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Abstract. Our goal is to identify the volatility function in Dupire’s equa-
tion from given option prices. Following an optimal control approach in a
Lagrangian framework, we propose a globalized sequential quadratic program-
ming (SQP) algorithm with a modified Hessian – to ensure that every SQP
step is a descent direction – and implement a line search strategy. In each
level of the SQP method a linear–quadratic optimal control problem with box
constraints is solved by a primal–dual active set strategy. This guarantees L∞

constraints for the volatility, in particular assuring its positivity. The pro-
posed algorithm is founded on a thorough first– and second–order optimality
analysis. We prove the existence of local optimal solutions and of a Lagrange
multiplier associated with the inequality constraints. Furthermore, we prove a
sufficient second-order optimality condition and present some numerical results
underlining the good properties of the numerical scheme.

1. Introduction

Financial derivatives, in particular options, became very popular financial con-
tracts in the last few decades. Options can be used, for instance, to hedge assets
and portfolios in order to control the risk due to movements in the share price. We
recall that a European Call (Put) option provides the right to buy (to sell) a fixed
number of assets at the fixed exercise price E at the expiry time T ; see, e.g. [16].

In an idealized financial market the price of a European option V (t, S) on an
underlying asset S at time t can be obtained as the solution of the celebrated
Black-Scholes equation (see, e.g., [8, 41])

Vt(t, S) +
σ2

2
S2VSS(t, S) + rSVS(t, S)− rV (t, S) = 0, t ∈ (0, T ), S > 0, (1.1a)

where r > 0 is the riskless interest rate and T > 0 the time of maturity, with the
final condition

V (T, S) = P (S), S > 0, (1.1b)

with given pay-off P (S) and appropriate boundary conditions.
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The Black–Scholes equation has been derived under several assumptions, in par-
ticular the asset price S(t) is supposed to follow a stochastic process

dS(t) = µS(t) dt+ σS(t) dW (t),

where µ ∈ R, σ > 0 are the constant drift and constant volatility of the underly-
ing asset, respectively, and W (t) denotes a Brownian motion. The drift and the
volatility are not directly observable. The drift is removed from the model by a
hedging argument [16] and does not enter explicitly in the Black–Scholes equation.
Obtaining values for σ is often done by computing the so–called implied volatil-
ity out of observed option prices by inverting the closed–form solution to (1.1),
the so–called Black–Scholes formula. A widely observed phenomenon is that these
computed volatilities are not constant.

The pattern of implied volatilities for different exercise prices sometimes forms a
smile shape, i.e., implied volatilities of in-the-money and out-of-the-money options
are generally higher than that of at-the-money options. This is observed, for ex-
ample, in coffee option markets. In equity option markets, typically, one observes a
so–called volatility skew, i.e. the implied volatility for in-the-money calls is signifi-
cantly higher than the implied volatility of at-the-money calls and out-of-the-money
calls. Additionally, often variation with respect to time to maturity is present as
well. This is usually referred to as the volatility term structure.

These observations lead to a natural generalization of the Black–Scholes model
replacing the constant volatility σ in the model by a (deterministic) local volatility
function σ = σ(T,E), where T denotes the time to maturity and E the exercise
price. It arises the question of how to determine this volatility function from option
prices observed in markets, such that the generalized Black–Scholes model replicates
the market prices. This problem is often referred to as the calibration problem.

As first observed by Dupire [18], the option price V = V (T,E) as a function
of the exercise time T and the exercise price E satisfies the (forward) differential
equation

VT (T,E)− 1

2
σ2(T,E)E2VEE(T,E) + rEVE(T,E) = 0, T > 0, E > 0 (1.2a)

with the initial condition

V (0, E) = V0(E) = max(S0 −E, 0), E > 0, (1.2b)

and boundary conditions

V (T, 0) = S0, lim
E→∞

V (T,E) = 0, T > 0. (1.2c)

It is derived from a Fokker–Planck equation integrated twice with respect to the
space variable E and using the (formal) identity (S0 − E)+

EE = δS0(E), where δS0

denotes the Dirac mass at S0. Solving (1.2a) for the volatility leads to Dupire’s
formula

σ(E, T ) =

(
2[VT (T,E) + rEVE(T,E)]

E2VEE(T,E)

)1/2

. (1.3)

Note that typical option prices are strictly convex in E which implies positivity of
the denominator.

