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Klaus Abberger, University of Konstanz, Germany

Abstract: This paper discusses two graphical methods for the inves-
tigation of local association of two continuous random variables. Often,
scalar dependence measures, such as correlation, cannot reflect the complex
dependence structure of two variables. However, dependence graphs have
the potential to assess a far richer class of bivariate dependence structures.
The two graphical methods discussed in this article are the chi-plot and the
local dependence map. After the introduction of these methods they are
applied to different data sets. These data sets contain simulated data and
daily stock return series. With these examples the application possibilities
of the two local dependence graphs are shown.
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1 Introduction

The dependence between a pair of continuous random variables is often more
complex than a single scalar dependence measure can reflect. Therefore, a
global summary statistic such as the correlation coefficient will not convey
the dependence structure. Local measures of dependence can be used in-
stead. In this paper two graphical methods for analyzing dependence locally
are discussed and compared. These two methods handle the dependence
quite different. One graphical tool is the chi-plot introduced by Fisher and
Switzer (1985, 2001). They utilize the chi-measure to receive a plot which
is approximately horizontal under independence. Another idea was intro-
duced by Hollander and Wang (1987) and is further developed in a series of
subsequent papers by Jones (1996,1998) and Jones and Koch (2002). This
concept is called local dependence function and is based on the mixed partial
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derivatives of the logarithm of the bivariate density function. It is possible
to estimate the local dependence function from data using, for example,
kernel methods. The resulting estimates can then be graphed in one of the
usual ways, such as by contour plots. But these figures are often not mean-
ingful and hard to interpret. It can be argued that the local dependence
function convey information that is too detailed to be easily interpretable.
This fact motivates Jones and Koch (2002) to make local dependence a more
interpretable tool, by introducing so called dependence maps. Via local per-
mutation testing, dependence maps simplify the estimated local dependence
structure between variables by identifying regions of (significant) positive,
(nonsignificant) zero and (significant) negative local dependence.

The organization of this paper is as follows: The next section introduces
and discusses the local dependence concepts. Section 3 includes some ex-
amples for simulated data and Section 4 presents estimations for some daily
stock return series.

2 Two local dependence graphs

The chi-plot defined by Fisher and Switzer (1985, 2001) is designed to pro-
vide a graph that has characteristic patterns depending on whether the
variates are independent, have some degree of monotone relationship, or
have more complex dependence structure. The chi-plot depends on the data
only through the values of their ranks.

Let (z1,v1), ..., (n,yn) be a random sample from H, the joint (contin-
uous) distribution function for a pair of random variables (X,Y), and let
1(A) be the indicator function of the event A. For each data point (x;,¥;),
set

Hy = S 1y < auy; <w)/(n—1), 1)

i
Fpo = ) 1(x; <a)/(n—1), (2)

i
G = Yy <w)/n-1), (3)

i

and

Si ={(F; —1/2)(G; — 1/2)}. (4)



Now calculate
Xi = (H; — FiG) J{Fi(1 — F)Gi(1 — Gy)}V/? (5)

and
A\; = 48; max{(F; — %)2, (G; — %)2}. (6)

The chi-plot is a scatterplot of the pairs (\;, x;)-

At each sample point, ; is actually a correlation coefficient between di-
chotomized X values and dichotomized Y values. Therefore, all values of y;
lie in the interval [—1,1]. If Y is a strictly increasing function of X, then
x; = 1 for all sample cut points, and when Y is a strictly decreasing function
of X, then x; = —1 for all sample cut points. The value )\; is a measure
of the distance of the data point (z;,y;) from the center of the data set.
All values A\; must lie in the interval [—1,1]. When the data are a random
bivariate sample from independent continuous marginals, then the values of
the A; are individually uniform distributed. However, when X and Y are
associated, then the values of \; may show clustering. In particular, if X
and Y are positively correlated, A\; will tend to be positive and vice versa
for negative correlation.

X can be seen also as an empirical measure of the “positive quadrant
dependence“ (PQD). The PQD is defined as follows (Joe, 1997):

P(X <a1,Y <ag) > P(X <aj)-P(Y <ay), for all a,as € R. (7)

At this PQD is defined globally for all a;,a; € R. On the other hand,
x; measures this dependence locally and draws it against the distance of
the data point to the data center. Joe (1997) defines various dependence
concepts and shows the relations between them. Is (X;Y) for example
(positively) “associated, i.e.

El91(X)g2(Y)] = Elg1(X)] - Elg2(Y)], (8)

for all real valued functions g1, go which are increasing and are such that
the expectations exist, then is (X;Y") also PQD. Of course (8) contains the
case of positive correlation.

