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Abstract 

We document widespread violations of stochastic dominance in the one-month S&P 500 index 

options market over the period 1986-2002.  These violations imply that a trader can improve her 

expected utility by engaging in a zero-net-cost trade.  We allow the market to be incomplete and also 

imperfect by introducing transactions costs and bid-ask spreads.  There is higher incidence of 

violations by OTM than by ITM calls, contradicting the common inference drawn from the observed 

implied volatility smile that the problem lies with the left-hand tail of the index return distribution.  

Even though pre-crash option prices conform to the BSM model reasonably well, they are incorrectly 

priced.  Over 1997-2002, many options, particularly OTM calls, are overpriced irrespective of which 

time period is used to determine the index return distribution.  These results do not support the 

hypothesis that the options market is becoming more rational over time.  Finally, our results dispel 

another common misconception, that the observed smile is too steep after the crash: most of the 

violations by post-crash options are due to the options being either underpriced over 1988-1995, or 

overpriced over 1997-2002. 
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1 Introduction 

 
A robust prediction of the celebrated Black and Scholes (1973) and Merton (1973) 

(BSM) option pricing model is that the volatility implied by market prices of 

options is constant across strike prices.  Rubinstein (1994) tested this prediction on 

the S&P 500 index options (SPX), traded on the Chicago Board Options Exchange, 

an exchange that comes close to the dynamically complete and perfect market 

assumptions underlying the BSM model.  From the start of the exchange-based 

trading in April 1986 until the October 1987 stock market crash, the implied 

volatility is a moderately downward-sloping function of the strike price, a pattern 

referred to as the “volatility smile”, also observed in international markets and to a 

lesser extent on individual-stock options.  Following the crash, the volatility smile is 

typically more pronounced.1

An equivalent statement of the above prediction of the BSM model, that the 

volatility implied by market prices of options is constant across strike prices, is that 

the risk-neutral stock price distribution is lognormal.  Ait-Sahalia and Lo (1998), 

Jackwerth and Rubinstein (1996) and Jackwerth (2000) estimated the risk-neutral 

stock price distribution from the cross section of option prices.2  Jackwerth and 

Rubinstein (1996) confirmed that, prior to the October 1987 crash, the risk-neutral 

stock price distribution is close to lognormal, consistent with a moderate implied 

volatility smile.  Thereafter, the distribution is systematically skewed to the left, 

consistent with a more pronounced smile. 

These findings raise several important questions.  Does the BSM model work 

well prior to the crash?  If it does, is it because the risk-neutral probability of a 

stock market crash was low and consistent with a lognormal distribution?  Or, is it 

because the risk-neutral probability of a stock market crash was erroneously 

                                                 
1 Brown and Jackwerth (2004), Jackwerth (2004), Shefrin (2005), and Whaley (2003) review the 

literature and potential explanations. 
2 Jackwerth (2004) reviews the parametric and non-parametric methods for estimating the risk-

neutral distribution. 
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perceived to be low by the market participants?  Why does the BSM model 

typically fail after the crash?  Is it because the risk neutral probability of a stock 

market crash increased after the crash and became inconsistent with a lognormal 

distribution?  Or, is it because the risk neutral probability of a stock market crash 

was erroneously perceived to do so?  Is the options market rational before and after 

the crash? 

Several no-arbitrage models have been proposed and tested that generalize 

the BSM model.  These models explore the effects of generalized stock price 

processes including stock price jumps and stochastic volatility and typically 

generate a volatility smile.  Excellent discussion of these models appears in Hull 

(2005) and McDonald (2003). 

Whereas downward sloping implied volatility is inconsistent with the BSM 

model, it is important to realize that this pattern is not inconsistent with economic 

theory in general.  Two fundamental assumptions of the BSM model are that the 

market is dynamically complete and frictionless.  We empirically investigate 

whether the observed cross sections of one-month S&P 500 index option prices over 

1986-2002 are consistent with various economic models that explicitly allow for a 

dynamically incomplete market and also an imperfect market that recognizes 

trading costs and bid-ask spreads. 

Absence of arbitrage in a frictionless market implies the existence of a 

risk-neutral probability measure, not necessarily unique, such that the price of 

any asset equals the expectation of its payoff under the risk-neutral measure, 

discounted at the risk free rate.  If a risk-neutral measure exists, the ratio of the 

risk-neutral probability density and the real probability density, discounted at 

the risk free rate, is referred to as the pricing kernel or stochastic discount factor.  

Thus, absence of arbitrage implies the existence of a strictly positive pricing 

kernel. 

Economic theory imposes restrictions on equilibrium models beyond merely 

the ruling out of arbitrage.  In a frictionless representative-agent economy, the 

pricing kernel equals the representative agent’s intertemporal marginal rate of 

substitution over each trading period.  If the representative agent has state 
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independent (derived) utility of wealth, then the concavity of the utility function 

implies that the pricing kernel is a decreasing function of wealth. 

The monotonicity restriction on the pricing kernel does not critically depend 

on the existence of a representative agent.  If there does not exist at least one 

pricing kernel that is a decreasing function of wealth over each trading period, then 

there does not exist even one economic agent with state independent (derived) 

utility of wealth that is a marginal investor in the market.  Therefore, any economic 

agent can increase her expected utility by trading in these assets.  Hereafter, we 

employ the term stochastic dominance violation to connote the nonexistence of even 

one economic agent with increasing and concave utility that is a marginal investor 

in the market.3  This means that the return of any agent’s current portfolio is 

stochastically dominated (in the second degree) by the return of another feasible 

portfolio. 

Under the two maintained hypotheses that the marginal investor’s (derived) 

utility of wealth is state independent and wealth is monotone increasing in the 

market index level, the pricing kernel is a decreasing function of the market index 

level.  Ait-Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg and Engle 

(2002) estimated the pricing kernel implied by the observed cross section of prices 

of S&P 500 index options as a function of wealth, where wealth is proxied by the 

S&P 500 index level.  Jackwerth (2000) reported that the pricing kernel is 

everywhere decreasing during the pre-crash period 1986-1987 but widespread 

violations occur over the post-crash period 1987-1995.  Ait-Sahalia and Lo (2000) 

reported violations in 1993 and Rosenberg and Engle (2002) reported violations 

over the period 1991-1995.4  On the other hand, Bliss and Panigirtzoglou (2004) 

estimated plausible values for the risk aversion coefficient of the representative 

agent, albeit under the assumption of power utility, thus restricting the shape of the 

pricing kernel to be monotone decreasing in wealth. 

                                                 
3 This line of research was initiated by Perrakis and Ryan (1984), Levy (1985), and Ritchken 

(1985).  For more recent related contributions, see Perrakis (1986, 1993), Ritchken and Kuo 

(1988), and Ryan (2000, 2003). 
4 Rosenberg and Engle (2002) found violations when they used an orthogonal polynomial pricing 

kernel but not when they used a power pricing kernel. 
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Several theories have been suggested to explain the inconsistencies with the 

BSM model and the violations of monotonicity of the pricing kernel.  Brown and 

Jackwerth (2004) suggested that the reported violations of the monotonicity of the 

pricing kernel may be an artifact of the maintained hypothesis that the pricing 

kernel is state independent but concluded that volatility cannot be the sole omitted 

state variable in the pricing kernel.  Bollen and Whaley (2004) suggested that 

buying pressure drives the volatility smile while Han (2004) and Shefrin (2005) 

provided behavioral explanations based on sentiment. 

Pan (2002), Garcia, Luger and Renault (2003), and Santa-Clara and Yan 

(2004), among others, obtained plausible parameter estimates in models in which 

the pricing kernel is state dependent, using panel data on S&P 500 options.  Others 

calibrated equilibrium models that generate a volatility smile pattern observed in 

option prices.  Liu, Pan and Wang (2005) investigated rare-event premia driven by 

uncertainty aversion in the context of a calibrated equilibrium model and 

demonstrated that the model generates a volatility smile pattern observed in option 

prices.  Benzoni, Collin-Dufresne, and Goldstein (2005) extended the above 

approach to show that uncertainty aversion is not a necessary ingredient of the 

model.  More significantly, they demonstrated that the model can generate the 

stark regime shift that occurred at the time of the 1987 crash.  While not all of the 

above papers deal explicitly with the monotonicity of the pricing kernel, they do 

address the problem of reconciling the option prices with the historical index record.  

These results are suggestive but stop short of demonstrating absence of stochastic 

dominance violations on a month-by-month basis in the cross section of S&P 500 

options.  This inquiry is the focus of this paper. 

In estimating the statistical distribution of the S&P 500 index returns, we 

refrain from adopting the BSM assumption that the index price is a Brownian 

motion and, therefore, its arithmetic returns are lognormal.  We do not impose a 

parametric form on the distribution of the index returns but proceed in three 

different ways.  In the first approach, we estimate the unconditional distribution as 

the histograms extracted from two different historical index data samples covering 

the periods 1928-1986 and 1972-1986.  In the second approach, we estimate the 

unconditional distribution as the histograms extracted from two different forward-
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looking samples, one that includes the October 1987 crash (1987-2002) and one that 

excludes it (1988-2002).  Finally, we model the variance of the index returns as a 

GARCH (1,1) process and estimate the conditional variance over the period 1972-

2002 by the semiparametric method of Engle and Gonzalez-Rivera (1991) that does 

not impose the restriction that conditional returns are normally distributed. 