Dupire’s local volatility function model has received great attention as well as
some criticism [17]. It was extended in [19, 36] by defining the local variance as the
expectation of the future instantaneous variance conditional on a given asset price.
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Therein, the (stochastic) instantaneous variance can be quite general, such that this
approach is consistent with (univariate diffusion) stochastic volatility models, see
for example [29]. However, if one stays within the completely deterministic setting,
(1.2) is the most elaborate model up to our knowledge.

The problem of determining the volatility in (1.2) from observed option prices is
an ill–posed optimization problem in the sense of the lack of continuous dependence
of the minimizers with respect to perturbations of the problem. In the mathematical
literature, there are two main approaches to address the calibration problem. The
first is to apply equation (1.3) on interpolated data sets of option prices observed in
the market [12, 18, 24]. This approach depends largely on the interpolation method
but it is computationally cheap.

The second approach is to use a regularization technique. For instance, the
problem is reformulated as a stochastic optimal control problem and a so–called
entropic regularization [2] is performed or a Tikhonov regularized cost functional is
used in a (deterministic) inverse problem [38]. The last approach has been adopted
in many works, see, e.g., in [1, 32]. For a complete review of the literature we refer
to [14], for a survey on Tikhonov regularization see [21].

Most of the references mentioned above focus on the numerical results obtained
by standard methods without analyzing in–depth the employed algorithms. A
theoretical foundation of the approach with Tikhonov regularized cost functional
is given in [13, 14]. In [14] a trinomial tree method using Tikhonov regularization
and a probabilistic interpretation of the cost function’s gradient is analyzed and
numerical results are shown. Convergence rates for Tikhonov regularization under
interpretable conditions have been derived in [20].

Our goal is to identify from given option prices V (T,E) the volatility function
σ in (1.2). We follow the optimal control approach using a Lagrangian framework.
The proposed algorithm is based on a sequential quadratic programming method
(SQP) and on a primal–dual active set strategy that guarantees pointwise bilateral
constraints for the volatility, in particular assuring its positivity. The algorithm
proposed is founded on a thorough analysis of first– and second–order optimality
conditions. Furthermore, we prove the existence of a Lagrange multiplier associated
with the inequality constraints.

SQP methods have been widely applied to optimization problems of the form

minimize J(x) subject to e(x) = 0,

where the cost functional J : X → R and the constraint e : X → Y are sufficiently
smooth functions and X,Y are real Hilbert spaces. Such problems occur frequently
in optimal control of systems described by partial differential equations [3]. SQP
methods for constrained optimal control of partial differential equations have been
studied widely. For a general survey on SQP methods we refer to [9], for instance,
and the references therein.

The basic idea of SQP methods is to minimize at each iteration a quadratic
approximation of the Lagrangian associated with the cost functional over an affine
subspace of solutions of the linearized constraint. In each level of the SQP method a
linear–quadratic subproblem has to be solved. In the presence of bilateral coefficient
constraints, this subproblem involves linear inequality constraints. For the solution
of the subproblems we use a primal–dual active set method based on a generalized
Moreau–Yosida approximation of the indicator function of the admissible control
set [6, 27].
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This paper is organized in the following manner: In Section 2 we formulate
the parameter estimation as an optimal control problem and prove the existence
of local optimal solutions. Moreover, any optimal solution is characterized by an
optimality system involving an adjoint equation for the Lagrange multiplier. The
optimization method is proposed in Section 3. We apply a globalized SQP method
with a modified Hessian matrix to ensure that every SQP step is a descent direction
and implement a line search strategy. In each level of the SQP method a linear–
quadratic optimal control problem with box constraints is solved by a primal–dual
active set strategy. In Section 4 numerical examples are presented and discussed.

2. The optimal control problem

In this section the parameter identification problem is introduced as an optimal
control problem. We prove the existence of at least one optimal solution and present
first–order necessary optimality conditions. Furthermore, we investigate sufficient
second–order optimality conditions.

2.1. Formulation of the optimal control problem. We start by introducing
some notation. For R > E > M > 0 and T > 0 let Ω = (M,R) be the one–
dimensional spatial domain and Q = (0, T ) × Ω the time–spatial domain. Con-
cerning the error inflicted by introducing artificial boundary conditions we refer to
[4, 35].

