenfeld et al. (2006).

EUR/GBP EUR/USD

Figure 2: Histograms of the tick changes of the EUR/GBP and the EUR/USD exchange

rates.

We associate Y1t and Y2t with the changes of the EUR/GBP and the EUR/USD

currency pairs, respectively, and present in Figure 3 and 4, the dynamic features of

these variables in the form of the multivariate autocorrelograms of the vectors x1
t and

x2
t , which indicate the change of the direction of the EUR/GBP and the EUR/USD

exchange rates, as defined in equation (7).
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We observe that there is a certain dynamic pattern, which should be explained by

the ACM part of the ICH model. As indicated by the negative first order auto-

correlation and the positive first order cross correlation coefficients, the probability

of an upward movement of each exchange rate following a downward movement is

significantly more probable than two subsequent negative or positive movements. In

Figure 5 the autocorrelograms for the absolute value of the non-zero exchange rate

changes are presented. The high degree of persistence characterizing the processes

should be explained by the GLARMA part of the ICH model.

The interdependence between the two marginal processes can be seen from the Fig-

ure 6, where we plotted the multivariate autocorrelogram of Y1t and Y2t. The two

marginal processes are positively correlated, with the correlation coefficient of about

0.35.

Figure 3: Multivariate autocorrelation function for the EUR/GBP mid

quote direction. Upper left panel: corr(x1
−1,t, x

1
−1,t−l); upper right panel:

corr(x1
−1,t, x

1
1,t−l); lower left panel: corr(x1

−1,t−l, x
1
1,t) and lower right panel:

corr(x1
1,t, x

1
1,t−l). The dashed lines mark the approximate 99% confidence in-

terval ±2.58/
√

T .
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Figure 4: Multivariate autocorrelation function for the EUR/USD mid

quote direction. Upper left panel: corr(x2
−1,t, x

2
−1,t−l); upper right panel:

corr(x2
−1,t, x

2
1,t−l); lower left panel: corr(x2

−1,t−l, x
2
1,t) and lower right panel:

corr(x2
1,t, x

2
1,t−l). The dashed lines mark the approximate 99% confidence in-

terval ±2.58/
√

T .

EUR/GBP EUR/USD

Figure 5: Autocorrelation function of the non-zero absolute EUR/GBP and

EUR/USD mid quote changes. The dashed line marks the approximate 99% con-

fidence interval ±2.58/
√

T̃ , where T̃ is the number of non-zero quote changes.
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Figure 6: Multivariate autocorrelation function for the EUR/GBP and

EUR/USD mid quote changes. Upper left panel: corr(Y1t, Y1t−l); upper right

panel: corr(Y1t, Y2t−l); lower left panel: corr(Y1t−l, Y2t) and lower right panel:

corr(Y2t, Y2t−l). The dashed lines mark the approximate 99% confidence interval

±2.58/
√

T .

Bivariate Model Specification

The copula concept allows one to model the bivariate density without forcing the

direction of the dependence upon the data generating process. We choose the stan-

dard Gaussian copula function since its single dependency parameter can easily be

estimated and it allows for a straightforward sampling algorithm of variables from

the bivariate conditional density, which is necessary to assess the goodness-of-fit of

our specification. The Gaussian copula is given by:

C(ut, vt; ρ) =

Φ−1(ut)
∫

−∞

Φ−1(vt)
∫

−∞

1

2π
√

1 − ρ2
exp

(

2ρuv − u2 − v2

2(1 − ρ2)

)

dudv, (10)

where ut = F (y1t|Ft−1), vt = F (y2t|Ft−1) and ρ denotes the time-invariant pa-

rameter of the Gaussian copula, which is the correlation between Φ−1(ut) and

Φ−1(vt). Since ρ is chosen to be fixed over time C(F (y1t|Ft−1), F (y2t|Ft−1)|Ft−1) =

C(F (y1t|Ft−1), F (y2t|Ft−1)) and the conditional bivariate density of Y1t and Y2t can
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be inferred from equation (3) as:

f(y1t, y2t|Ft−1) = C(F (y1t|Ft−1), F (y2t|Ft−1))

− C(F (y1t − 1|Ft−1), F (y2|Ft−1))

− C(F (y1t|Ft−1), F (y2t − 1|Ft−1))

+ C(F (y1t − 1|Ft−1), F (y2t − 1|Ft−1)).