Based on the index return distributions extracted in the above five 

approaches, we test the compliance of option prices to the predictions of models 

that allow for market incompleteness, market imperfections and intermediate 

trading over the life of the options.  Evidence of stochastic dominance violations 

means that any trader can increase her expected utility by engaging in a zero-net-

cost trade.  We consider a market with heterogeneous agents and investigate the 

restrictions on option prices imposed by a particular class of utility-maximizing 

traders that we simply refer to as traders.  We do not make the restrictive 

assumption that all economic agents belong to the class of the utility-maximizing 

traders.  Thus, our results are robust and unaffected by the presence of agents with 

beliefs, endowments, preferences, trading restrictions, and transactions costs 

schedules that differ from those of the utility-maximizing traders modeled in this 

paper. 

Our tests accommodate at least three implications associated with state 

dependence.  First, each month we search for a pricing kernel to price the cross 

section of one-month options without imposing restrictions on the time series 

properties of the pricing kernel month by month.  Thus we allow the pricing kernel 

to be state dependent.  Second, in the second part of our investigation, we allow for 

intermediate trading; a trader’s wealth on the expiration date of the options is 

generally a function not only of the price of the market index on that date but also 

of the entire path of the index level, thereby rendering the pricing kernel state 

dependent.  Third, we allow the variance of the index return to be state dependent 

and employ the forecasted conditional variance. 

The paper is organized as follows.  In Section 2, we present a model for 

pricing options and state restrictions on the prices of options imposed by the 

absence of stochastic dominance violations.  One form of these restrictions is a set 

of linear inequalities on the pricing kernel that can be tested by testing the 
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feasibility of a linear program.  The second form of these restrictions is an upper 

and lower bound on the prices of options.  In Section 3, we test the compliance of 

bid and ask one-month index options to these restrictions and discuss the results.  

In the concluding Section 4, we summarize the empirical findings and suggest 

directions for future research. 

 

2 Restrictions on Option Prices Imposed 

by Stochastic Dominance 

 
2.1 The Market 
 

We consider a market with heterogeneous agents and investigate the restrictions on 

option prices imposed by a particular class of utility-maximizing traders that we 

simply refer to as traders.  We do not make the restrictive assumption that all 

agents belong to the class of the utility-maximizing traders.  Thus our results are 

unaffected by the presence of agents with beliefs, endowments, preferences, trading 

restrictions, and transactions cost schedules that differ from those of the utility-

maximizing traders. 

Trading occurs at a finite number of trading dates.  The utility-maximizing 

traders are allowed to hold only two primary securities in the market, a bond and a 

stock.  The stock has the natural interpretation as the market index.  The bond is 

risk free and pays constant interest each period.  The traders may buy and sell the 

bond without incurring transactions costs.  We assume that the rate of return on 

the stock is identically and independently distributed over time. 

Stock trades incur proportional transactions costs charged to the bond 

account.  There is no presumption that all agents in the economy face the same 

schedule of transactions costs as the traders do.  At each date, a trader chooses the 

investment in the bond and stock accounts to maximize the expected utility of net 
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worth at the terminal date.  We make the plausible assumption that the utility 

function is increasing and concave.  Note that even this weak assumption of 

monotonicity and concavity of preferences is not imposed on all agents in the 

economy but only on the subset of agents that we refer to as traders. 

In Appendix A, we formulate this problem as a dynamic program.  As 

shown in Constantinides (1979), the value function is monotone increasing and 

concave in the dollar values in the bond and stock accounts, properties that it 

inherits from the monotonicity and concavity of the utility function.  This implies 

that, at any date, the marginal utility of wealth out of the bond account is strictly 

positive and decreasing in the dollar value in the bond account; and the marginal 

utility of wealth out of the stock account is strictly positive and decreasing in the 

dollar value in the stock account.  We search for marginal utilities with the above 

properties that support the prices of the bond, stock and derivatives at a given 

point in time. 

If we fail to find such a set marginal utilities, then any trader with increasing 

and concave utility can increase her expected utility by trading in the options, the 

index and the risk free rate—hence equilibrium does not exist.  These strategies are 

termed stochastically dominant for the purposes of this paper, insofar as they would 

be adopted by all traders with utility possessing the required properties, in the same 

way that all risk averse investors would choose a dominant portfolio over a 

dominated one in conventional second degree stochastic dominance comparisons. 

We emphasize that the restriction on option prices imposed by the criterion 

of the absence of stochastic dominance is motivated by the economically plausible 

assumption that there exists at least one agent in the economy with the properties 

that we assign to a trader.  This is a substantially weaker assumption than 

requiring that all agents to have the properties that we assign to traders.  

Stochastic dominance then implies that at least one agent, but not necessarily all 

agents, increases her expected utility by trading.5  In our empirical investigation, we 

                                                 
5 We also emphasize that the restriction of the absence of stochastic dominance is weaker than 

the restriction that the capital asset pricing model (CAPM) holds.  The CAPM requires that the 

pricing kernel be linearly decreasing in the index price.  The absence of stochastic dominance 

merely imposes that the pricing kernel be monotone decreasing in the index price. 
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report the percentage of months for which the problem is feasible.  These are 

months for which stochastic dominance violations are ruled out. 

 

2.2 Restrictions in the Single-Period Model 
 

The single-period model does not rule out trading over the trader’s horizon after the 

options expire; it just rules out trading over the one-month life of the options.  In 

Section 2.3, we consider the more realistic case in which traders are allowed to 

trade the bond and stock at one intermediate date over the life of the options. 

The stock market index has price  at the beginning of the period; ex 

dividend price  with probability 
0S

1iS π i  in state =, 1, ...,i i I  at the end of the period; 

and cum dividend price ( )δ+ 11 iS  at the end of the period.  We order the states 

such that  is increasing in i . 1iS

We define  as the marginal utility of wealth out of the bond account 

at the beginning of the period; 

( )0BM

( )0SM  as the marginal utility of wealth out of the 

stock account at the beginning of the period; ( )1B
iM  as the marginal utility of 

wealth out of the bond account at the end of the period; and ( )1S
iM  as the 

marginal utility of wealth out of the stock account at the end of the period.6  The 

marginal utility of wealth out of the bond and stock accounts at the beginning of 

the period is strictly positive: 

 

( )0BM > 0      (2.1) 

and 

( )0SM > 0

                                                

.     (2.2) 

 

The marginal utility of wealth out of the bond account at the end of the period is 

strictly positive: 7

 
6 The marginal utilities are formally defined in Appendix B. 
7 Since the value of the bond account at the end of the period is independent of the state i, we 

cannot impose the condition that the marginal utility of wealth out of the bond account is 

decreasing in the dollar value of the bond account. 
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( )1 0, 1,...,B
iM i> = I .    (2.3) 

 

Historically, the sample mean of the premium of the market return over the 

risk free rate is positive.  Under the assumption of positive expected premium, the 

trader is long in the stock.  Since the assumption in the single-period model is that 

there is no trading between the bond and stock accounts over the life of the option, 

the trader’s dollar value in the stock account at the end of the period is increasing 

in the stock return.  Note that this conclusion critically depends on the assumption 

that there is no intermediate trading in the bond and stock.  Since we employed the 

convention that the stock return is increasing in the state i, the dollar value in the 

stock account at the end of the period is increasing in the state i.  Then the 

condition that the marginal utility of wealth out of the stock account at the end of 

the period is strictly positive and decreasing in the dollar value in the stock account 

is stated as follows: 

 

( ) ( ) ( )1 21 1 ... 1 0S S S
IM M M≥ ≥ > .    (2.4) 

 

On each date, the trader may transfer funds between the bond and stock 

accounts and incur transactions costs.  Therefore, the marginal rate of substitution 

between the bond and stock accounts differs from unity by, at most, the 

transactions cost rate: 

 

( ) ( ) ( ) ( ) ( )− ≤ ≤ +1 0 0 1B S Bk M M k M 0   (2.5) 

and 

( ) ( ) ( ) ( ) ( )− ≤ ≤ + =1 1 1 1 1 , 1,...,B S B
i i ik M M k M i I . (2.6) 

 

Marginal analysis on the bond holdings leads to the following condition on 

the marginal rate of substitution between the bond holdings at beginning and end 

of the period: 
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( ) ( )
1

0
I

B
i i

i
M R Mπ

=
= ∑ 1B .    (2.7) 

 

Marginal analysis on the stock holdings leads to the following condition on the 

marginal rate of substitution between the stock holdings at the beginning of the 

period and the bond and stock holdings at the end of the period: 

 

( ) ( ) ( )1 1

0 01
0 1

I
i iS S

i i i
i

S SM M
S S

δπ
=

1BM⎡ ⎤= +⎢ ⎥⎢ ⎥⎣ ⎦∑ .  (2.8) 

 

We consider J European call and put options on the index, with random 

cash payoff  at the end of the period in state i .  At the beginning of the period, 

the trader can buy the 
ijX

thj  derivative at price j jP k+  and sell it at price j jP k− , 

net of transactions costs.  Thus 2 jk  is the bid-ask spread plus the round-trip 

transactions cost that the trader incurs in trading the thj  derivative.  Note that 

there is no presumption that all agents in the economy face the same bid-ask 

spreads and transactions costs as the traders do. 

We assume that the traders are marginal in all the J derivatives.  