We define the Hilbert space

V =
{
ϕ ∈ H1(Ω) : ϕ(R) = 0

}

endowed with the inner product

〈ϕ, ψ〉V =

∫

Ω

ϕxψx dx for all ϕ, ψ ∈ V.

By L2(0, T ;V ) we denote the space of (equivalence classes) of measurable functions
ϕ : [0, T ]→ V , which are square integrable, i.e.,

∫ T

0

‖ϕ(t)‖2V dt <∞.

Analogously, the spaces L2(0, T ;H1(Ω)) and L2(0, T ;L∞(Ω)) are defined. In par-
ticular, L2(0, T ;L2(Ω)) can be identified with L2(Q). Moreover we make use of the
space

W (0, T ) = {ϕ ∈ L2(0, T ;V ) : ϕt ∈ L2(0, T ;V ′)},
which is a Hilbert space endowed with the common inner product; see [15, p. 473].
Let us recall the Hilbert space

H2,1(Q) = H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω))

=
{
ϕ : Q→ R

∣∣ ϕ, ϕt, ϕx, ϕxx ∈ L2(Q)
}
,

supplied with the inner product

〈ϕ, ψ〉H2,1(Q) =

∫ T

0

∫

Ω

ϕtψt + ϕxxψxx + ϕxψx + ϕψ dxdt for ϕ, ψ ∈ H2,1(Q)

and the induced norm ‖ · ‖H2,1(Q) = 〈· , ·〉1/2H2,1(Q). Recall that from Ω ⊂ R it follows

that H2,1(Q) is continuously embedded into L∞(Q); see, e.g. [39, p. 24].
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When t is fixed, the expression ϕ(t) stands for the function ϕ(t, ·) considered as
a function in Ω only.

Next we specify the set of admissible coefficient functions. Suppose that qmin and
qmax are given functions in H2,1(Q)∩L∞(0, T ;H2(Ω)) satisfying qmin ≤ qmin < qmax

in Q almost everywhere (a.e.) with qmin = essinf{q(t, x) : (t, x) ∈ Q} > 0. In
particular, there exists Cad > 0 such that

max
{
||qmin||L∞(0,T ;H2(Ω)), ||qmax||L∞(0,T ;H2(Ω))

}
≤ Cad.

We introduce the set for the admissible coefficient functions by

Qad =
{
q ∈ H2,1(Q) : ||q||L∞(0,T ;H2(Ω)) ≤ Cad, qmin ≤ q ≤ qmax in Q a.e.

}
,
(2.1)

which is a closed, bounded and convex set in H2,1(Q). Note, that the bound Cad > 0
is purely technical, and can be chosen arbitrarily large.

The goal of the parameter identification is to determine the volatility in (1.2a).
For streamlining the presentation we restrict ourselves to the case r = 0 of zero
interest rate in the analytical part of the paper. Therefore, we need to determine
the coefficient function q = q(t, x) = 1

2E
2σ2(T,E) in the parabolic problem

ut(t, x) − q(t, x)uxx(t, x) = 0 for all (t, x) ∈ Q, (2.2a)

u(t,M) = uD(t) for all t ∈ (0, T ), (2.2b)

u(t, R) = 0 for all t ∈ (0, T ), (2.2c)

u(0, x) = u0(x) for all x ∈ Ω (2.2d)

from given, observed option data uT ∈ L2(Ω) for the solution u of (2.2) at the final
time T .

Definition 2.1. For given q ∈ Qad, uD ∈ H1(0, T ) and u0 ∈ L2(Ω) a function u is
called a weak solution to (2.2) if u ∈W (0, T ), u(·,M) = uD in L2(0, T ), u(0) = u0

in L2(Ω) and
∫ T

0

〈ut, ϕ〉H−1,H1
0

+
(∫

Ω

quxϕx + qxuxϕ dx
)

dt = 0, (2.3)

for all ϕ ∈ L2(0, T ;H1
0 (Ω)). In (2.3) 〈· , ·〉H−1 ,H1

0
denotes the duality pairing between

H1
0 (Ω) and its dual space H−1(Ω).

Remark 2.2. Recall that H1
0 (Ω) ↪→ V and H1

0 (Ω) is dense in V . Consequently,
V ′ ↪→ H−1(Ω) and u ∈W (0, T ) ⊂ H1(0, T ;H−1(Ω)). Furthermore, q ∈ H2,1(Q) ↪→
L∞(Q) and qx ∈ H1,1(Q) ↪→ C([0, T ];L2(Ω)). Thus, the integral in (2.3) is well–
defined for every ϕ ∈ L2(0, T ;H1

0 (Ω)).