The cumulative distribution function F (y1t|Ft−1) (and analogously F (y2t|Ft−1)) can

be written as:

F (y1t|Ft−1) =

y1t
∑

k=−50

π1
−1t

1l {k<0} · π1
0t

1l {k=0} · π1
1t

1l {k>0} · fs(|k| |k 6= 0,Ft−1)
(1−1l {k=0})

where we set the lower bound of the summation to −50 and where the probabilities

of the downward, zero and upward movement of the exchange rate are specified with

the logistic link function, as shown in equation (4), and the density for the absolute

value of the change is specified along the conditional NegBin distribution, as pre-

sented in equation (8).

Estimation and Simulation Results

Our estimates are obtained by a one step Maximum Likelihood estimation, whereas

the log-likelihood function is taken as a logarithm of the bivariate density presented

in the equation (11). Estimation results for the ACM part of ICH model are pre-

sented in Table 1 and for the GLARMA part of the ICH model in Table 2. The

estimate of the dependency parameter ρ̂ for the Gaussian copula equals to 0.3588

with standard deviation 0.0099, representing a strong positive correlation between

the modelled marginal processes.

Regarding the estimates for the ACM submodel, we observe a significant persistency

pattern (B̂1 matrix) of the direction processes and we can conclude, that if the

probability of an exchange rate change has been high in the previous period, it is

also supposed to be considerably high in the next period. Moreover, the obtained

relations a
(1)
11 < a

(1)
12 and a

(1)
21 > a

(1)
22 between the innovation coefficients suggest the

existence of some bounce or mean-reverting pattern in the evolution of the exchange

rate process. The parsimonious dynamic specification seems to describe the dynamic

structure very well, as the multivariate Ljung-Box statistics for the standardized

residuals of the ACM model do not differ significantly from zero.
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EUR/GBP EUR/USD

parameter estimate standard deviation estimate standard deviation

µ 0.0639 0.0177 0.0837 0.0222

b
(1)
(11) 0.6583 0.0856 0.4518 0.0426

b
(1)
(12) 0.2910 0.0540 0.5054 0.0635

a
(1)
11 0.1269 0.0324 0.2535 0.0465

a
(1)
12 0.2059 0.0323 0.3739 0.0472

a
(1)
21 0.2009 0.0271 0.3350 0.0466

a
(1)
22 0.0921 0.0312 0.2586 0.0477

resid. mean (-0.003, 0.002) (0.003, 0.009)

resid. variance

(

0.655 0.803

0.803 2.631

) (

1.413 2.306

2.306 4.721

)

Q(20) 72.359 (0.532) 89.054 (0.111)

Q(30) 102.246 (0.777) 122.068 (0.285)

log-lik. -6.2125

Table 1: ML estimates of the ACM-ARMA part of ICH model. Multivariate Ljung-Box

statistic for L lags, Q(L), is computed as Q(L) = n
∑L

ℓ=1
tr

[

Γ(ℓ)′Γ(0)−1Γ(ℓ)Γ(0)−1
]

, where

Γ(ℓ) =
∑n

i=ℓ+1
νtν

′
t−ℓ/(n − ℓ − 1). Under the null hypothesis, Q(L) is asymptotically χ2-

distributed with degrees of freedom equal to the difference between 4 times L and the number

of parameters to be estimated.

Regarding the estimation results for the GLARMA part of the ICH model, we ob-

serve that the values of the dispersion parameters κ−0.5 are significantly different

from zero, allowing the rejection of the null hypothesis of an at-zero-truncated Pois-

son distribution in favor of at-zero-truncated NegBin one. The diagnostics statistics

of the GLARMA submodel are quite satisfying. Although some Ljung-Box statis-

tics (Q) for the standardized residuals still remain significantly different from zero,

a large part of the autocorrelation structure of the size processes has been explained

by the simple GLARMA(1,1) specification.
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EUR/GBP EUR/USD

parameter estimate standard deviation estimate standard deviation

κ0.5 0.7862 0.0192 0.7952 0.0130

µ̃ 0.3363 0.0438 0.7179 0.0814

β1 0.6567 0.0335 0.6085 0.0428

α1 0.1675 0.0100 0.1455 0.0097

ν0 0.0981 0.0633 -0.0396 0.0510

ν1 -0.0712 0.0117 -0.0430 0.0100

ν2 -0.0060 0.0091 0.0388 0.0099

ν3 -0.0501 0.0105 -0.0258 0.0093

ν4 0.0852 0.0238 0.0954 0.0215

ν5 -0.0100 0.0129 -0.0234 0.0120

ν6 0.0449 0.0115 0.0297 0.0108

resid. mean 0.013 0.007

resid. variance 1.001 1.025

resid. Q(20) 26.408 (0.067) 42.332 (0.001)

resid. Q(30) 64.997 (0.000) 87.641 (0.000)

log-lik. -6.2125

Table 2: ML estimates of the GLARMA part of ICH model.