Furthermore, we assume that a trader has sufficiently small positions in the 

derivatives relative to her holdings in the bond and stock that the monotonicity and 

concavity conditions on the value function remain valid.  Marginal analysis leads to 

the following restrictions on the prices of options: 

 

( ) ( ) ( ) ( ) ( )
1

0 1 0 , 1,...,
I

B B B
j j i i ij j j

i
P k M M X P k M j Jπ

=
− ≤ ≤ + =∑ . (2.9) 

 

Conditions (2.1)-(2.9) define a linear program.  In our empirical analysis, 

each month we check for feasibility of conditions (2.1)-(2.9) by using the linear 

programming features of the optimization toolbox of MATLAB 7.0.  We report the 

percentage of months in which the linear program is feasible and, therefore, 

stochastic dominance is ruled out. 
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A useful way to identify the options that cause infeasibility or near-

infeasibility of the problem is to single out a “test” option, say the  option, and 

solve the problem 

thn

 

( ) ( )
( )1

1max , min
0

I B
i

i B
i

Mor X
M

π
=
∑ in ,    (2.10) 

 

subject to conditions (2.1)-(2.9).  If this problem is feasible, then the attained 

maximum and minimum have the following interpretation.  If one can buy the test 

option for less than the minimum attained in this problem, then at least one 

investor, but not necessarily all investors, increases her expected utility by trading 

the test option.  Likewise, if one can write the test option, for more than the 

maximum attained in this problem, then again at least one investor increases her 

expected utility by trading the test option. 

 

2.3 Restrictions in the Two-Period Model 
 

We relax the assumption of the single-period model that, over the one-month life of 

the options, markets for trading are open only at the beginning and end of the 

period; we allow for a third trading date in the middle of the month.  We define the 

marginal utility of wealth out of the bond account and out of the stock account at 

each one of the three trading dates and set up the linear program as a direct 

extension of the program (2.1)-(2.9) in Section 2.2.  The explicit program is given in 

Appendix B.  In our empirical analysis, we report the percentage of months in 

which the linear program is feasible and, therefore, stochastic dominance is ruled 

out. 

In principle, we may allow for more than one intermediate trading date over 

the one-month life of the options.  However, the numerical implementation becomes 

tedious as both the number of constraints and variables in the linear program 

increase exponentially in the number of intermediate trading dates.  This 

consideration motivates the development of bounds that are independent of the 
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allowed frequency of trading of the stock and bond over the life of the option.  

These bounds are presented below. 

 

2.4 The Constantinides-Perrakis Option Bounds 
 

Constantinides and Perrakis (2002) recognized that it is possible to recursively 

apply the single-period approach and derive stochastic dominance bounds on option 

prices in a market with intermediate trading over the life of the options.8  The 

significance of these bounds is that they are invariant to the allowed frequency of 

trading the bond and stock over the life of the options. 

The task of computing these bounds is easy compared to the full-fledged 

investigation of the feasibility of conditions for large T  for two reasons.  First, the 

derivation of the bounds takes advantage of the special structure of the payoff of a 

call or put option, specifically the convexity of the payoff as a function of the stock 

price.  Second, the set of assets is limited to three assets: the bond, stock and one 

option, the test option. 

The upper and lower bounds on a test option have the following 

interpretation.  If one can buy the test option for less than the lower option bound, 

then there is stochastic dominance violation between the bond, stock and the test 

option.  Likewise, if one can write the test option for more than the upper option 

bound, then again there is stochastic dominance violation between the bond, stock 

and the test option.  Below, we state these bounds without proof.9

                                                 
8 Constantinides and Zariphopoulou (1999, 2001) and Constantinides and Perrakis (2002, 2004) 

derived bounds on option prices in the presence of transactions costs.  For alternative ways to 

price options with transactions costs, see Leland (1985) and Bensaid et al (1992). 
9 These bounds may not be the tightest possible bounds for any given frequency of trading.  

However, they are presented here because of their universality in that they do not depend on the 

frequency of trading over the life of the option.  For a comprehensive discussion and derivation of 

these and other possibly tighter bounds that are specific to the allowed frequency of trading, see 

Constantinides and Perrakis (2002).  See also Constantinides and Perrakis (2004) for extensions 

to American-style options and futures options. 
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At any time t prior to expiration, the following is an upper bound on the 

price of a call: 

 

[ ]+(1 )( ,  t) -
(1 )t T t

S

kc S E S K S
k R −

+
T t

⎡ ⎤= ⎢ ⎥⎣ ⎦−
,   (2.11) 

 

where SR  is the expected return on the stock per unit time. 

A partition-independent lower bound for a call option can also be found, but 

only if it is additionally assumed that there exists at least one trader for whom the 

investment horizon coincides with the option expiration, 'T T= .  In such a case, 

transactions costs become irrelevant in the put-call parity and the following is a 

lower bound:10

 

( )t-T T-t
t ( ,  t)  1+ S - / [( ) S ]/RT t

t Tc S K R E K Sδ − += + − t S ,  (2.12) 

 

where  is one plus the risk free rate per unit time. R

Put option upper and lower bounds also exist that are independent of the 

frequency of trading.  They are given as follows: 

 

( ) [ ]11( ,  ) |
1

T t
t S TT t

K kp S t R E K S K S
R k

− +−
−

−
t

⎡ ⎤⎡ ⎤= + − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦+
,  (2.13) 

and 

( ) [ ]

[ ]

1 +1 -( , ) - | , 1
1

- , .

T t
t S T t

T

kp S t R E K S S t T
k

K S t T

−−

+

⎡ ⎤= ≤ −⎢ ⎥⎣ ⎦+
= =

  (2.14) 

 

The call upper bound (2.11) provides a tighter upper bound on the implied 

volatility than the put upper bound (2.13).  The call lower bound (2.12) and the 

put lower bound (2.14) provide similar lower bounds on the implied volatility.  In 

figures 1-4, we present the upper bound on the implied volatility based on equation 

                                                 
10 In the special case of zero transactions costs, the assumption 'T T=  is redundant because the 

put-call parity holds. 
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(2.11) and the lower bound based on equation (2.12).  We discuss the violation of 

these bounds in Section 3.6. 

 

3 Empirical Results 

 
3.1 Data 
 

We use the historical daily record of the S&P 500 index and its daily dividend 

record over the period 1928-2002.  The monthly index return is based on 30 

calendar day (21 trading day) returns.  In order to avoid difficulties with the 

estimated historical mean of the returns, we demean all our samples and 

reintroduce a mean 4% annualized premium over the risk free rate.  The 

unconditional distribution of the index is extracted from four alternative samples of 

thirty-day index returns: the historical samples use returns either over the period 

1928-1986 or over the period 1972-1986; the forward-looking sample inclusive of the 

crash uses the returns over the period 1987-2002 and includes the 1987 stock 

market crash; the forward-looking sample exclusive of the crash uses the returns 

over the period 1988-2002 and excludes the stock market crash.  Finally, we 

estimate the conditional distribution over the period 1972-2002 by the 

semiparametric GARCH (1,1) model of Engle and Gonzalez-Rivera (1991), a model 

that does not impose the restriction that conditional returns are normally 

distributed, as explained in Appendix D.11

                                                 
11 The index return sample and the option price sample do not align.  We use the conditional 

volatility of the 30-day return period which starts before the option sample and covers it partly at 

the beginning.  We recalculated the results by using the conditional volatility of the 30-day return 

period which starts during the option sample and covers it partly at the end and then continues 

beyond the option sample.  The two sets of results are practically indistinguishable and thus, we 

do not report the latter results here. 

 14



For the S&P 500 index options we use two data sources.  For the period 

1986-1995, we use the tick-by-tick Berkeley Options Database of all quotes and 

trades.  We focus on the most liquid call options with K/S ratio (moneyness) in the 

range 0.90-1.05.  For 108 months we retain only the call option quotes for the day 

corresponding to options thirty days to expiration.12  For each day retained in the 

sample, we aggregate the quotes to the minute and pick the minute between 9:00-

11:00 AM with the most quotes as our cross section for the month.  We present 

these quotes in terms of their bid and ask implied volatilities.  These are the 

volatilities which would be needed in the BSM formula to price the option 

exactly at the bid or ask quote, respectively.  Details on this database are 

provided in Appendix C, Jackwerth and Rubinstein (1996), and Jackwerth 

(2000). 

For the period 1997-2002, we obtain call and put option prices from the 

Option Metrics Database, described in Appendix C.  Note that we do not have 

options data for 1996 from either data source.  Only options with at least 100 

traded contracts are included.  We calculate a hypothetical noon option cross 

section from the closing cross section and the index observed at noon and the close.  

Here we assume that the implied volatilities do not change between noon and the 

close.  We start out with 69 raw cross sections and are left with 68 final cross 

sections. The time to expiration is 29 days. 

Since the Berkeley Options Database provides much cleaner data than the 

Option Metrics Database, we expect a higher incidence of stochastic dominance 

violations over the 1997-2002 period than over the 1986-1995 period due to data 

problems.  Thus we are cautious in comparing results across these two periods. 

 

                                                 
12 We lose some months for which we do not have sufficient data, i.e., months with less than five 

different strike prices, months after the crash of October 1987 until June 1988, and months before 

the introduction of S&P 500 index options in April 1986. 