The following theorem ensures existence of a weak solution to (2.2) for positive
coefficient functions. Its proof follows from standard arguments [37].

Theorem 2.3. Suppose that u0 ∈ L2(Ω) and uD ∈ H1(0, T ). Then, for every
q ∈ Qad there exists a unique weak solution u to (2.2) and a constant C > 0 such
that

‖u‖W (0,T ) ≤ C
(
‖u0‖L2(Ω) + ‖uD‖H1(0,T )

)
. (2.4)

If the initial condition u0 is more regular, we have the following corollary. Its
proof is omitted, because it is standard.
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Corollary 2.4. If u0 ∈ V holds with the compatibility condition u0(M) = uD(0),
it follows that u ∈ H2,1(Q) and there exists a constant C > 0 such that

‖u‖H2,1(Q) ≤ C
(
‖u0‖V + ‖uD‖H1(0,T )

)
. (2.5)

To write the state equations (2.2) in an abstract form we define the two Hilbert
spaces

X = H2,1(Q)×W (0, T ) and Y = L2(0, T ;H1
0 (Ω))× L2(0, T )× L2(Ω)

endowed with their product topologies. Moreover, let

Kad = Qad ×W (0, T )

which is closed and convex. In the sequel we identify the dual Y ′ of Y with the
product space L2(0, T ;H−1(Ω)) × L2(0, T )× L2(Ω).

Next we introduce the bilinear operator e = (e1, e2, e3) : X → Y ′ by

e1(ω) = ut − quxx, (2.6a)

e2(ω) = u(· ,M)− uD, (2.6b)

e3(ω) = u(0)− u0, (2.6c)

where ω = (q, u) holds and the identity e1(ω) = ut − quxx in L2(0, T ;H−1(Ω))
stands for

〈e1(ω), ϕ〉L2(0,T ;H−1(Ω)),L2(0,T ;H1
0 (Ω))

=

∫ T

0

〈ut, ϕ〉H−1 ,H1
0

dt+

∫ T

0

∫

Ω

quxϕx + qxuxϕ dxdt for ϕ ∈ L2(0, T ;H1
0 (Ω)).

Remark 2.5. From q ∈ H2,1(Q) we infer that qx ∈ C([0, T ];L2(Ω)). Thus, for
ϕ ∈ L2(0, T ;H1

0 (Ω))

∣∣∣
∫ T

0

∫

Ω

quxϕx + qxuxϕ dxdt
∣∣∣ ≤ ‖q‖L∞(Q)‖ux‖L2(Q)‖ϕx‖L2(Q)

+ ‖qx‖C([0,T ];L2(Ω))‖ux‖L2(Q)‖ϕ‖L2(0,T ;L∞(Ω)).

It follows that the bilinear operator e1 is well–defined for every ω ∈ X .

Now we address the properties of the operator e. In particular, we prove that e is
Fréchet differentiable and its linearization e′(ω) is surjective at any point ω ∈ Kad.
The latter condition guarantees a constraint qualification, so that there exists a
(unique) Lagrange multiplier λ∗ satisfying the first–order necessary optimality con-
dition (see Theorem 2.10). The Fréchet derivatives with respect to ω are denoted by
primes, where subscripts denote as usual the associated partial Fréchet derivative.

Proposition 2.6. The bilinear operator e : X → Y ′ is twice continuously Fréchet
differentiable and the mapping ω 7→ e′′(ω) is Lipschitz continuous on X. Moreover,
its linearization e′(ω) : X → Y ′ at any point ω = (q, u) ∈ Kad is surjective.
Furthermore, we have

‖δu‖W (0,T ) ≤ C1 ‖δq‖H2,1(Q) for all δω = (δq, δu) ∈ N(e′(ω)), (2.7)

where N(e′(ω)) ⊂ X denotes the null space of e′(ω).
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Proof. First we prove that e is twice continuously Fréchet differentiable at any point

ω = (q, u) ∈ Kad. For arbitrary directions δω = (δq, δu), δ̃ω = (δ̃q, δ̃u) ∈ X we
compute the directional derivatives as

e′(ω)δω =




δut − qδuxx − δquxx
δu(· ,M)
δu(0)