As a second local dependence concept the “local dependence function“
and the “local dependence map* are discussed. The local dependence func-
tion was introduced by Holland and Wang (1987). It is a generalization of



the cross-product ratio for the case of continuous random variables X and
Y. If f is the bivariate density function, then the local dependence function
v is given by

(52
ay) = TRELTD), )

Jones (1996) motivated « from the point of view of localizing the Pearson
correlation coefficient p. The local dependence function is constant for the
bivariate normal distribution, taking the value p/(1 — p?) in the standard
normal case. Jones (1998) examined for which general class of densities the
local dependence function is constant. His considerations provide the fol-
lowing result: The local dependence function is constant if and only if Y|z
has a linear exponential family distribution, for fixed dispersion parameter,
with canonical parameter a linear function of x, i.e. the common generalized
linear model situation.

The local dependence function can be nonparametricaly estimated with
the help of kernel methods. The local adaption of a bilinear form a + bx +
cy + dxy to the log density using the kernel weighted local likelihood

U K (X — 2K (Y — ) log f(X0, V) (10)
=1

- / / K (X — 2) Ky (Y — ) F(X;Y)dXdY

is used here. This approach is treated in detail in Loader (1996). He delivers
in addition with the S-Plus (resp. R) function locfit() a program for the
calculation of estimates.

The resulting estimates can be graphed in one of the usual ways, such
as by a contour plot. The results of the estimate can be hard to interpret
sometimes. It can be argued that the estimated local dependence function
convey information that is too detailed to be easily interpretable. For this
reason Jones and Koch (2002) developed the local dependence map which
is more simply to read. Via local permutation testing, dependence maps
simplify the estimated local dependence structure between two variables by
identifying regions of (significant) positive, (nonsignificant) zero and (signif-
icant) negative local dependence.

The construction of the local dependence map can be summarized as
follows: The first step is to estimate the density f using the kernel estimator



defined in (10). The estimated density is used to identify points at which f
appears to be small. These points are excluded from the dependence map
because estimation of ~, which is a second derivative quantity is extremely
unreliable there. Here and in later calculations the tricube kernel

K(u) = (1—[ul)®, [ul <1, (11)

which is the default weight function in locfit() is used. The bandwidths are
chosen by a rule of thumb (Jones and Koch, 2002). They are calculated by

s [ 2y [ K*(u)du 1/3 (1— r2)5/12
hi = nl/6 { f’U«QK(u)du } (

1+102/2)1/6,2'21,2. (12)

where s; is the sample standard deviation and r is the sample correlation.

Now, a regular grid is placed across the area of interest. At each grid
point (z;,v:), Y(xi,y;) can be calculated using locfit() . Jones and Koch
(2002) suggest using the same bandwidth as above in (12). Though, for
estimating ~ itself, one would normally expect that h; is inadequate and
that larger bandwidths are necessary. Jones and Koch (2002) argue, that
one can nevertheless use the above bandwidths. However, h; is only used
as lower bound and the bandwidth for estimating 7 is adjusted by eye in
this article. The next step is the execution of local permutation tests of the
null hypothesis that ~v(z;,y;) = 0. Therefore, the data within the kernel
around (x;,y;) are used. Samples satisfying the null hypothesis can readily
be generated if the Y‘s are randomly permuted to break their ties to the
X'‘s. This is done P times and 7, is computed for each permuted data set,
p=1,2,..., P. Now, the local dependence map value is “+“ if the observed
value is in the highest (a/2)% of simulated ‘s, is defined to be “-* if the
observed value is in the lowest («/2)% of simulated 7,‘s, and set to be “0¢
otherwise. In the examples still following we use P = 500 and o = 0.1.

To be able to judge the differences in the introduced methods, some
examples with simulated data are presented in the next section.

3 Examples with simulated data

The various methods introduced above are applied to different data sets with
a known underlying structure. Therefore their advantages and disadvantages
can be easily recognized. First, a synthetic data set of size n = 500, where



Y and X have a joint standard normal distribution with correlation p = 0.5
is used. Nothing surprising can be recognized at the local dependence map.
Positive dependence is indicated over almost the complete range looked at.
The chi-plot shows a bent course. The chi-values are near to zero on the
edges of the graph. For easier interpretation the mapping is extended by two
horizontal lines at +c/ n'/2, where ¢ is selected so that approximately 95%
of the pairs (\;, x;) lie between the lines. ¢ can be calculated with Monte
Carlo methods (Fisher and Switzer, 2001).

The bent course of the chi-plots reports the so-called “tail independence“
characteristic of the bivariate normal distribution, provided that |p| < 1.
Tail dependence is often defined in terms of the copula of a joint distribu-
tion. For a complete treatment of copula see Joe (1997). For a bivariate
distribution F'(x,y) with j-th univariate margin F}, the copula associated
with F is a distribution function C : [0,1]? — [0, 1] that satisfies

F(l‘,y) = C(Fl('x)?FQ(y))’ z,y € R. (13)

So the copula is a distribution function of a random vector, U = (U, Us),
where each U; ~ uniform(0,1). If a bivariate copula C' is such that

lin% C(u,u)/u= AL (14)
uU—
exists, C' has lower tail dependence if A, € (0,1] and no lower tail depen-

dence if A\, = 0. Similarly the upper tail dependence can be defined (see
Joe, 1997).

