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Abstract. In this paper, we introduce and discuss the passage to hy-
drodynamic equations for kinetic models of conservative economies, in
which the density of wealth depends on additional parameters, like the
propensity to invest. As in kinetic theory of rarefied gases, the closure
depends on the knowledge of the homogeneous steady wealth distribution
(the Maxwellian) of the underlying kinetic model. The collision operator
used here is the Fokker-Planck operator introduced by J.P. Bouchaud and
M. Mezard in [4], which has been recently obtained in a suitable asymp-
totic of a Boltzmann-like model involving both exchanges between agents
and speculative trading by S. Cordier, L. Pareschi and one of the authors
[11]. Numerical simulations on the fluid equations are then proposed and
analyzed for various laws of variation of the propensity.
Keywords. Wealth and income distributions, Boltzmann equation, hy-
drodynamics, Euler equations

1 Introduction

In recent years, the study of the evolution of the distribution of wealth in a
simple market economy has often been faced by means of methods borrowed
from the kinetic theory of rarefied gases [15, 12, 7, 6, 14, 24, 10, 11]. In most of
the underlying kinetic models of Boltzmann type the market is represented like
an ideal gas, where each molecule is identified with an agent, and each trading
event between two agents is considered to be an elastic or money conserving
collision between two molecules. The founding idea is that a trading market
composed by a sufficiently large number of agents can be described using the
laws of statistical mechanics as it happens in a physical system composed of
many interacting particles. If one agrees with the claim that there are deep
analogies between economics and physics, then various well established physical
methods could be applied in analyzing wealth distributions in economies. In
particular, by identifying money in a closed economy with energy, the applica-
tion of statistical physics methods makes it possible to understand better the
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development of tails in wealth distributions of real economies. In kinetic models
of simple market economies, in fact, the knowledge of the large-wealth behavior
of the steady state density is of primary importance, since it determines a poste-

riori if the model fits data of real economies. By identifying wealth with energy
makes it clear that the problem of the description of the large-time behavior of
the wealth in a kinetic model of the type considered in [15, 12, 7, 6, 14, 24, 10, 11]
is the analogue of the problem of the description of the large-time behavior of the
density in the spatially homogeneous Boltzmann equation, both in the elastic
[5] and inelastic cases [2, 3]. In particular, for nonconservative kinetic models,
this analogy has been recently outlined in [20]. As a matter of fact, in statisti-
cal physics, the knowledge of the large time behavior of the density of energy,
and its approach to a universal profile are subsequently used to construct hy-
drodynamic equations, which describe the space-time evolution of macroscopic
observables. A similar procedure could be in principle applied to the evolu-
tion of the density of wealth, in case this density depends on other important
parameters (typically the space variable in a physical system).

In what follows, we will try to answer this question, by assuming that each
agent is identified by two main variables, the first given by his wealth, the second
by his propensity to invest (in the hope of making a profit). As in a physical
system, where each particle is identified by its position and velocity, and the
position depends on the velocity through the classical equations of motion, we
will assume that the propensity still depends on the wealth through a suitable
equation of motion. This relationship between propensity and wealth is largely
formal, and could be modified in many ways. Nevertheless, it is quite interesting
to observe how the behavior of the hydrodynamic equations we obtained depends
on the assumption of this equation of motion.

We have been interested in this problem after the reading of a recent paper
of Y. Wang, N. Ding, L. Zhang [28], who discussed the concept of the statis-
tical description of the velocity of money circulation. This concept is based
on holding time of money which is defined as time interval between two trans-
actions. Although this concept is kept in mind when economists think of the
velocity, even the term referring to this kind of time interval has been mentioned
in several cases, it is somewhat new to them since there has been no explicit
specification of it in economics. While there exists a similar term in physics
which is measured by the Knudsen number, namely the mean free time between
two subsequent collisions of a molecule [5]. Recently, several efforts have been
devoted to measure the waiting time distributions in financial markets, see e.g.
[17, 22]. In the process of money circulation, not only the amount of money
each agent holds can be considered as random variable, but also the holding
time between two transactions varies randomly. The theoretical investigation
and the numerical simulations in [28] led to the conclusion that the velocity of
money is proportional to the share for exchange, and, most important, reversely
proportional to number of agents, and independent of the average amount of
money.