 (2.8)

and

e′′(ω)(δω, δ̃ω) =



−δ̃qδuxx − δqδ̃uxx

0
0


 . (2.9)

These equalities hold in the Y ′-sense. Using Young’s inequality we obtain

∫ T

0

∫

Ω

δqδuxϕx + δqxδuxϕ dxdt

≤
(
‖δq‖L∞(Q)‖δux‖L2(Q) + ‖δqx‖L∞(0,T ;L2(Ω))‖δux‖L2(Q)

)
‖ϕ‖L2(0,T ;H1

0 (Ω))

≤C
(
‖δq‖2H2,1(Q) + ‖δu‖2W (0,T )

)
‖ϕ‖L2(0,T ;H1

0 (Ω)) ≤ C‖δω‖
2
X‖ϕ‖L2(0,T ;H1

0 (Ω))

for all ϕ ∈ L2(0, T ;H1
0(Ω)) and δω = (δq, δu) ∈ X . Hence,

‖e1(ω + δω)− e1(ω)− e′1(ω)(δq, δu)‖L2(0,T ;H−1(Ω))

= sup
‖ϕ‖

L2(0,T ;H1
0 (Ω))

=1

∫ T

0

∫

Ω

δqδuxϕx + δqxδuxϕ dxdt ≤ C ‖δω‖2X

and thus

lim
‖δω‖X↘0

‖e1(ω + δω)− e1(ω)− e′1(ω)δω‖L2(0,T ;H−1(Ω))

‖δω‖X
= 0. (2.10)

Notice that — due to the linearity of the operators e2 and e3 — we have

‖e2(ω + δω)− e2(ω)− e′2(ω)δω‖L2(0,T ) = 0 (2.11)

and

‖e3(ω + δω)− e3(ω)− e′3(ω)δω‖L2(Ω) = 0. (2.12)

Consequently, we infer from (2.10), (2.11) and (2.12) that the operator e is Fréchet
differentiable with Fréchet derivative (2.8). Now we turn to the second derivative.
In view of (2.9)

‖e′1(ω + δ̃ω)δω − e′1(ω)δω − e′′1(ω)(δω, δ̃ω)‖L2(0,T ;H−1(Ω)) = 0,

and e′′2 (ω) = e′′3 (ω) = 0 holds. Hence, we infer that e is twice Fréchet differentiable
and the directional derivative, given in (2.9), is the second Fréchet derivative of e.
Since e′′(ω) does not depend on ω ∈ X , the Lipschitz–continuity on X is obvious.

It remains to prove that e′(ω) is surjective and that the estimate (2.7) is satisfied
for all δω ∈ N(e′(ω)). Suppose that r = (r1, r2, r3) ∈ Y ′ is arbitrary. Then the
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operator e′(ω) is surjective, if there exists a pair δω = (δq, δu) ∈ X such that
e′(ω)δω = r, which is equivalent to

δut − qδuxx = r1 + δquxx in L2(0, T ;H−1(Ω)), (2.13a)

δu(· ,M) = r2 in L2(0, T ), (2.13b)

δu(0) = r3 in L2(Ω). (2.13c)

Choosing δq = 0 there exists a unique δu ∈ W (0, T ), which solves (2.13). Hence
e′(ω) is surjective.

Let δω = (δq, δu) ∈ N(e′(ω)). Estimate (2.7) follows from standard arguments.
For that reason we only estimate the additional right–hand side in (2.13a), namely
the term δquxx. We infer from Hölder’s and Young’s inequalities

∫ t

0

∫

Ω

(
δqδu

)
x
ux dxds ≤

∫ t

0

‖δq‖L∞(Ω)‖δux‖L2(Ω)‖ux‖L2(Ω) ds

+

∫ t

0

‖δqx‖L2(Ω)‖δu‖L∞(Ω)‖ux‖L2(Ω) ds

≤ C(ε) ‖δq‖2H2,1(Q) + ε ‖δu‖2W (0,T )

for almost all t ∈ [0, T ] and for every ε > 0, where the constant C(ε) > 0 depends
on ‖u‖L2(0,T ;V ) and ε. Choosing ε appropriately and using standard arguments the
estimate follows. �

Remark 2.7. It follows from the proof of Proposition 2.6 that at any point ω ∈ Kad

the operator eu : W (0, T )→ Y ′ is even bijective.