The chi-value is zero if P(X < u,Y <wug) = P(X <uy) - P(Y < ug).
This is equal to

C’(ul,uz) = Ui+ u3 (15)
and o o
7@1’“2) = ug resp. 7(u1,u2) = uj. (16)
Uq U2

If the copula is lower tail independent, we know that lim, .o C'(u,u)/u =0
and so the chi-values are also equal to zero. For the normal distribution it is
known that it is not tail dependent (Embrechts et al., 2002) and the chi-plot
shows exactly this.

The bivariate t-distribution provides an interesting contrast to the bi-
variate normal distribution, provided p > —1 the copula of the bivariate
t-distribution is tail dependent (see also Embrechts et al., 2002).
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Figure 1: Scatterplot, chi-plot, density estimation and local dependence map
for normal distributed data
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Figure 2: Scatterplot, chi-plot, density estimation and local dependence map
for t-distributed data
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Figure 3: Scatterplot, chi-plot, density estimation and local dependence map
for Cauchy distributed data



The data underlying the Figure 2 are from a t-distribution with three
degrees of freedom. For the data generation the following qualities are used.
At first bivariate standard normal distributed samples Z with correlation
0.5 are produced. A x? distributed variable U is then produced with df = 3
degrees of freedom. With V = (Vi,V3)/ and V; = \/dfZ; /U, i = 1,2, the
variable V is then a sample from the t-distribution with three degrees of
freedom and

daf

:df—22’

>’ denoting the variance-covariance matrix of the bivariate normal variables.

cov(V) (17)

In comparison with the normal distributed data the chi-plot for the t-
distributed data shows another course. The chi-plot does not incline on
the right side of the graphic to the zero line anymore. This shows tail de-
pendence on the upper right and lower left edge of the data. The local
dependence map looks similar to the map for the normal distributed data.
This changes in the next data example.

The data in Figure 3 are generated from a Cauchy distribution, in the
same way as the t-distributed data. The degrees of freedom are set to one
and the correlation of the bivariate standard normal is set to zero. The
chi-plot in Figure 3 nevertheless shows dependence. Due to the definition of
Ain (6), negative chi-values for negative A mean negative dependence in the
upper left and lower right corner of the data. On the other hand, the positive
chi-values for positive A indicate positive dependence in the lower left and
upper right corner. Looking at the local dependence map, one recognizes
also four fields where dependencies are indicated. This confirms Holland
and Wang's (1987) observation that v(z,y) for the bivariate Cauchy density
“changes sign as (x,y) changes quadrant in the plane. Random variables X
andY are positively associated in the first and third quadrants and negatively
associated in the second and fourth®. Exactly these signs are also shown in
the local dependence map. This can be interpreted as positive association
between |X| and |Y|. The example shows, that the local dependence map
can be used to indicate dependence when the direction of the association is
different in different regions of the plane.
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4 Applications to stock return series

The local dependence graphs are used now to examine the “autocorrelation“
of two daily stock market index return series. The series are the German
DAX! index from January 1, 1990 to Dezember 30, 1998 and the S&P 500
from January 1, 1992 until July 19, 1999. The returns r; are defined by

ry = log ——, (18)

with p; the price of the index at time ¢. The Figures 4 and 5 contain
scatterplots of r; against r;_1 for the respective return series. For both
indexes the chi-plots show dependencies. There are no dependencies in the
center of the bivariate distributions but on the edges. So there seem to be tail
dependencies in the lagged returns. Also in the local dependence maps spots
with positive and negative dependence are recognized. The arrangement of
the spots confirm the well known fact, that the lagged absolute returns
are positively correlated. Both of the dependence graphs also show that the
Bravais-Pearson correlation coefficient is not suitable to include the complex
dependence structure in the lagged returns. The chi-plot shows in addition
that when a model is developed for these data the tail dependence behavior
has to be taken into account.

5 Summary

In the above sections two methods for local analysis of dependence were
presented and illustrated at data examples. The first method, the chi-plot,
is simple to calculate and is well suited to recognize dependence in the
tails of the distribution. The second method, the local dependence map,
is technically more demanding. It requires the estimation of mixed partial
derivatives which is realized by nonparametric estimation methods. This
also means that bandwidths must be chosen. After this the local depen-
dence function must be converted with local permutation tests in the local
dependence map. For this however regions can be indicated for the de-
pendencies which are easy to interpret. Since regions with small densities
are taken out of the calculations, the extreme tails of the distribution can
not be analyzed. In summary, the two graphs are supplementary. The lo-
cal dependence map delivers a mapping which is easy to interpret and the
chi-plot permits representations of the dependencies up to the tails of the
distribution.

!The data are provided by the Deutsche Finanzmarkt Datenbank Karlsruhe
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Figure 4: Scatterplot, chi-plot, density estimation and local dependence map
for lagged daily DAX returns
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Figure 5: Scatterplot, chi-plot, density estimation and local dependence map
for lagged daily S&P 500 returns
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