Using this result in a kinetic model of Boltzmann type, shows that the veloc-
ity of relaxation to the steady distribution of wealth is inversely proportional to
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the velocity of money circulation, which justifies an hydrodynamical description
when the same velocity is sufficiently high.

The paper is organized as follows. In the next section, we will briefly in-
troduce a non-homogeneous Boltzmann type equation, in which the density of
agents depends both on wealth and propensity. The equation is described by a
coupling of transport and collisions, where the collision operator is described in
terms of a Fokker-Planck type collision operator first obtained by J.P. Bouchaud
and M. Mézard [4] from probabilistic arguments and subsequently deduced by
S. Cordier, L. Pareschi and one of the authors [11] from a Boltzmann model
involving both exchanges between agents and speculative trading. The stabil-
ity properties of the homogeneous steady state are subsequently dealt with in
Section 3, together with the relevant closure relations. The universal validity
of these closure relations is subsequently discussed in Section 4. The equation
of motion linking wealth and saving propensity, and the consequent fluid dy-
namical equations are introduced in Section 5. Finally, Section 6 deals with
numerical simulation and comments.

2 Inhomogeneous kinetic models for the evolu-

tion of wealth

As briefly discussed in the introduction, the study of the time-evolution of the
wealth distribution among individuals in a simple economy and the explanation
of the formation of tails in this distribution has been achieved by means of
kinetic collision-like models. Although the approaches are different they seem
to share some common features. Almost all of these models identify a very
important variable for the shape of the wealth distribution, which is usually
called the saving propensity to trade or the saving rate, respectively. This
parameter can both enter into the collision rule as a constant factor [7], or it can
be chosen as a random quantity [8]. Other studies include the saving propensity
as an independent variable [9], without questioning on the relationship between
wealth and saving. The previous approaches to study both wealth and saving
distributions show that in any case it could be reasonable to introduce other
types of propensities into the game, which are not directly connected to the
microscopic binary trade, while they could be important in the evolution of
wealth in a market of agents. Among others, one can assume that the evolution
of the density of wealth is heavily dependent on the propensity to invest, and
at the same time that this propensity is closely related to the amount of money
one agents has to deal with. In this case, we are led to study the evolution
of the distribution function as a function depending on the propensity x ∈
[0, 1], wealth w ∈ R+ and time t ∈ R+, f = f(x, w, t). In analogy with the
classical kinetic theory of rarefied gases, we emphasize the role of the different
parameters by identifying the velocity with the wealth, and the position with
the saving propensity. By doing this, we assume at once that the variation of
the distribution f(x, w, t) with respect to the wealth parameter w will depend
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on collisions between agents, while the change of distributions in terms of the
propensity x depends on the transport term, which contains the equation of
motion, namely the law of variation of x with respect to time,

dx

dt
= Φ(x, w). (2.1)

The time-evolution of the distribution will obey a non-homogenous Boltzmann-
like equation, given by

∂

∂t
f(x, w, t) + Φ(x, w)

∂

∂x
f(x, w, t) =

1

τ
Q(f)(x, w, t). (2.2)

In (2.2) Φ is the law of variation of the propensity to invest given in (2.1), while
Q represents the collision operator which describes the change of density due to
binary trades. Finally τ is a suitable relaxation time, depending on the velocity
of money circulation [28]. Note that in physical applications where no forces
are present, the transport term is simply Φ(x, w) = w.

The goal of a kinetic model of a simple market economy is to describe the
evolution of the distribution of wealth by means of microscopic interactions
among agents or individuals which perform exchange of money. Each trade can
indeed be interpreted as an interaction where a fraction of the money changes
hands. One generally assumes that this wealth after the interaction is non
negative, which corresponds to impose that no debts are allowed. This rule
emphasizes the difference between economic interactions, where not all outcomes
are permitted, and the classical interactions between molecules. In any trading,
savings come naturally [23]. In a real society or economy, the saving propensity
is a very inhomogeneous parameter, and the interest of saving varies from person
to person, according to their wealths. To move a step closer to the real situation,
one has to introduce a saving factor widely distributed within the population
[8, 9], and responsible of different outcomes into binary trades. The evolution
of money in such a trading can be written as [9]

v∗ = γv + ǫ(γ, µ) [(1 − γ)v + (1 − µ)w] ,

(2.3)
w∗ = µw + (1 − ǫ(γ, µ)) [(1 − γ)v + (1 − µ)w] .