 15



3.2 Assumptions on Bid-Ask Spreads and Trading Fees 
 

There is no presumption that all agents in the economy face the same bid-ask 

spreads and transactions costs as the traders do.  We assume that the traders are 

subject to the following bid-ask spreads and trading fees.  For the index, we model 

the combined one-half bid-ask spread and one-way trading fee as a one-way 

proportional transactions cost rate equal to 50 bps of the index price. 

For the call options obtained from the Berkeley Options Database over the 

period 1986-1995, we proceed as follows.  For the at-the-money call, we set the 

combined one-half bid-ask spread and one-way trading fee equal to 20 (or 5, or 50) 

bps of the index price.  This corresponds to about 75 (or 19, or 188) cents one-way 

fee per call.  For any other call, the fee is proportional to the call price.  

Specifically, the combined one-half bid-ask spread and one-way trading fee is equal 

to the fee on the at-the-money call multiplied by the ratio of the price of the said 

call and the price of the at-the-money call.  Only in Table 3 do we present results 

under the assumption that the fee is fixed: the combined one-half bid-ask spread 

and one-way trading fee is equal to the fee on the at-the-money call. 

For the call and put options obtained from the Option Metrics Database 

over the period 1997-2002, we proceed as follows.  For the at-the-money call, we set 

the combined one-half bid-ask spread and one-way trading fee equal to 20 (or 5, or 

50) bps of the index price.  For any other option (call or put), the fee is 

proportional to the option price. 

 

3.3 Stochastic Dominance Violations in the Single-Period 

Case 
 

Each month we check for feasibility of conditions (2.1)-(2.9).  Infeasibility of these 

conditions implies stochastic dominance: any trader can improve her utility by 

trading in these assets without incurring any out-of-pocket costs.  If we rule out 

bid-ask spreads and trading fees, we find that these conditions are violated in all 

months. 
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We introduce bid-ask spreads and trading fees as described in Section 3.2.  

The one-way transactions cost rate (one-way trading fee plus half the bid-ask 

spread) on the index is 50 bps.  For the at-the-money call, the one-way transactions 

cost rate is 20 bps of the index price, or about 75 cents.  For any other option, the 

fee is proportional to the option price, as described in Section 3.2.  The number of 

calls in each (filtered) monthly cross section fluctuates between 5 and 23 with 

median 10.  The percentage of months without stochastic dominance violations is 

displayed in Table 1.  The bracketed numbers in the first row are bootstrap 

standard deviations of the first-row entries, based on 1,000 samples of the 1928-2002 

historical returns.  The standard deviations are high and, therefore, comparisons of 

the table entries across the rows and columns should be made with caution.  In the 

second and third rows in each cell, we display the non-violations in the cases where 

the one-way transactions costs on each call equal to 5 bps and 50 bps of the index 

price, respectively. 

 

[TABLE 1] 

 

The time series of option prices is divided into six periods and stochastic 

dominance violations in each period are reported in different columns, labeled as 

panels A-F.  The first period extends from May 1986 to October 16, 1987, just prior 

to the crash.  The other five periods are all post-crash and span July 1988 to March 

1991, April 1991 to August 1993, September 1993 to December 1995, February 1997 

to December 1999 and February 2000 to December 2002.  Note that we do not have 

options data for 1996 from either data source. 

The time series of index returns is divided into five samples and stochastic 

dominance violations are reported in different rows for each sample.  The first 

sample covers 1928-1986 and excludes the crash.  Since there are too many 

observations, only every 6th return is recorded in building the empirical 

unconditional return distribution.  The second sample covers 1972-1986 and again 

excludes the crash.  It is shorter than the first sample to control for the 

possibility of a regime shift in the return distribution.  The third sample covers 

1987-2002, including the crash.  The fourth sample covers 1988-2002, excluding 
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the crash.  The last row in the table displays the feasibility in the index sample 

1972-2002, where the one-month index return distribution is conditional on 

volatility and is estimated as in Appendix D.  In all five samples, the mean 

premium of the index return over the risk free return is adjusted to be 4% 

annually.13

Most table entries are well below 100%, indicating that there are a number 

of months in which the risk free rate, the price of the index, and the prices of the 

cross section of calls are inconsistent with a market in which there is even one 

risk-averse trader who is marginal in these securities, net of generous transactions 

costs. 

The top left entry of 73% refers to the index return distribution over the 

period 1928-1986 and option prices over the pre-crash period from May 1986 to 

October 16, 1987.  In 27% of these months, conditions (2.1)-(2.9) are infeasible 

and the prices imply stochastic dominance violations despite the generous 

allowance for transactions costs.  The next three entries to the right, panels B-D, 

refer to call prices over the first three post-crash periods.  There are fewer 

violations in the first three post-crash periods than in the pre-crash period. 

Violations dramatically increase in the last two post-crash periods, panels 

E-F.  However, these results should be interpreted with caution.  Recall that the 

quality of the option data in the 1997-2002 period is inferior to the quality in the 

1986-1995 period.  However, the quality of data in the 1997-1999 and 2000-2002 

periods is the same and comparisons are meaningful.  There are more violations 

in the 2000-2002 period than in the 1997-1999 period.  The later finding is 

reversed in the last row where we employ the conditional index return 

distribution. 

We investigate the robustness of the historical estimate of the index return 

distribution over the period 1928-1986 by re-estimating the historical distribution 

of the index return over the more recent period 1972-1986.  The results are 

                                                 
13 We make this adjustment in order to eschew the issues of the predictability of the equity 

premium and its estimation from historical samples.  Our results remain practically unchanged if 

we do not make this adjustment.  Essentially, the prices of one-month options are insensitive to 

the expected return on the stock. 
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displayed in the second row of Table 1.  The results in panels A-D remain largely 

unchanged.  However the incidence of violations substantially increases in the 

period 1997-2002. 

When we use the forward-looking index sample 1987-2002 that includes 

the crash (third row) or the forward-looking index sample 1988-2002 that 

excludes it (fourth row), the pre-crash options exhibit more violations (panel A).  

Also, when we use the conditional index return distribution, the incidence of 

violations is higher than when we use the historical index samples and 

comparable to the incidence of violations when we use the forward-looking index 

sample. 

Our interpretation is that, before the crash, option traders were 

unsophisticated and were extensively using the BSM pricing model.  Recall the 

stylized observation that, from the start of the exchange-based trading until the 

October 1987 stock market crash, the implied volatility is a moderately 

downward-sloping function of the strike price; following the crash, the volatility 

smile is typically more pronounced.  This means that the BSM model typically 

fits the data better before the crash than after it, once the constant volatility 

input is judiciously chosen as an input to the BSM formula.  This does not imply 

that investors were more rational before the crash than after it.  In fact, our 

results in panels A-D suggest that options were priced more rationally after the 

crash than before it.  The results contrast with the evidence in Jackwerth (2000), 

that the estimated pricing kernel is monotonically decreasing (corresponding to 

few, if any, violations) in the pre-crash period, but locally increasing 

(corresponding to several violations) during the post-crash period.14

Looking across rows, we observe that the pre-crash call prices are more 

consistent with the historical index distribution (1928-2002 and 1972-2002) than 

the post-crash distribution (with or without the crash event, conditional or 

unconditional).  This result accords with intuition.  The post-crash option prices 

in 1988-1995 (panels B-D) generally have few violations.  However, violations by 

                                                 
14 The pattern in Jackwerth (2000) does not match with Table 1 for two reasons.  First, he 

applies a different technique, estimating separately the smoothed risk-neutral and actual 

distributions and then taking their ratio.  Second, his option price sample ends in 1995. 
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option prices in 1997-2002 (panels E-F) send a mixed message.  The violations 

are lowest when using either the longer historical index sample 1972-1986 or the 

conditional index return distribution. 

 

3.4 Robustness in the Single-Period Case 
 

Floor traders, institutional investors and broker-assisted investors face different 

transactions cost schedules in trading options.  Are the results robust under 

different transactions cost schedules?  In Table 1, the number in the second row 

of each cell is the percentage of non-violations when the combined one-half bid-

ask spread and one-way trading fee on one option is based on 5 bps of the index 

price.  We observe a large percentage of violations for all index and option price 

periods.  Consistent with the earlier observation, there are fewer violations in the 

first three post-crash periods than in the pre-crash period.  The number in the 

third row of each cell is the percentage of non-violations when the combined one-

half bid-ask spread and one-way trading fee on one option is based on 50 bps of 

the index price.  Predictably, we observe fewer violations for all index and option 

price periods.  There is no consistent pattern in these violations. 

  

[TABLE 2] 

 

Is the pattern of violation similar across the in-the-money and out-of-the-

money options?  Table 2 displays the percentage of months in which stochastic 

dominance is absent in the cross section of in-the-money calls (top entry) and 

out-of-the-money calls (bottom entry).  In all cases, there is a higher percentage 

of violations by OTM calls than by ITM calls, suggesting that the mispricing is 

caused by the right-hand tail of the index return distribution and not by the left-

hand tail.15  Another way to see this is by comparing the first rows in Table 1 

                                                 
15 This inference is subject to the criticism that it may be an artifact of sample size.  The sample 

of OTM calls is larger than the sample of ITM calls.  Other things equal, the larger the sample, 

the harder it is to find a monotone decreasing pricing kernel that prices the calls. 
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with the Table 2 OTM results: addition of the ITM calls does not decrease the 

feasibility.  This observation is novel and contradicts the common inference 

drawn from the observed implied volatility smile that the problem lies with the 

left-hand tail of the index return distribution.  We revisit these violation patterns 

in Section 3.6 where we discuss the violations of bounds on the prices of options. 