Next we introduce the cost functional J : X → [0,∞) by

J(ω) =
1

2

∫

Ω

|u(T )− uT |2 dx+
β

2
‖q‖2H2,1(Q) for ω = (q, u) ∈ X, (2.14)

where uT is a given observed option price at the end–time T , and β > 0 is a
regularization parameter.

Lemma 2.8. The cost functional J : X → [0,∞) is twice Fréchet differentiable
and its Fréchet derivatives are given by

J ′(ω)δω =

∫

Ω

(
u(T )− uT

)
δu(T ) dx+ β 〈q, δq〉H2,1(Q) (2.15)

and

J ′′(ω)(δω, δ̃ω) =

∫

Ω

δu(T )δ̃u(T ) dx+ β 〈δq, δ̃q〉H2,1(Q) (2.16)

for arbitrary directions δω = (δq, δu), δ̃ω = (δ̃q, δ̃u) ∈ X. In particular, the mapping
ω 7→ J ′′(ω) is Lipschitz–continuous on X.

Proof. For all δu ∈ W (0, T ) we have δu(T ) ∈ L2(Ω) (see, e.g. [15, p. 480]) so
that the integrals are well–defined. It follows by standard arguments that the first
and second Fréchet derivative are given by (2.15) and (2.16), respectively. Since
ω 7→ J ′′(ω) does not depend on ω, the mapping ω 7→ J ′′(ω) is clearly Lipschitz–
continuous on X . �
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The parameter identification problem is given by a constrained optimal control
problem in the following form

min J(ω) s.t. ω ∈ Kad and e(ω) = 0. (P)

Note that in our formulation, both the state variable u and the coefficient q
are considered as independent variables while the realization of (2.2) is an explicit
constraint. Alternatively, one could use the equality constraint to treat u = u(q)
as a variable depending on the unknown coefficient q and solve the nonlinear least–
squares problem by the Gauss–Newton method.

In this paper, we choose the SQP approach with independent variables. SQP
methods can be viewed as a natural extension of Newton methods, and are hence
expected to inherit its fast local convergence property. Indeed, the iterates of the
SQP method are identical to those generated by Newton’s method when applied
to the system composed of the first–order necessary conditions for the Lagrangian
associated with (P) and the equality constraint. Note that SQP methods are not
feasible–point methods, i.e. its iterates need not be points satisfying the constraints.

2.2. Existence of optimal solutions. The next theorem guarantees that (P)
possesses an optimal solution.

Theorem 2.9. Problem (P) has at least one (global) solution ω∗ = (q∗, u∗) ∈ Kad.

Proof. In view of Theorem 2.3 the admissible set

E = {ω = (q, u) ∈ X : e(ω) = 0 in Y ′ and ω ∈ Kad} (2.17)

is non–empty (from qmin ∈ Qad follows that (qmin, u(qmin)) ∈ E). Moreover, J(ω) ≥
0 holds for all ω ∈ E. Thus there exists a ζ ≥ 0 such that

ζ = inf{J(ω) : ω ∈ E}. (2.18)

We infer that there exists a minimizing sequence (ωn)n∈N ⊂ E, ωn = (qn, un), with

lim
n→∞

J(ωn) = ζ.

Due to (2.4) and

J(ωn) ≥ β

2
‖qn‖2H2,1(Q) for all n,

we infer that the sequence (ωn)n∈N is bounded inX . Thus, there exist subsequences,
again denoted by (ωn)n∈N, and a pair ω∗ = (q∗, u∗) ∈ X satisfying

qn ⇀ q∗ in H2,1(Q) as n→∞,
un ⇀ u∗ in W (0, T ) as n→∞. (2.19)

Furthermore, since qn ∈ Qad and it holds L∞(0, T ;H2(Ω)) ∩ H1(0, T ;L2(Ω)) ↪→
C([0, T ];H1(Ω)) compactly due to Aubin’s lemma [43], we obtain

qn → q∗ in C([0, T ];H1(Ω)) as n→∞. (2.20)