Here (γ, w) and (µ, v) denote the saving propensities and wealths of agents
before collisions. In a single collision it is assumed that the agents maintain their
saving propensities fixed, so that the post-collision parameters are (γ, w∗) and
(µ, v∗). Moreover ǫ(γ, µ) denotes a random fraction, coming from the stochastic
nature of the trading. A slightly different mechanism was considered in [11].
Here the trade between two agents has been described by

v∗ = (1 − γ)v + γw + ηv,

(2.4)
w∗ = γv + (1 − γ)w + η̃w.

In (2.4) the trade depends on a single saving rate γ ∈ (0, 1), while the risks of
the market are described by η and η̃, equally distributed random variables with
zero mean and variance σ2.
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A Boltzmann-like collision operator can be easily derived by standard meth-
ods of kinetic theory, considering that the change in time of f(x, w, t) due to
binary trades depends on a balance between the gain and loss of agents with
wealth w. This operator reads

Q(w) =

〈

∫ 1

0

dy

∫

R+

dv
( 1

J
f(v∗)f(w∗) − f(v)f(w)

)

〉

. (2.5)

In (2.5) (v∗, w∗) denote the pre-trade pair that produces the post-trade pair
(v, w), following rules like (2.3) or (2.4), while J denotes the Jacobian of the
transformation of (v, w) into (v∗, w∗). Finally, 〈·〉 denotes the operation of mean
with respect to possible random quantities (like ǫ(γ, µ) or η, η̃). A useful way
of writing the collision operator (2.5), that allows to avoid the Jacobian, is the
so-called weak form. It corresponds to consider, for all smooth functions φ(w),

∫

R+

Q(f, f)(w)φ(w) dw =

1

2

〈

∫ 1

0

dy

∫

R+

∫

R+

dv dw (φ(v∗) + φ(w∗) − φ(v) − φ(w))f(y, v)f(x, w)

〉

.

(2.6)
Setting φ(w) = 1 into (2.6) and denoting the mass by

ρ(f) =

∫

R+

f(w) dw

implies
dρ(f)

dt
=

∫

R+

Q(f, f)(w) dw = 0.

Likewise, if there is pointwise conservation of wealth in each binary trade (like
in (2.3))

v∗ + w∗ = v + w,

or, more generally, conservation in mean (like in (2.4))

〈v∗ + w∗〉 = v + w,

the same conservation reflects to (2.6). Choosing φ(w) = w, and denoting the
mean wealth by

m(f) =
1

ρ(f)

∫

R+

wf(w) dw

we obtain
dm(f)

dt
=

∫

R+

Q(f, f)(x, w)w dw = 0.
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In the continuous trading limit (γ → 0, σ2/γ → λ), it has been shown in [11]
that the collision operator (2.5) is well described by the Fokker-Planck collision
operator

P(w) =
λ

2

∂2

∂w2
(w2f(w)) +

∂

∂w
(w − m(f))f(w), (2.7)

where, as before, m(f) is the mean wealth of f(w). The key parameter λ is ob-
tained as the limit of the quotient of the variance and the saving rate. The same
equation has been obtained before by considering the mean-field limit in a trad-
ing model described by stochastic differential equations [4]. The homogenous
kinetic equation

∂

∂t
f(w, t) = P(w, t), (2.8)

is such that both the mass and the mean wealth m(f) are conserved in time.
Moreover, for any initial density f(w, t = 0) = f0(w) with mass ρ and mean
m, equation (2.8) has a unique stationary state, from now on called Maxwellian
state Mρ,m(w) given by

Mρ,m(w) = ρ
((µ − 1)m)

µ

Γ(µ − 1)

1

w1+µ
exp

(

−
(µ − 1)m

w

)

, (2.9)

where

µ = 1 +
2

λ
> 1.

Therefore the Maxwellian distribution exhibits a Pareto power law tail for large
w’s. In particular, higher moments of the equilibrium Maxwellian are given in
terms of mass ρ and mean m. The second moment can be easily evaluated
considering that in equilibrium, i.e. as t → ∞, one has

0 =
λ

2

∫

R+

w2 ∂2

∂w2
(w2Mρ,m(w)) dw +

∫

R+

w2 ∂

∂w
[Mρ,m(w)(w − m)] dw

=λ

∫

R+

w2Mρ,m(w) dw − 2

∫

R+

w(w − m)Mρ,m(w) dw

=(λ − 2)

∫

R+

w2Mρ,m(w) dw + 2m

∫

R+

wMρ,m(w) dw

=(λ − 2)

∫

R+

w2Mρ,m(w) dw + 2ρm2.