 

[TABLE 3] 

 

Table 3 displays the percentage of months in which stochastic dominance 

violations are absent in the cross section of option prices but now with fixed 

instead of proportional transactions costs.  The one-way transactions costs rate 

(one-way trading fee plus half the bid-ask spread) on the index is 50 bps.  The 

one-way transactions costs on each option is 20 bps of the index price.  The 

pattern of violations is similar to the pattern displayed in Table 1 with variable 

transactions costs.  With the exception of panel D, there are generally fewer 

violations when the transactions costs are fixed.  Recall from Table 2 that OTM 

calls are responsible for more violations than ITM calls.  Fixed transactions costs 

imply larger transactions costs for the troublesome OTM calls, provide greater 

leeway for the prices of these calls and, therefore, decrease the number of 

violations. 

 

3.5 Stochastic Dominance Violations in the Two-Period 

Model 
 

In the previous section, we considered feasibility in the context of the single-period 

model.  We established that there are stochastic dominance violations in a 

significant percentage of the months.  Does the percentage of stochastic dominance 

violations increase or decrease as the allowed frequency of trading in the stock and 

bond over the life of the option increases?  In the special case of zero transactions 

costs, i.i.d. returns and constant relative risk aversion, it can be theoretically shown 

that the percentage of violations should increase as the allowed frequency of trading 
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increases.  However, we cannot provide a theoretical answer if we relax any of the 

above three assumptions.  Therefore, we address the question empirically. 

We compare the percentage of stochastic dominance violations in two 

models, one with one intermediate trading date over the life of the options and 

another with no intermediate trading dates over the life of the options.  To this 

end, we partition the 30-day horizon into two 15-day intervals and approximate the 

15-day return distribution by a 21-point kernel density estimate of the 15-day 

returns.  We use the standard Gaussian kernel of Silverman (1986, pp. 15, 43, and 

45).  The assumed transactions costs are as in the base case presented in Table 1.  

The one-way transactions costs rate (one-way trading fee plus half the bid-ask 

spread) on the index is 50 bps.  The one-way transactions cost on the at-the-money 

call is 20 bps of the index price.  For any other call, the fee is proportional to the 

call price, as described in Section 3.2.  The results are presented in Table 4. 

 

[TABLE 4] 

 

We may not investigate the effect of intermediate trading by directly 

comparing the results in Tables 1 and 4 because the return generating process 

differs in the two tables.  Recall that the results in Table 1 are based on a 30-day 

stock return generating process that has as many different returns as the different 

observed realizations and frequency equal to the observed frequency.16  By contrast, 

the results in Table 4 are based on a simplified 15-day 21-point kernel density 

estimate of the 15-day returns.  The coarseness of the grid is dictated by the need 

to keep the problem computationally manageable.  The 30-day return then is the 

product of two 15-day returns treated as i.i.d.  With this process of the 30-day 

return, we calculate the percentage of months without stochastic dominance 

violations and report the results in Table 4 in brackets. 

The effect of allowing for one intermediate trading date over the life of the 

one-month options is shown by the top entries in Table 4.  These entries are 

contrasted with the bracketed entries which represent the percentage of months 

                                                 
16 For the long historical sample of stock returns, we take only every sixth monthly return. 
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without stochastic dominance violations when intermediate trading is forbidden.  

The comparison shows that intermediate trading has an ambiguous effect on 

stochastic dominance violations in the option samples, that depends to a large 

extent on the distribution used to calculate the index returns.  For the long 

historical sample intermediate trading slightly decreases the frequency of violations 

in all panels, while it increases it, sometimes dramatically so, for the shorter 

historical sample.  The increase in the frequency of violations also predominates, 

but not always consistently, for the remaining three samples.  We conclude that 

intermediate trading does not weaken, and possibly strengthens, the single-period 

systematic evidence of stochastic dominance violations.  In the next section, we 

obtain further insights on the causes of infeasibility, by displaying the options that 

violate the upper and lower bounds on option prices. 

 

3.6 Stochastic Dominance Bounds in the Single-Period and 

Multiperiod Cases 
 

In Section 2.4, equations (2.11)-(2.14), we stated a set of stochastic dominance 

bounds on option prices that apply irrespective of the permitted frequency of 

trading in the bond and stock accounts over the life of the option.  We calculate 

these bounds and translate them as bounds on the implied volatility of option 

prices.  In figures 1-4, we present the upper implied volatility bound based on (2.11) 

and the lower bound based on (2.12).  The bid-ask spread on the option price is 

taken into consideration, as we present both the bid and ask option prices, 

translated into implied volatilities.  A violation occurs whenever an observed option 

bid price lies above the upper bound or an observed option ask price lies below the 

lower bound.  The upper and lower option bounds are based on the index return 

distribution derived from the historical index samples 1928-1986 (figure 1) and 

1972-1986 (figure 2), and the forward looking samples 1987-2002 (figure 3) and 

1988-2002 (figure 4).  In each figure, the six panels correspond to option prices 

(implied volatilities) over the pre-crash period (panel A) and the five post-crash 
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periods (panels B-F).  In all cases, the transactions costs rate on the index is 20 

bps. 

 

[FIGURES 1-4] 

 

The downward-sloping shape of the bounds is similar across figures 1-4.  

However, the upper and lower bounds in figure 1 are higher than the bounds in 

figures 2-4 because the index volatility over 1928-1986 is 40% higher than the index 

volatility over the index periods corresponding to figures 2-4.  The pattern of 

violations follows quite naturally.  The flat pre-crash smile fits reasonably well 

within the bounds based on the index return over 1928-1986 even though these are 

downward sloping.  The post-crash smiles over 1988-1995 (panels B-D) are too low 

for the rather high location of these bounds. 

The bounds based on the index return over the historical 1972-1986 and 

forward-looking samples (figures 2-4) are located somewhat lower than the 

historical 1928-1986 sample bounds.  Therefore, they match the also downward-

sloping post-crash option prices in panels B-D rather well because they are located 

somewhat lower too.  However, they do not match very well the higher horizontal 

smile of the pre-crash options. 

Several option prices over the periods 1997-1999 and 2000-2002 (panels E-F) 

are way above the bounds in all the figures, irrespective of whether the bounds were 

calculated from historical or forward-looking index returns.  This is an altogether 

different pattern of violations than in the earlier panels A-D.  In interpreting the 

high incidence of violations of option prices over the period 1997-2002 in Tables 1-4, 

we were conservative because of concerns regarding the quality of the Option 

Metrics Database.  The figures provide a clearer picture.  If the violations were the 

result of low quality of the data, then we would observe roughly as many violations 

of the lower bound as we do of the upper bound.  This is not the case.  Most of the 

violations are violations of the upper bound.  Simply put, over 1997-2002, many 

options, particularly OTM calls, were overpriced relative to the theoretical bounds, 

irrespective of which time period is used to determine the index return distribution.  

These results do not support the hypothesis that the options market is becoming 
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more rational over time, particularly after the crash.  The decrease in violations 

over the post-crash period 1988-1995 (panels B-D) is followed by a substantial 

increase in violations over 1997-2002 (panels E-F). 

Across all figures, we observe that both upper and lower bounds exhibit a 

clear smile pattern.  Thus the theory states that option prices should exhibit a 

smile both before and after the crash.  The observed pre-crash option prices (panel 

A) approximately conform to the BSM model with a horizontal smile.  By contrast, 

the post-crash observed option prices (panels B-D) progressively show more marked 

departures from horizontality, which still lie within the bounds in panel B but 

violate strongly the bounds in panels C and D, even around at-the-money.  This 

conforms closely to the observation originally made by Rubinstein (1994) that 

option prices behave differently before and after the crash, with the former 

following the BSM model and the latter not.  Over the period 1997-2002 (panels E-

F), option prices exhibit a mild smile.  However, their predominant feature is that 

they are overpriced, particularly the OTM calls. 

In all figures, panel A, several pre-crash ask prices of OTM calls in panel A 

fall below the lower bound.  Even though pre-crash option prices follow the BSM 

model reasonably well, it does not follow that these options are correctly priced.  

Our novel finding is that pre-crash option prices are incorrectly priced, if the 

distribution of the index return is based on the historical experience.  Furthermore, 

some of these prices are below the bounds, contrary to received wisdom that 

historical volatility generally underprices options in the BSM model. 

All figures dispel another common misconception, that the observed smile is 

too steep after the crash.  Our novel finding is that most of the bound violations by 

post-crash options are due to the options being either underpriced (over 1988-1995, 

panels B-D) or overpriced (over 1997-2002, panels E-F). 
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4 Concluding Remarks 

 
We document widespread violations of stochastic dominance in the one-month S&P 

500 index options market over the period 1986-2002, before and after the October 

1987 stock market crash.  We do not impose a parametric model on the index 

return distribution but estimate it as the histogram of the sample distribution, 

using five different index return samples: long and short samples before the crash; 

two forward-looking samples, one that includes the crash and one that excludes it; 

and a sample with forecasted conditional volatility.  We allow the market to be 

incomplete and also be imperfect by introducing generous transactions costs in 

trading the index and options. 