Jointly significant coefficients of the seasonal components S(ν, τ,K) for K = 3 indi-

cate, that there exist diurnal seasonality patterns, which are plotted in Figure (7),

in the absolute changes of the exchange rates. We observe that the mean of the

non-zero absolute tick changes of the USD against the EUR is considerably higher

than that for the GBP, and it holds for every minute of the day. It confirms the re-

sults of the descriptive study presented previously, as the support of the EUR/USD

distribution is more dispersed and the exchange rate is more volatile. The shapes

of the diurnal seasonality functions for both exchange rates are quite similar. They

evidence the existence of at least two very active trading periods, about 3.00 EST

and 10.00 EST, which corresponds to the main trading periods of the European and

the American Foreign Exchange market, respectively.
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EUR/GBP EUR/USD

Figure 7: Estimated diurnal seasonality function of the non-zero absolute EUR/GBP

and EUR/USD tick changes. The dashed line mark the approximate 99% confidence

interval.

In order to verify the goodness-of-fit of our model in a more elaborate way, we

simulate the conditional density of the bivariate process at every point t, t = 1, . . . , T .

Such an approach enables us to verify whether the proposed density specification is

able to explain the whole conditional joint density of the underlying data generating

process. Relying on the simulated distributions at every time point available, we

can easily address this point applying the modified version of the Diebold, Gunther

& Tay (1998) density forecasting test for discrete data of Liesenfeld et al. (2006).

Moreover, we are able to compare the residuals of both marginal processes.

We use here the standard sampling method proposed for Gaussian copula functions,

which can be summarized as:

For every t:

• compute the Cholesky decomposition Â (2×2) of estimated correlation matrix

R̂, where R̂ =

(

1 ρ̂

ρ̂ 1

)

.

• simulate xt = (x1t, x2t)
′ from a bivariate standard normal distribution,

• set ẑt = Âxt,

• set û1t = Φ(ẑ1t) and û2t = Φ(ẑ2t) where Φ denotes the univariate standard

normal distribution function,
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• set Ŷ1t = F̂−1
1 (û1|Ft−1)) and Ŷ2t = F̂−1

2 (û2|Ft−1)) where F̂1 and F̂2 denote the

estimated marginal cumulative distribution functions of the EUR/GBP and

the EUR/USD changes, respectively.

Figure 8 contains the plots of the unconditional histograms of the simulated marginal

processes. Their shapes seem to agree with that of the raw data series already

presented in Figure 2 .

EUR/GBP EUR/USD

Figure 8: Histogram of simulated tick changes of exchange rates.

The unconditional bivariate histogram of the simulated time series is presented in

Figure 9. Although the positive dependence between the marginal processes is re-

flected, the shape of the histogram does not correspond to the empirical one in full

(see Figure 1). In particular the frequency of the outcome (0, 0) has been consid-

erably underestimated. We compute the differences between the histograms of the

empirical and the simulated data, to infer in which points (i, j) the observed and

the estimated probabilities disagree. To assess these differences graphically, we plot-

ted in Figure 10 only positive differences and in Figure 11 only absolute negative

differences. Besides the outcome probability of (0, 0), the probabilities for points

(i, j) concentrated around (0,0) are a little bit underestimated (positive differences

in Figure 10) as well, and the probabilities for points (i, j) which are a little further

away from (0,0) are a little overestimated (negative differences in Figure 11). Thus,

we conclude that we underestimate the kurtosis of the empirical distribution. The

real data is much more concentrated in the outcome (0,0), as well as evidencing
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much fatter tails. There is a clear signal for a tail dependency in the data gener-

ating process, as the extreme positive or negative movements of the exchange rates

take place much more often than could be explained by a standard Gaussian copula

function (see Figure 10).

Figure 9: Bivariate histogram of the simulated tick changes of the EUR/GBP and the

EUR/USD exchange rates.