Thus, if λ < 2, the second moment of the Maxwellian is bounded, and
∫

R+

w2Mρ,m(w) dw =
2

2 − λ
ρm2. (2.10)

In what follows, we will assume that in a closed economy the Maxwellian dis-
tribution Mρ,m, equilibrium solution of the Fokker-Planck equation (2.8), plays
the same role as played by the Maxwell distribution in kinetic theory of rarefied
gases. However, on the contrary to what happens in classical kinetic theory,

6



where the equilibrium Maxwellian has all moments bounded, in this case the
number of moments bounded in the equilibrium depends on the parameter λ
in front of the second-order term in (2.7). Formation of tails and the stability
properties of tailed equilibria have been recently studied in [20] in terms of a
Fourier-based metric. We refer to [20] for details and references to this topic.

3 The passage to hydrodynamic equations

3.1 The Euler equations

The discussion of the previous section enlightened the main properties of the
collision operator (2.7), like the existence of a unique Maxwellian equilibrium
with tails, and the consequent possibility to obtain higher order moments from
the first two (mass and mean wealth). Like in classical kinetic theory of rarefied
gases, these properties are the basis of the construction of a reasonable hydro-
dynamics for the evolution of the propensity. The underlying kinetic model is
obtained by substituting the Fokker-Planck operator into the Boltzmann equa-
tion (2.2)

∂

∂t
f(x, w, t) + Φ(x, w)

∂

∂x
f(x, w, t) =

1

τ
P(f)(x, w, t). (3.1)

The τ -parameter (the analogous of the Knudsen number) represents a suitable
relaxation time, and has to be assumed small in fluid dynamical regimes. A
clear understanding of the derivation of macroscopic equations in kinetic theory
can by obtained through the use of the splitting method, very popular in the
numerical approach to the Boltzmann equation [13, 19]. If at each time step we
consider sequentially the transport and relaxation operators in the Boltzmann
equation (3.1), during this short time interval we recover the evolution of the
density from the joint action of the relaxation

∂f

∂t
=

1

τ
P(x, w, t), (3.2)

and transport
∂f

∂t
+ Φ(x, w)

∂

∂x
f(x, w, t) = 0. (3.3)

As in classical kinetic theory, where the energy is conserved in collisions, the
conservation of the mean wealth in the relaxation step is enough to guarantee
that (3.2) pushes the solution towards the Maxwellian equilibrium with the same
mass and mean of the initial datum. Then, if τ is sufficiently small, one can
easily argue that the solution to (3.2) is sufficiently close to the Maxwellian,
and this Maxwellian can be used into the transport step (3.3) to close the
equations. In more details, since the Fokker-Planck operator (2.7) is both mass
and momentum preserving, integrating equation (3.1) with respect to the wealth
velocity w, using as test functions φ(w) = 1, w respectively we obtain

∫

R+

(

∂f

∂t
+ Φ(x, w)

∂

∂x
f(x, w, t)

)

dw = 0, (3.4)
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and
∫

R+

w

(

∂f

∂t
+ Φ(x, w)

∂

∂x
f(x, w, t)

)

dw = 0, (3.5)

Let us fix the law Φ to be linearly dependent on w,

Φ(x, w) = (w − χw̄)µ(x), (3.6)

where χ is a positive constant and w̄ represent a suitable fixed value of the
wealth. Then, we obtain from (3.4), (3.5) the equations

∂ρ

∂t
+ µ(x)

∂

∂x

[

ρ
(

m − χw̄
)

]

= 0, (3.7)

∂(ρm)

∂t
+ µ(x)

∂

∂x

[

∫

R+

w2f(x, w, t) dw − χw̄ρm

]

= 0. (3.8)

In (3.7), (3.8) we defined as macroscopic variables, the local density of agents
with propensity x at time t, given by

ρ(x, t) =

∫

R+

f(x, w, t) dw, (3.9)

and the local mean

m(x, t) =
1

ρ(x, t)

∫

R+

wf(x, w, t) dw. (3.10)

Equation (3.8) depends on the second moment of the density. Using the equilib-
rium Maxwellian (2.10), however, we can express this second moment in terms
of the first two. By this relationship we finally obtain the following system of
equations

∂ρ

∂t
+ µ(x)