Evidence of stochastic dominance violations means that any trader can 

increase her expected utility by engaging in a zero-net-cost trade.  We consider a 

market with heterogeneous agents and investigate the restrictions on option prices 

imposed by a particular class of utility-maximizing traders that we simply refer to 

as traders.  We do not make the restrictive assumption that all economic agents 

belong to the class of the utility-maximizing traders.  Thus our results are robust 

and unaffected by the presence of agents with beliefs, endowments, preferences, 

trading restrictions, and transactions cost schedules that differ from those of the 

utility-maximizing traders modeled in this paper. 

Our empirical design allows for three implications associated with state 

dependence.  First, each month we search for a pricing kernel to price the cross 

section of one-month options without imposing restrictions on the time series 

properties of the pricing kernel month by month.  Thus we allow the pricing kernel 

to be state dependent.  Second, we allow for intermediate trading; a trader’s wealth 

on the expiration date of the options is generally a function not only of the price of 

the market index on that date but also of the entire path of the index level thereby 

rendering the pricing kernel state dependent.  Third, we allow the variance of the 

index return to be state dependent and employ the estimated conditional variance. 

 26



The pre-crash call prices are more consistent with the historical index 

distribution than the post-crash distribution.  This result accords with intuition.  

The post-crash option prices in 1988-1995 generally have few violations.  However, 

violations by option prices in 1997-2002 send a mixed message.  The violations are 

lowest when using either the longer historical index sample 1972-1986 or the 

conditional index return distribution.  Thus, there is no systematic evidence that 

investors are more rational after the crash than before it. 

In all cases, there is a higher percentage of violations by OTM calls than by 

ITM calls, suggesting that the right-hand tail of the index return distribution is at 

least as problematic as the left-hand tail.  This observation is novel and contradicts 

the common inference drawn from the observed implied volatility smile that the 

problem lies with the left-hand tail of the index return distribution. 

Over 1997-2002, many options, particularly OTM calls, are overpriced 

relative to the theoretical bounds, irrespective of which time period is used to 

determine the index return distribution.  One possible explanation is the poor 

quality of the data over this period compared to the data over the 1986-1995 

period.  In any case, these results do not support the hypothesis that the options 

market is becoming more rational over time. 

Even though pre-crash option prices conform to the BSM model reasonably 

well, it does not follow that these options are correctly priced.  Our novel finding is 

that pre-crash options are incorrectly priced, if the distribution of the index return 

is based on the historical experience.  Our interpretation of these results is that, 

before the crash, option traders were extensively using the BSM pricing model.  

Recall the stylized observation that, from the start of the exchange-based trading 

until the October 1987 stock market crash, the implied volatility is a moderately 

downward-sloping function of the strike price; following the crash, the volatility 

smile is typically more pronounced.  This means that the BSM model typically fits 

the data better before the crash than after it, once the constant volatility input is 

judiciously chosen as an input to the BSM formula.  However, the fit of the BSM 

model or lack of it does not speak on the rationality of option prices. 

Our results dispel another common misconception, that the observed smile is 

too steep after the crash.  Our novel finding is that most of the bound violations by 
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post-crash options are due to the options being either underpriced over 1988-1995, 

or overpriced over 1997-2002. 

Finally, in many of the violations, option prices are below the bounds, 

contrary to received wisdom that historical volatility generally underprices options 

in the BSM model. 

By providing an integrated approach to the pricing of options that allows for 

incomplete and imperfect markets, we provide testable restrictions on option prices 

that include the BSM model as a special case.  We reviewed the empirical evidence 

on the prices of S&P 500 index options.  The economic restrictions are violated 

surprisingly often, suggesting that the mispricing of these options cannot be entirely 

attributed to the fact that the BSM model does not allow for market 

incompleteness and realistic transaction costs.  Whereas we allowed for a number of 

implications associated with state variables, it remains an open and challenging 

topic for future research to investigate whether state variables, possibly omitted in 

our investigation, explain the reported month-by-month violations of stochastic 

dominance. 
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Appendix A 
 

Trading occurs at a finite number of trading dates, = 0,1,..., ,..., 't T T .17  The 

utility-maximizing traders are allowed to hold only two primary securities in the 

market, a bond and a stock.  The bond is risk free and pays constant interest 1R −  

each period.  The traders may buy and sell the bond without incurring transactions 

costs.  At date t, the cum dividend stock price is ( )δ+1 t tS , the cash dividend is 

δt tS , and the ex dividend stock price is , where tS tδ  is the dividend yield.  We 

assume that the rate of return on the stock, ( )1 11 + ++ t tS Sδ / t , is identically and 

independently distributed over time. 

Stock trades incur proportional transactions costs charged to the bond 

account as follows.  At each date t, the trader pays ( )1 tk S+  out of the bond 

account to purchase one ex dividend share of stock and is credited ( in the 

bond account to sell (or, sell short) one ex dividend share of stock.  We assume that 

the transactions cost rate satisfies the restriction 0 1. 

)1 tk S−

k≤ <
A trader enters the market at date t with dollar holdings tx  in the bond 

account and  ex dividend shares of stock.  The endowments are stated net of 

any dividend payable on the stock at time t.

/ty St

t

18  The trader increases (or, decreases) 

the dollar holdings in the stock account from to ty 't ty y υ= +  by decreasing (or, 

increasing) the bond account from  to tx 't t t tx x k | |υ υ= − − .  The decision 

variable tυ is constrained to be measurable with respect to the information at date 

t.  The bond account dynamics is 

 

{ } ( ) δυ υ υ +
+ = − − + + ≤ −1
1 | | , 't t

t t t t t t
t

Sx x k R y t T
S

1

                                                

  (A.1) 

 

t

17 The calendar length of the trading horizon is N years and the calendar length between trading 

dates is  years.  Later on we vary  and consider the mispricing of options under different 

assumptions regarding the calendar length between trading dates. 

/ 'N T 'T

18 We elaborate on the precise sequence of events.  The trader enters the market at date t with 

dollar holdings t tx yδ− in the bond account and  cum dividend shares of stock.  Then the 

stock pays cash dividend 

/t ty S

t tyδ and the dollar holdings in the bond account become tx .  Thus, the 

trader has dollar holdings tx in the bond account and  ex dividend shares of stock. /t ty S
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and the stock account dynamics is 

 

( ) 1
1 , 't

t t t
t

Sy y t T
S

υ +
+ 1.= + ≤ −

T Ty

   (A.2) 

 

At the terminal date, the stock account is liquidated, ''υ = −

' |
, and the net 

worth is .  At each date t, the trader chooses investment ' ' |T T Tx y k y+ − tυ  to 

maximize the expected utility of net worth, ( )' ' '| | |T T T tE u x y k y S⎡ ⎤+ −⎣ ⎦ .
19  We 

make the plausible assumption that the utility function, ( )u ⋅ , is increasing and 

concave, and is defined for both positive and negative terminal net worth.20  Note 

that even this weak assumption of monotonicity and concavity of preferences is not 

imposed on all agents in the economy but only on the subset of agents that we refer 

to as traders. 

We recursively define the value function ( ) ( )≡ , ,t tV t V x y t  as 

 

( ) { } ( ) ( )υ
δυ υ υ υ+ +

⎡ ⎤⎛ ⎞
= − − + + + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
1 1, , max | | , , 1 |t t t

t t t t t t
t t

S SV x y t E V x k R y y t S
S S

 (A.3) 

 

for  and ' 1t T≤ −

 

( ) ( )' ' ' ' ', , ' | |T T T T TV x y T u x y k y= + − .   (A.4) 

                                                 
19 The results extend routinely to the case that consumption occurs at each trading date and 

utility is defined over consumption at each of the trading dates and over the net worth at the 

terminal date.  See Constantinides (1979) for details.  The model with utility defined over 

terminal net worth alone is a more realistic representation of the objective function of financial 

institutions. 
20 If utility is defined only for non-negative net worth, then the decision variable is constrained to 

be a member of a convex set that ensures the non-negativity of net worth.  See, Constantinides 

(1979) for details.  However, the derivation of bounds on the prices of derivatives requires an 

entirely different approach and yields weaker bounds.  This problem is studied in Constantinides 

and Zariphopoulou (1999, 2001). 
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We assume that the parameters satisfy appropriate technical conditions such that 

the value function exists and is once differentiable. 

Equations (A.1)-(A.4) define a dynamic program that can be numerically 

solved for given utility function and stock return distribution.  We shall not solve 

this dynamic program because our goal is to derive restrictions on the prices of 

options that are independent of the specific functional form of the utility function 

but solely depend on the plausible assumption that the traders’ utility function is 

monotone increasing and concave in the terminal wealth. 

The value function is increasing and concave in ( ),t tx y , properties that it 

inherits from the assumed monotonicity and concavity of the utility function, as 

proven in Constantinides (1979): 

 

( ) ( )> >0, 0x yV t V t , = 0,..., ,..., 't T T .  (A.5) 

and 

 
( ) ( )( ) ( ) ( ) ( )1 ', 1 ', , , 1 ', ',

0 1, 0,..., ,..., ' .