Figure 10: Bivariate histogram of the positive differences between the empirical and the

simulated bivariate histogram of the the EUR/GBP and the EUR/USD exchange rates

changes.
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Figure 11: Bivariate histogram of the absolute values of the negative differences between the

empirical and the simulated bivariate histogram of the the EUR/GBP and the EUR/USD

exchange rates changes.

Additionally, we can address the goodness-of-fit of the conditional bivariate den-

sity by considering the bivariate autocorrelation function of the residual series ε̂t =

(ε̂1
t , ε̂

2
t )

′ depicted in Figure 14 and the quantile–quantile (QQ) plots of the modified

density forecast test variables for the implied marginal processes in Figure 12. We

have mapped these modified density forecast test variables into a standard normal

distribution, so that under the correct model specification, these normalized variables

should be i.i.d. standard normally distributed. Figure 13 plots the autocorrelation

functions of these normalized density forecast variables. Both plots indicate that

the processes are almost uncorrelated. The deviation from normality, especially for

the EUR/USD exchange rate changes and in the upper tail of the normalized den-

sity forecast variables indicated by the QQ-plots, reveals that our specification has

difficulties to characterize extreme exchange rate changes appropriately.
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EUR/GBP EUR/USD

Figure 12: QQ plot of the normalized density forecast variables.

EUR/GBP EUR/USD

Figure 13: Autocorrelation function of the normalized density forecast variables.

The bivariate autocorrelation function of the residual series (Figure 14) shows sig-

nificant cross-correlations at lag 1. Although, we manage to explain a large part of

the correlation structure of the processes for the exchange rate changes (compare

Figure 6), there is some room to improve the model specification. These results are

also emphasized by the multivariate Ljung-Box statistics for the bid and ask change

process and its residuals in Table 3.
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Figure 14: Multivariate autocorrelation function for residuals of the EUR/GBP and the

EUR/USD tick changes. Upper left panel: corr(ε1
t , ε

1
t−l); upper right panel: corr(ε1

t , ε
2
t−l);

lower left panel: corr(ε2
t−l, ε

1
t ) and lower right panel: corr(ε2

t , ε
2
t−l). The dashed lines mark

the approximate 99% confidence interval ±2.58/
√

T .

real exchange rate changes residuals

Q(20) 473.6279 159.8679

Q(30) 521.8745 207.2940

Q(50) 588.0909 296.7522

Table 3: Multivariate Ljung-Box statistic for the residuals of the

simulated bivariate process.
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4 Conclusion

In this paper we propose an approach that is capable of modelling complex multivari-

ate processes for discrete random variables. Combining the approach by Cameron

et al. (2004) for copulas of discrete random variables with the ICH model by Liesen-

feld et al. (2006), we model the joint process for two integer count variables.

As an illustration of the explanatory power of our approach we estimate the joint

distribution of the EUR/GBP and the EUR/USD exchange rate changes at the one

minute level. Even without detailed specification search, our model describes the

exchange rate dynamics fairly well. Moreover, the marginal distributions which are

characterized by inflated outcomes are also estimated satisfactorily.

In order to pick up the obvious excess kurtosis in the joint empirical distribution, we

have tried out more flexible parametric alternatives to the Gaussian copula, such as

the t-student copula, which allows for symmetric lower and upper tail dependency

and an excessive concentration in (0,0) and the symmetrized Joe-Clayton copula,

which has a quite parsimonious functional form and allows for asymmetric tail de-

pendence. Although both specifications improve the goodness-of-fit of our model in

some aspects the application of the t-student copula or the symmetrized Joe-Clayton

copula has been by no means clearly superior to the simple Gaussian copula, so that

we conclude that simply applying more flexible copula functions is not the proper

remedy to capture the large excess kurtosis. An obvious alternative path of future

research is be to keep the Gaussian copula and to inflate the outcome (0, 0) along

the lines of zero inflated count data models.

Last but not least, the potential merits of the approach should be checked in the

light of real world applications such as the measurement of multivariate conditional

volatilities and the quantification of liquidity or value-at-risk applications. Obvi-

ously, our approach can easily be extended to the most general case of mixed mul-

tivariate distributions for continuous and discrete random variables. For financial

market research at the high frequency level, such an extension is attractive for the

joint analysis of several marks of the trading process (volumes, price and volume

durations, discrete quote changes etc.).
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