∂

∂x

[

ρ
(

m − χw̄
)

]

= 0, (3.11)

∂(ρm)

∂t
+ µ(x)

∂

∂x

[

ρm
( 2

2 − λ
m − χw̄

)]

= 0, (3.12)

which have to be solved on (0, 1)× (0, T ) with appropriate boundary and initial
conditions. Using (3.11) we can rewrite the second equation as

∂m

∂t
+ µ(x)(m − χw̄)

∂m

∂x
+

λ

2 − λ

1

ρ

∂

∂x

[

ρm2
]

= 0. (3.13)

3.2 The mathematical structure of Euler equations

In this short section, we will show that the hydrodynamic equations (3.11),
(3.12) can be written in symmetric hyperbolic form. Multiplying (3.11) by m
and subtracting it from (3.12) we obtain

ρmt + µ(x)
[

−(ρxm + ρmx)m

+ χw̄mρx + (ρxm + 2ρmx)
2

2 − λ
m − (ρxm + ρmx)χw̄

]

= 0. (3.14)
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Define u = (ρ, m). Then a direct computation shows that the system (3.11),
(3.14) can be written in compact form as

A0(t, x, u)
∂u

∂t
+ A1(t, x, u)

∂u

∂x
= 0. (3.15)

In (3.15) A0 and A1 denote the with symmetric matrices

A0(t, x, u) =

(

1

ρ
λ

2−λ
m2 0

0 ρ

)

, (3.16)

A1(t, x, u) =

(

ρ(m − χw̄) λ
2−λ

m2 λ
2−λ

m2

λ
2−λ

m2
(

1 + 4

2−λ

)

ρm − ρχw̄

)

. (3.17)

Note that, for all ρ, m ∈ G belonging to a suitable set G, A0(t, x, u) is uniformly
positive definite provided λ < 2. Due to their structure, suitable numerical
methods are available [16].

4 Universality of the closure

One of the main advantages linked to the use of the Fokker-Planck collision
operator (2.7) is that it is immediate to recover its steady state, namely the
Maxwellian (2.9). Unlikely, if we use a different collision operator like the Boltz-
mann operator (2.5), while it is possible to prove that in case of conservative
trades there exists a unique steady state [18], the explicit form of this Maxwellian
is unknown. This problem is not present in classical elastic kinetic theory of
rarefied gases, where the Maxwellian is uniquely defined independently of the
choice of the binary collision operator [5]. This fact causes a first serious prob-
lem in the justification of the validity of the closure, which in principle has to
be independent of the choice of the underlying microscopic model of collisions,
except, eventually, for constant parameters. Using the results of [18], however,
we can easily conclude that the closure law

∫

R+

w2Mρ,m(w) dw = Cρm2. (4.1)

where C = 2/(2 − λ) in (2.10), has a universal validity, and the type of binary
trade used into the collision operator (2.5) is reflected only by the precise value
of the constant C. Following [18], let us suppose that the (conservative) binary
interactions are described by the rules

v∗ = p1v + q1w, w∗ = p2v + q2w, (4.2)

where
〈p1 + p2〉 = 1, 〈q1 + q2〉 = 1. (4.3)

We remark that both trades (2.3) and (2.4) satisfy assumption (4.3). In this
case, application of formula (2.6) with φ(w) = wn allows to compute recursively
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the evolution of the principal moments

Mn(t) =

∫

R+

wnf(w, t) dw

with n ≥ 2 (see [18] for details). One obtains

d

dt
Mn(t) =

1

2
〈(pn

1 + pn
2 − 1) + (qn

1 + qn
2 − 1)〉Mn(t)+

1

2

n−1
∑

k=1

(

n
k

)

〈

pk
1qn−k

1 + pk
2qn−k

2

〉

Mk(t)Mn−k(t). (4.4)

Considering that the first moment is conserved, M1(t) = m, equation (4.4) also
furnishes a recursive computation of the principal moments of the stationary
solution

Mn = ρ

∑n−1

k=1

(

n
k

)

〈

pk
1q

n−k
1 + pk

2q
n−k
2

〉

MkMn−k

2 − 〈pn
1 + pn

2 + qn
1 + qn

2 〉
. (4.5)

In particular,

M2 =

∫

R+

w2Mρ,m(w) dw = ρm2 2 〈p1q1 + p2q2〉

2 − 〈p2
1 + p2

2 + q2
1 + q2

2〉
, (4.6)

that coincides with the law (4.1), in which

C =
2 〈p1q1 + p2q2〉

2 − 〈p2
1 + p2

2 + q2
1 + q2

2〉
. (4.7)