+ − + − > + −

< < =

α α α α α α

α
t t t t t t t tV x x y y t V x y t V x y t

t T T

,
 (A.6) 

 

On each date, the trader may transfer funds between the bond and stock 

accounts and incur transactions costs.  Therefore, the marginal rate of substitution 

between the bond and stock accounts differs from unity by, at most, the 

transactions cost rate: 

 

( ) ( ) ( ) ( ) ( )− ≤ ≤ + =1 1 , 0, ..., , ..., 'x y xk V t V t k V t t T T .  (A.7) 

 

Marginal analysis on the bond holdings leads to the following condition on the 

marginal rate of substitution between the bond holdings at dates t and t+1: 

 

( ) ( )[ ]1 , 0, ..., , ..., ' 1x t xV t R E V t t T T= + = − .  (A.8) 
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Finally, marginal analysis on the stock holdings leads to the following condition on 

the marginal rate of substitution between the stock holdings at date t and the bond 

and stock holdings at date t+1: 

 

( ) ( ) ( )1 11 1t t t
y t y x

t t

S SV t E V t V t
S S

δ+ +⎡ ⎤
⎥⎥

= + + +⎢⎢⎣ ⎦
0,..., ,..., ' 1t T T= −, . (A.9) 
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Appendix B 
 

We allow for three trading dates, 0,1,2t = , at the beginning, middle and end of the 

month.  We define the stock returns over the first sub-period as 

( )δ≡ +1 1iz S1 0/i S , corresponding to the =, 1, ...,I i I  states on date one.  We 

assume that the returns over the two sub-periods are independent.  Thus, the stock 

returns over the second sub-period, ( )δ≡ + =2 2 11 / , 1,...,k ik iz S S k I , are 

independent of i .  There are  2,I = =1,..., , 1, ...,i I k I , states on date two. 

We define the state-dependent marginal utility of wealth out of the bond 

account on each one of the three trading dates as ( ) ( )0 0B
xM V≡ ,  

and 

( ) ( )1 1B
i xM V≡

( ) ( )2B
ik xM V≡ 2 .  Likewise, we define the state-dependent marginal utility of 

wealth out of the stock account on each of the three trading dates as 

( ) ( )0 0S
yM V≡ , ( ) ( )1S

i yM V≡ 1  and ( ) ( )2S
ik yM V≡ 2

I

I

.  The conditions on positivity 

and monotonicity of the marginal utility of wealth out of the bond and stock 

accounts at  are given by equations (2.1)-(2.4).  The corresponding 

conditions at  are: 

= 0,1t

= 2t

 

( )2 0, , 1,...,B
ikM i k> =     (B.1) 

and 

( ) ( ) ( ) ( )1 22 2 ... 2 ... 2 0, 1,...,S S S S
i i ik iIM M M M i≥ ≥ ≥ > = . (B.2) 

 

On each date, the trader may transfer funds between the bond and stock 

accounts and incur transactions costs.  Conditions (2.5) and (2.6) hold.  The 

corresponding condition at  is: = 2t

 

( ) ( ) ( ) ( ) ( )− ≤ ≤ + =1 2 2 1 2 , , 1,...,B S B
ik ik ikk M M k M i k I . (B.3) 

 

Conditions (2.7) and (2.8) on the marginal rate of substitution between 

dates zero and one hold.  The corresponding conditions between dates one and two 

are as follows: 
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( ) ( )
1

1 2 , 1,...,
I

B B
i k ik

k
M R M iπ

=
= ∑ I=

I=

J

   (B.4) 

and 

( ) ( ) ( )[ ]2 2
1

1 2 2 , 1,...,
I

S S B
i k k ik k ik

k
M z M z M iπ δ

=
= +∑ .  (B.5) 

 

We consider J European call and put options on the index, with random 

cash payoff  at in state ik .  Condition (2.9) is replaced by: ikjX = 2t

 

( ) ( ) ( ) ( ) ( )
1 1

0 2 0 , 1,...,
I I

B B B
j j i k ik ikj j j

i k
P k M M X P k M jπ π

= =
− ≤ ≤ + =∑∑ . (B.6) 

 

The probability of state  is  because, by assumption, the stock returns are 

independent over the two sub-periods. 

ik i kπ π

Conditions (2.1)-(2.8) and (B.1)-(B.6) jointly define a linear program.  In our 

empirical analysis, we report the percentage of months in which the linear program 

is feasible and, therefore, stochastic dominance is ruled out. 
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Appendix C 
 

1. Berkeley Options Database 
 

The Berkeley Options Database contains all minute-by-minute quotes and trades of 

the European options and futures on the S&P 500 index from April 2, 1986 to 

December 29, 1995.  Details on this database are found in Jackwerth and 

Rubinstein (1996), Jackwerth (2000) and below. 

Index Level.  Traders typically use the index futures market rather than the 

cash market to hedge their option positions.  The reason is that the cash market 

prices lag futures prices by a few minutes due to lags in reporting transactions of 

the constituent stocks in the index.  We check this claim by regressing the index on 

each of the first twenty minute lags of the futures price.  The single regression with 

the highest adjusted R2 is assumed to indicate the lag for a given day.  The median 

lag of the index over the 1542 days from 1986 to 1992 is seven minutes.  Because 

the index is stale, we compute a futures-based index for each minute from the 

futures market as , where F is the futures price at the option 

expiration.  For each day, we use the median interest rate R implied by all futures 

quotes and trades and the index level at that time.  We approximate the dividend 

yield δ by assuming that the dividend amount and timing expected by the market 

were identical to the dividends actually paid on the S&P 500 index.  However, some 

limited tests indicate that the choice of the index does not seem to affect the results 

of this paper. 

( ) 1
0 1S Rδ −= + F

Interest Rate.  We compute implied interest rates embedded in the 

European put-call parity relation.  Armed with option quotes, we calculate separate 

lending and borrowing interest returns from put-call parity where we use the above 

future-based index.  For each expiration date, we assign a single lending and 

borrowing rate to each day, which is the median of all daily observations across all 

strike prices.  We then use the average of these two interest rates as our daily spot 

rate for the particular time to expiration.  Finally, we obtain the interpolated 

interest rates from the implied forward curve.  If there is data missing, we assume 
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that the spot rate curve can be extrapolated horizontally for the shorter and longer 

times-to-expiration.  Again, some limited tests indicate that the results are not 

affected by the exact choice of the interest rate. 

Option Prices.  We use only bid and ask prices on call options.  For each 

day retained in the sample, we aggregate the quotes to the minute and pick the 

minute between 9:00-11:00 AM with the most quotes as our cross section for the 

month. 

We use only call options with 30 days to expiration which occur once every 

month during our sample.  We also trim the sample to allow for moneyness levels 

between 0.90 and 1.05.  Cross sections with fewer than 5 option quotes are 

discarded.  We also eliminate the cross sections right after the crash of 1987 as the 

data is noisy and restart the sample with the cross section expiring on July 15, 

1988. 

Arbitrage Violations.  In the process of setting up the database, we check for 

a number of errors which might have been contained in the original minute-by-

minute transaction level data.  We eliminate a few obvious data-entry errors as well 

as a few quotes with excessive spreads—more than 200 cents for options and 20 

cents for futures.  General arbitrage violations are eliminated from the data set.  

We also check for violations of vertical and butterfly spreads.  Within each minute, 

we keep the largest set of option quotes which satisfies the restriction 

. (1 ) max[0, (1 ) ]i iS C Sδ δ+ ≥ ≥ + −K R

Early exercise is not an issue as the S&P 500 options are European and the 

discreteness of quotes and trades only introduces a stronger upward bias in the 

midpoint implied volatilities for deep-out-of-the-money puts (moneyness less than 

0.6) which we do not use in our empirical work.  We start out with 107 raw cross 

sections and are left with 98 final cross sections. 

 

2. Option Metrics Database 
 

The Option Metrics Database contains indicative end-of-day European call and put 

option quotes on the S&P 500 index from January 2, 1997 to December 31, 2002.  

In merging the Option Metrics Database with the Berkeley Options Database, we 
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follow the above procedure as much as possible, given the closing prices data that 

the Option Metrics Database provides.  Therefore, only departures and innovations 

from the above procedure are noted. 

Index Level.  As the closing (noon) index price, we use the price implied by 

the closing (noon) futures price. 

Interest Rate.  As we cannot arrive at consistently positive interest rates 

implied by option prices, we use T-bill rates instead, obtained from Federal Reserve 

Bank of St. Louis Economic Research Database (FRED®). 

Option Prices.  In the final sample, only call and put options with at least 

100 traded contracts are included.  We calculate a hypothetical noon option cross 

section from the closing cross section and the index observed at noon and the close.  

Here we assume that the implied volatilities do not change between noon and the 

close.  We start out with 69 raw cross sections and are left with 68 final cross 

sections. The time to expiration is 29 days. 

 

3. S&P 500 Information Bulletin 
 

We obtain the historical daily record of the S&P 500 index and its daily dividend 

record over the period 1928-2002 from the S&P 500 Information Bulletin.  Before 

April 1982, dividends are estimated from monthly dividend yields. 
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Appendix D 
 

The GARCH (1,1) special case of the Engle and Gonzalez-Rivera (1991) 

semiparametric model applied to the monthly S&P 500 index return, ty , is 

described by equations (D.1)-(D.3): 

 

ε= +ty y t      (D.1) 

 

( )ε− ∼1/2 . . . 0,1th i i d g      (D.2) 

and 

ω αε β− −= + +2
1t th 1th

)

,    (D.3) 

 

where is an unknown distribution with zero mean and unit variance. (0,1g

The parameters ( )ω α β, ,  are estimated by maximum likelihood under the 

(false) assumption that ( )1/ 2 . . . 0,1th i i d Nε− ∼ .  Then the time series { }ε−1/2
t th  is 

calculated and the true density ( )0,1g  is estimated as the histogram of all the time 

series observations.  The histogram may be smoothed by kernel methods but we do 

not undertake this step in order to keep the procedure comparable to that followed 

in estimating the unconditional distribution. 