In view of (2.19) and (2.20) it holds
∫ T

0

∫

Ω

qnunxϕx + qnxu
n
xϕ dxdt→

∫ T

0

∫

Ω

q∗u∗xϕx + q∗xu
∗
xϕ dxdt

as n→∞ for every ϕ ∈ L2(0, T ;H1
0 (Ω)). Therefore,

lim
n→∞

e1(ωn) = e1(ω∗) in L2(0, T ;H−1(Ω)).
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From e1(ωn) = 0 for all n ∈ N we conclude that e1(ω∗) = 0. Since the operators
e2 and e3 are linear, we find e(ω∗) = 0. Since J is convex and continuous, and
therefore weakly lower semi–continuous, we obtain J(ω∗) ≤ limn→∞ J(ωn) = ζ.
Finally, since Qad is convex and closed in H2,1(Q), and therefore weakly closed, we
have q∗ ∈ Qad, and the claim follows. �

2.3. First–order necessary optimality conditions. Problem (P) is a non–
convex programming problem so that different local minima might occur. A nu-
merical method will produce a local minimum close to its starting value. Hence, we
do not restrict our investigations to global solutions of (P). We will assume that
a fixed reference solution ω∗ = (q∗, u∗) ∈ Kad is given satisfying certain first– and
second–order optimality conditions (ensuring local optimality of the solution).

In this section we introduce the Lagrange functional associated with (P) and
derive first–order necessary optimality conditions. Furthermore, we show that there
exists a unique Lagrange multiplier associated with the inequality constraints for
the optimal coefficient q∗.

To formulate the optimality conditions we introduce the Lagrange functional
L : X × Y → R associated with (P) by

L(ω, p) = J(ω) + 〈e(ω), (λ, µ, ν)〉Y ′,Y
=

1

2
‖u(T )− uT ‖2L2(Ω) +

β

2
‖q‖2H2,1(Q) +

∫

Ω

(
u(0)− u0

)
ν dx

+

∫ T

0

〈ut, λ〉H−1 ,H1
0

dt+

∫ T

0

∫

Ω

(qλ)xux dxdt+

∫ T

0

(
u(·,M)− uD

)
µ dt,

with ω = (q, u) ∈ X and p = (λ, µ, ν) ∈ Y . Due to Proposition 2.6 and Lemma 2.8
the Lagrangian is twice continuously Fréchet differentiable with respect to ω ∈ X
for each fixed p ∈ Y and its second Fréchet derivative is Lipschitz–continuous.

An optimal solution to (P) can be characterized by first–order necessary opti-
mality conditions. This is formulated in the next theorem. Recall that the set E
has been introduced in (2.17). Moreover, let

Bρ(ω) =
{
ω̃ ∈ X : ‖ω̃ − ω‖X < ρ

}

be the open ball in X with radius ρ > 0 and mid point ω ∈ X .

Theorem 2.10. Suppose that ω∗ = (q∗, u∗) ∈ Kad is a local solution to (P), i.e.,
ω∗ ∈ E and there exists a constant ρ > 0 such that

J(ω∗) ≤ J(ω) for all ω ∈ E ∩ Bρ(ω∗).
Then there is a unique Lagrange multiplier p∗ = (λ∗, µ∗, ν∗) ∈ Y satisfying the
adjoint equations

−λ∗t − (q∗λ∗)xx = 0 in Q, (2.21a)

λ∗(· ,M) = λ∗(· , R) = 0 in (0, T ), (2.21b)

λ∗(T ) = −(u∗(T )− uT ) in Ω (2.21c)

in the weak sense and the identities

µ∗ = (q∗λ∗)x(·,M) in L2(0, T ), (2.22)

ν∗ = λ∗(0) in L2(Ω) (2.23)
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hold. Moreover, the variational inequality

〈βq∗ −R(λ∗u∗xx), q − q∗〉H2,1(Q) ≥ 0 for all q ∈ Qad (2.24)

holds, where R : (H2,1(Q))′ → H2,1(Q) denotes the Riesz isomorphism, i.e., q =
R(f) ∈ H2,1(Q) solves
∫ T

0

∫

Ω

qtϕt+qxxϕxx+qxϕx+qϕ dxdt = 〈f, ϕ〉(H2,1(Q))′,H2,1(Q) for all ϕ ∈ H2,1(Q)

with f ∈ (H2,1(Q))′. Here, 〈· , ·〉(H2,1(Q))′,H2,1(Q) denotes the duality pairing between

H2,1(Q) and its dual.