If we consider the trade (2.4), where

p1 = 1 − γ + η, q1 = γ,

(4.8)
p2 = γ, q2 = 1 − γ + η̃.

we obtain for C the value

C =
2γ(1 − γ)

2γ(1 − γ) − σ2
. (4.9)

Note that this value corresponds to the choice

λ =
σ2

γ(1 − γ)

in (2.10). This result enlightens the meaning of the constant λ appearing in the
Fokker-Planck equation (2.7) in terms of the underlying binary trade (2.4). We
remark that also in this case the stationary state of the Boltzmann equation
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possesses tails. Considering now the trade (2.3), where for simplicity ǫ(γ, µ) =
1/2,

p1 = (1 + γ)/2, q1 = (1 − µ)/2,

(4.10)
p2 = (1 − γ)/2, q2 = (1 + µ)/2,

which implies

C =
2(1 − γµ)

2 − (γ2 + µ2)
. (4.11)

This corresponds to the choice

λ =
(γ − µ)2

1 − γµ

in (2.10). In this second case, however, the constant λ is always strictly less than
2. This is related to the fact that, for pointwise collisions like the one defined
by (4.10), the stationary solution has all moments bounded [18]. In conclusion,
the previous analysis shows the universality of the closure of hydrodynamic
equations, at least in the well-defined case of conservative economies.

5 Which law for the propensity to trade?

To proceed and to obtain (at least numerical) results on the time-evolution of
the macroscopic quantities, it is necessary to set the two variables x and w
into relation. In classical hydrodynamics, where the variables are position and
velocity this relation is obvious, since velocity is the time derivative of position.
In absence of forces, it corresponds to choose Φ(x, w) = w. To find an analogue
for our economic setting, namely a law for the propensity to trade, we resort to
some arguments within the concepts of opinion formation.

In [1], attention has been focused on two aspects, which in principle could
be responsible of the formation of coherent structures. The first one is the
remarkably simple compromise process, in which pairs of agents reach a fair
compromise after exchanging opinions. The second is the diffusion process,
which allows individual agents to change their opinions in a random diffusive
fashion. While the compromise process has its basis on the human tendency
to settle conflicts, diffusion accounts for the possibility that people may change
opinion through a global access to information. In the present time, this aspect
is gaining in importance due to the emerging of new possibilities (among them
electronic mail and web navigation [21]).

Following this line of thought, in [27] a class of kinetic models of opinion
formation, based on two-body interactions involving both compromise and dif-
fusion properties in exchanges between individuals have been introduced. These
models are described by partial differential equation of Fokker-Planck type for
the distribution of opinion among individuals. Similar diffusion equations were
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obtained recently in [25] as the mean field limit of the Ochrombel simplification
of the Sznajd model [26].

The equilibrium state of the Fokker-Planck equation can be computed ex-
plicitly and, in absence of internal points in which diffusion is missing, is in most
cases well represented by a Beta distribution

B(x; α, β) =
xα(1 − x)β

∫ 1

0
uα(1 − u)β du

=
Γ(α + β + 2)

Γ(α + 1)Γ(β + 1)
xα(1 − x)β (5.1)

where α, β > −1, and Γ is the gamma function. In what follows, we assume
that the stationary profile for the distribution of our propensity to trade follows
a law of type (5.1). Taking into account that this stationary profile is stable,
a highly reasonable hypothesis is to assume that the rate of variation of the
propensity is proportional to the density of people having that propensity. In
this case, in order to maintain the lower and upper bounds of x(t) we assume
the law

Φ(x, w) = xα(1 − x)βH(w), (5.2)

where α, β > 0, and the coefficient H(w) takes into account the dependence of
the law of variation on the (relative) wealth. We remark that, under the new
bounds on α, β, people with propensity to trade close to zero or one are more
stable in their propensity, while people with intermediate propensity have more
inclination to change their idea.

Last, the form of H(w) can be deduced owing to the following arguments
from microeconomic theory.

Consider the case of a rational investor seeking to maximize his utility from
wealth after each trade. He can choose a combination of saving his current
wealth and the return from a trade, thus, since η has zero mean, his expected
post-trade wealth is

〈w∗〉 = w + x(v − w) = (1 − x)w + xv.