One may consider re-estimating the parameters ( ), ,ω α β  by maximum 

likelihood, replacing the assumption that ( )1/ 2 . . . 0,1th i i d Nε− ∼  with the assumption 

that , where  is the estimated density in the last step 

above.  Engle and Gonzalez-Rivera (1991) showed by simulation that this 

additional step is unnecessary in practice. 

l (1/ 2 . . . 0,1th i i d gε− ∼ ) )l (0,1g
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Table 1.  Percentage of Months without Stochastic Dominance Violations in the 

     Single-Period Case 

 
The table displays the percentage of months in which stochastic dominance violations are absent in 

the cross section of option prices.  In brackets, the table displays the bootstrap standard errors of 

these percentages.  The one-way transactions cost rate (one-way trading fees plus half the bid-ask 

spread) on the index is 50 bps.  The one-way transactions cost on each option is proportional to the 

index price, as explained in Section 3.2.  In the second (or, third) row of each cell, the table displays 

the percentage of months without violations when the one-way proportional transactions costs on 

each option are equal to 5 (or, 50) bps of the index price. 

 

 Panel A: 

860516-

871016 

Panel B: 

880715-

910315 

Panel C: 

910419-

930820 

Panel D: 

930917-

951215 

Panel E: 

970221-

991217 

Panel F: 

000218-

021220 

Number of Months  15 29 28 26 35 33 

Historical Index Sample 

1928-1986 

73 (20) 

60 

87 

90 (13) 

59 

90 

100 (13) 

46 

100 

92 (30) 

0 

96 

60 (23) 

14 

80 

48 (19) 

21 

61 

Historical Index Sample 

1972-1986 

73 

33 

73 

76 

52 

90 

100 

50 

100 

92 

4 

96 

34 

6 

66 

27 

9 

48 

Forward-Looking Index 

Sample (including the 

crash) 1987-2002 

40 

13 

67 

76 

48 

83 

100 

61 

100 

96 

12 

96 

26 

14 

43 

15 

3 

33 

Forward-Looking Index 

Sample (excluding the 

crash) 1988-2002 

47 

20 

73 

76 

48 

86 

100 

54 

100 

92 

4 

96 

31 

3 

60 

24 

9 

36 

Index Sample 1972-2002 

with Conditional Index 

Return Distribution 

47 

27 

60 

86 

48 

97 

89 

75 

100 

100 

65 

100 

40 

9 

54 

58 

18 

67 

 42



Table 2.  Percentage of Months without Stochastic Dominance Violations in the 

     Single-Period Case—ITM and OTM Calls Separately 

 
The table displays the percentage of months in which stochastic dominance violations are absent in 

the cross section of in-the-money calls (top entry) and out-of-the-money calls (bottom entry).  The 

one-way transactions cost rate (one-way trading fees plus half the bid-ask spread) on the index is 50 

bps.  The one-way transactions costs on each option are proportional to the index price, as explained 

in Section 3.2. 

 

 Panel A: 

860516-

871016 

Panel B: 

880715-

910315 

Panel C: 

910419-

930820 

Panel D: 

930917-

951215 

Panel E: 

970221-

991217 

Panel F: 

000218-

021220 

Number of Months  15 29 28 26 35 33 

Historical Index Sample 

1928-1986 

93 

73 

 

90 

90 

100 

100 

100 

92 

74 

63 

58 

48 

Historical Index Sample 

1972-1986 

73 

73 

 

83 

76 

100 

100 

100 

92 

43 

34 

39 

27 

Forward-Looking Index 

Sample (including the 

crash) 1987-2002 

73 

40 

 

83 

76 

100 

100 

100 

96 

46 

26 

39 

15 

Forward-Looking Index 

Sample (excluding the 

crash) 1988-2002 

73 

47 

 

83 

76 

100 

100 

100 

92 

46 

31 

39 

24 

Index Sample 1972-2002 

with Conditional Index 

Return Distribution 

80 

47 

 

93 

86 

96 

89 

100 

100 

49 

40 

67 

58 
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Table 3.  Percentage of Months without Stochastic Dominance Violations in the 

     Single-Period Case and Fixed Transactions Costs 

 
The table displays the percentage of months in which stochastic dominance violations are absent in 

the cross section of option prices.  The one-way transactions costs rate (one-way trading fees plus 

half the bid-ask spread) on the index is 50 bps.  The one-way transactions costs on each option are 

20 bps of the index price. 

 

 Panel A: 

860516-

871016 

Panel B: 

880715-

910315 

Panel C: 

910419-

930820 

Panel D: 

930917-

951215 

Panel E: 

970221-

991217 

Panel F: 

000218-

021220 

Number of Months  15 29 28 26 35 33 

Historical Index Sample 

1928-1986 

73 

 

 

86 86 31 66 48 

Historical Index Sample 

1972-1986 

73 

 

 

83 89 42 43 30 

Forward-Looking Index 

Sample (including the 

crash) 1987-2002 

60 79 89 50 40 33 

Forward-Looking Index 

Sample (excluding the 

crash) 1988-2002 

67 72 89 46 40 30 

Index Sample 1972-2002 

with Conditional Index 

Return Distribution 

47 93 96 100 43 64 
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Table 4. Percentage of Months without Stochastic Dominance Violations in the 

     2-Period Case 

 
The table displays the percentage of months in which stochastic dominance violations are absent in 

the cross section of option prices when one intermediate trading date is allowed over the life of the 

one-month options.  The one-way transactions costs rate (one-way trading fees plus half the bid-ask 

spread) on the index is 50 bps.  The one-way transactions costs on each option are proportional to 

the index price, as explained in Section 3.2.  In parentheses, the table displays the percentage of 

months in which stochastic dominance violations are absent in the case where no intermediate 

trading is allowed over the life of the one-month options.  Two periods of 15 days and a kernel 

density of 15-day returns is used (discretized to 21 values from e-0.20 to e0.20, spaced 0.02 apart in log 

spacing). 

 

 Panel A: 

860516-

871016 

Panel B: 

880715-

910315 

Panel C: 

910419-

930820 

Panel D: 

930917-

951215 

Panel E: 

970221-

991217 

Panel F: 

000218-

021220 

Number of Months  15 29 28 26 35 33 

Historical Index Sample 

1928-1986 

67 

(67) 

 

52 

(52) 

 

64 

(54) 

 

12 

(8) 

 

11 

(9) 

 

21 

(18) 

 

Historical Index Sample 

1972-1986 

53 

(60) 

 

62 

(76) 

 

64 

(96) 

 

54 

(81) 

 

20 

(31) 

 

21 

(24) 

 

Forward-Looking Index 

Sample (including the 

crash) 1987-2002 

53 

(53) 

 

62 

(72) 

 

71 

(89) 

 

65 

(65) 

 

20 18 

(29) (21) 

  

Forward-Looking Index 

Sample (excluding the 

crash) 1988-2002 

60 

(53) 

 

79 

(79) 

 

96 

(93) 

 

81 

(81) 

 

31 

(31) 

 

27 

(27) 

 

Index Sample 1972-2002 

with Conditional Index 

Return Distribution 

47 

(47) 

 

66 

(69) 

 

75 

(86) 

 

69 

(65) 

17 

(17) 

 

30 

(33) 
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Figure 1.  Bound Violations Based on the Historical Index Sample 1928-1986 
The six panels display the upper and lower option bounds (implied volatilities) calculated with the 

index return distribution based on the historical index sample 1928-1986, as a function of the 

moneyness (K/S).  The figures also display the observed bid (circles) and ask (crosses) option implied 

volatilities over the pre-crash period (panel A) and the five post-crash periods (panels B-F).  The 

transactions costs rate on the index is 20 bps. 
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Figure 2.  Bound Violations Based on the Historical Index Sample 1972-1986 
The six panels display the upper and lower option bounds (implied volatilities) calculated with the 

index return distribution based on the historical index sample 1972-1986, as a function of the 

moneyness (K/S).  The figures also display the observed bid (circles) and ask (crosses) option implied 

volatilities over the pre-crash period (panel A) and the five post-crash periods (panels B-F).  The 

transactions costs rate on the index is 20 bps. 
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Figure 3.  Bound Violations Based on the Forward-Looking Index Sample 1987-

2002 
The six panels display the upper and lower option bounds (implied volatilities) calculated with the 

index return distribution based on the forward-looking index sample 1987-2002, as a function of the 

moneyness (K/S).  The figures also display the observed bid (circles) and ask (crosses) option implied 

volatilities over the pre-crash period (panel A) and the five post-crash periods (panels B-F).  The 

transactions costs rate on the index is 20 bps. 
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Figure 4.  Bound Violations Based on the Forward-Looking Index Sample 1988-

2002 
The six panels display the upper and lower option bounds (implied volatilities) calculated with the 

index return distribution based on the forward-looking index sample 1988-2002, as a function of the 

moneyness (K/S).  The figures also display the observed bid (circles) and ask (crosses) option implied 

volatilities over the pre-crash period (panel A) and the five post-crash periods (panels B-F).  The 

transactions costs rate on the index is 20 bps. 
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