The investor’s choice of his propensity to invest can be interpreted as the choice
of combinations of two options, w and v. The investor tries to maximize his
expected utility from post-trade wealth 〈u(w∗)〉, where u is a utility function
characterizing the investor’s satisfaction from wealth, e.g. the Cobb-Douglas
function

u(w, v) = wδv1−δ, 0 ≤ δ ≤ 1.

The projection of this function onto the w-v-plane gives level curves of constant
utility, the so-called indifference curves. The investor is indifferent to the differ-
ent combinations of v and w on such a curve, or in other words, at each point on
an indifference curve he has no preference for one combination over another. A
rational investor will choose a value for x that maximizes his utility from post-
trade wealth. Therefore it is clear, that x should be a function of the investor’s
wealth w or his relative wealth w − χw̄, if utility from wealth is measured with
respect to the mean wealth χw̄ as a reference value (χ denotes here a suitable
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constant). In other words, the fundamental law of physics about position and
velocity and their relation is replaced here by an economic law that relates a
rational investor’s propensity to invest and his wealth based on the principle of
utility maximization.

In general, the optimal choice of x depends on the underlying utility func-
tion and this can lead to quite complex and non-linear relationships between
propensity to invest x and wealth w. However, recall that we are considering
a regime where the time between trades τ is very small. If we assume that Φ
is smooth enough, we can approximate it by a linear relation and ignore terms
of higher order. Furthermore, empirical results [23] from economic literature
suggest, that typically individuals have decreasing absolute risk aversion.

A simple way to take into account these facts is to relate the time variation
of the propensity to the relative (with respect to the mean) wealth. A way to
cope with these demands is to introduce the following law

Φ(x, w) = ±ϑxα(1 − x)β
(

w − χm̄(t)
)

, (5.3)

where m̄(t) =
∫ 1

0
m(x, t) dx denotes the mean wealth at time t, and ϑ is a positive

constant. Let us remark that the choice α = β = 1 implies an exponential decay
of x(t) towards one of the two extremal points. Since x(t) < 1, its variation with
respect to time can be controlled by a suitable choice of these parameters. Let us
note further that the choice of a positive (negative) sign into (5.3) implies that
individuals with a higher (lower) wealth will be more (less) willing to trade than
individuals with lower (higher) wealth. Clearly, this is only one choice among
many possibilities. However, it seems a promising, quite natural approach,
which is at the same time flexible enough, and sufficiently easy to be tractable
from a numerical point of view. Using this choice in (3.11) and (3.12), and
absorbing ϑ into time, we arrive to the following system

∂ρ

∂t
+ xα(1 − x)β ∂

∂x

[

ρ
(

m − χm̄
)

]

= 0, (5.4)

∂ρm

∂t
+ xα(1 − x)β ∂

∂x

[

ρm
( 2

2 − λ
m − χm̄

)]

= 0. (5.5)

As before, using (5.4) we can rewrite the second equation as

∂m

∂t
+ xα(1 − x)β(m − χm̄)

∂m

∂x
+

λ

2 − λ

1

ρ

∂

∂x

[

ρm2
]

= 0. (5.6)

6 Numerical results

To solve (5.4), (5.5) numerically, we use a standard finite element method. We
choose quadratic Lagrangian elements on a uniform grid with 480 nodes. We
use the initial conditions

ρ0(x) = 0.1, m0(x) = x(1 − x), x ∈ (0, 1).
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At the boundaries we use homogenous Neumann conditions for ρ and homoge-
nous Dirichlet conditions for m. If not mentioned otherwise, we choose α = β =
2, χ = 1, λ = 1 and the final time is T = 15.

Figure 6.1 displays the numerical solution for different values of λ. Recall
that a higher λ corresponds to tails with a lower Pareto index, and this cor-
responds to a society with a strong economy. We can observe the same effect
here at the macroscopic level. As λ increases, the density of agents with a high
propensity to trade increases while the wealth density is increasing for larger
propensities and decreasing for smaller propensities, i.e. a large fraction of the
total wealth is owned by a small group of agents.
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Figure 6.1: Influence of different values for λ (λ = 1, 1.3, 1.5, 1.8, 1.9)

Figure 6.2 shows the influence of different variants of law (5.3). For a value
of β = 1.5 agents with wealth above the mean wealth increase their propensity
to trade which leads to a peak formation in the density ρ close to x = 1. For
higher values of β the propensity to invest grows slower when above the average
wealth and the peak is less pronounced. We present no results concerned with
the variation of α, but clearly they are similar since the law (5.3) is symmetric
with respect to these parameters. Therefore, increasing β or α means to slow
down the movement of agents’ propensity towards the extremal points, where
people have zero or maximal propensity to invest.
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Figure 6.2: Influence of different values for β (β = 1.5, 2, 3, 5)
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The influence of the parameter χ can be observed in Figure 6.3. For high
values of χ only very wealthy agents increase their propensity to trade, all other
decrease it. This results in a peak formation at lower levels of x with agents
saving most of their wealth. The influence of the different values of χ clearly
indicate that if the propensity increases in a larger interval, also the density and
the mean wealth move left, and there is the possibility to increase the wealth.
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Figure 6.3: Influence of different values for χ (χ = 0.5, 1, 2, 5, 10)

Obviously, the reference for measuring the wealth, controlled by χ and m̄(t)
plays an important role. To model a real economy, one could generalize the law
and replace the constant χ by a function of time χ(t). For example, one can
have agents whose perception of wealth is increasing or decreasing over time by
choosing an increasing or decreasing χ(t). Seasonal effects can be modeled by
introducing a factor χ(t) = χ̄(2 − cos(ct)), where χ̄ is a long-run mean and c
is an annual constant. Figure 6.4 displays the difference in the solutions in two
simulations, one carried out using a time-varying factor χ(t) = χ̄(2 − cos(ct))
with χ̄ = 1 and c = 1 and the other with with constant χ = 1.
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Figure 6.4: Influence of a seasonal effect modelled by a time-varying χ(t). Dis-
played are the differences in ρ (left) and m (right) from one simulation with
χ(t) = χ̄(2 − cos(ct)) with χ̄ = 1, c = 1 and another one with constant χ = 1.

The previous examples enlighten the influence of the law (2.1) in the evolu-
tion of the macroscopic quantities. Clearly, the proposed law (5.3) constitutes
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only a prototype towards a better understanding of the whole matter. Changing
the law (5.3) allows to clarify the role of the various parameters involved. By
maintaining the linearity with respect to the wealth parameter w, we consider
in what follows the law

Φ̃(x, w) = ν(x)(w − m̄(t)), (6.1)

with ν(x) = cxα(1/2 − x)γ(1 − x)β . Law (6.1) assumes as hypothesis the (rea-
sonable?) fact that in correspondence to some point (in this case x = 1/2) the
propensity tends to stabilize. Figure 6.5 shows a comparison of µ(x), ν(x) cor-
responding to the same values of α and β. For numerical simulation we choose
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Figure 6.5: Functions µ(x) and ν(x) used in the numerical illustration.

α = β = 4, γ = 2, c = 750, T = 5 and λ = 1 and the same initial and boundary
conditions as above. Figure 6.6 shows the plot of the densities ρ and m at time
T = 5 resulting from the computations with the different laws.
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Figure 6.6: Influence of different laws for propensity: solid lines correspond to
law (6.1), broken lines to (5.3).
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7 Conclusions

We formulated a model for the temporal evolution of the density of agents in a
market, where the density itself depends both on the propensity to trade and
wealth, which are here the analogues of position and velocity in classical sta-
tistical mechanics. The underlying inhomogeneous Boltzmann equation is then
used as the starting point for the derivation of suitable hydrodynamic equations,
which are the Euler equations for the economic system. The equilibrium state
which is at the basis of the closure is the stationary solution of a Fokker-Planck
equation derived recently both as the mean field limit of a stochastic differen-
tial equation [4] and the quasi-invariant limit of a model Boltzmann equation
based on binary interactions among agents [11]. The interesting property of
this stationary solution (the analogous of the Maxwell distribution in classical
kinetic theory of rarefied gases) is that it is known analytically, and possesses
Pareto tails of a given order. A detailed discussion, however, shows that the
closure relations have a universal character, which implies that the macroscopic
equations are invariant with respect to the choice of the conservative kinetic
collision operator. The link between wealth and propensity to trade is postu-
lated on the basis of some recent results on opinion formation [25, 1, 27]. The
variation in time of the propensity is represented by a logistic-type first-order
differential equation which depends linearly on the wealth variable. Various nu-
merical examples are then presented, to show the dependence of the evolution
of the macroscopic variables on the empirical law of propensity.
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