Proof. We infer from Proposition 2.6 and Remark 2.7 that a standard constraint
qualification holds at (q∗, u∗) [40]. Therefore, there exists a unique Lagrange mul-
tiplier p∗ = (λ∗, µ∗, ν∗) ∈ Y such that

Lq(ω
∗, p∗)(q − q∗) ≥ 0 for all q ∈ Qad, (2.25)

Lu(ω∗, p∗)u = 0 for all u ∈ W (0, T ), (2.26)

Lp(ω
∗, p∗)p = 0 for all p ∈ Y. (2.27)

Equation (2.27) is equivalent to the equality constraint e(ω∗) = 0 and is fulfilled
since ω∗ solves (P). Next we turn to (2.26), which is equivalent to

0 =

∫

Ω

(u∗(T )− uT )u(T ) dx+

∫ T

0

〈ut, λ∗〉H−1,H1
0 (Ω) dt

+

∫ T

0

∫

Ω

(q∗λ∗)xux dxdt+

∫ T

0

u(·,M)µ∗ dt+

∫

Ω

u(0)ν∗ dx

(2.28)

for all u ∈ W (0, T ). In particular, (2.28) holds for all u(t, x) = χ(t)ψ(x) with
χ ∈ C1

0 (0, T ) and ψ ∈ H1
0 (Ω) ⊂ V . Consequently,
∫ T

0

∫

Ω

χtψλ
∗ + (q∗λ∗)xχψ

′ dxdt = 0 (2.29)

for all χ ∈ C1
0 (0, T ) and ψ ∈ H1

0 (Ω). Notice that
∫ T

0

∫

Ω

χtψλ
∗ dxdt =

∫

Ω

(∫ T

0

χtλ
∗ dt
)
ψ dx =

〈
−
∫ T

0

λ∗tχ dt, ψ
〉
H−1,H1

0

, (2.30)

where λ∗t denotes the distributional derivative of λ∗ with respect to t. The remaining
term in (2.29) leads to

∫ T

0

∫

Ω

(q∗λ∗)xψ
′χ dxdt =

〈
−
∫ T

0

(q∗λ∗)xxχ dt, ψ
〉
H−1,H1

0

. (2.31)

Inserting (2.30) and (2.31) into (2.29) we get

〈∫ T

0

(
− λ∗t − (q∗λ∗)xx

)
χ dt, ψ

〉
H−1,H1

0

= 0, (2.32)

for all χ ∈ C1
0 (0, T ) and ψ ∈ H1

0 (Ω). Notice that q∗ ∈ Qad implies q∗ ∈ L∞(Q)
as well as q∗x ∈ L∞(0, T ;L2(Ω)). Therefore, it follows (q∗λ∗)x ∈ L2(Q) and, conse-
quently, (q∗λ∗)xx ∈ L2(0, T ;H−1(Ω)). The set

{ϕ ∈ L2(0, T ;H1
0 (Ω)) : ϕ(t, x) = χ(t)ψ(x) with χ ∈ C1

0 (0, T ) and ψ ∈ H1
0 (Ω)}
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is dense in L2(0, T ;H1
0 (Ω)) so that λ∗t ∈ L2(0, T ;H−1(Ω)) and (2.21a) hold. More-

over,
∫ T

0

d

dt
〈λ∗, u〉L2(Ω) dt = 〈λ∗t , u〉L2(0,T ;H−1(Ω)),L2(0,T ;H1

0 (Ω))

+ 〈ut, λ∗〉L2(0,T ;H−1(Ω)),L2(0,T ;H1
0 (Ω))

(2.33)

for u ∈ W (0, T ). Hence, we may apply (2.28), (2.32), and (2.33) to obtain

0 =

∫

Ω

(u∗(T )− uT )u(T ) dx+

∫ T

0

d

dt
〈λ∗, u〉L2(Ω) dt

+

∫ T

0

〈−λ∗t − (q∗λ∗)xx, u〉H−1 ,H1
0 (Ω) +

∫ T

0

(q∗λ∗)xu
∣∣x=R

x=M
dt

+

∫ T

0

µ∗u(·,M) dt+

∫

Ω

ν∗u(0) dx

= 〈(u∗(T )− uT + λ∗(T ), u(T )〉L2(Ω) + 〈ν∗ − λ∗(0), u(0)〉L2(Ω)

+ 〈µ∗ − (q∗(·,M)λ∗(·,M))x, u(·,M)〉L2(0,T ).

Choosing appropriate test functions in W (0, T ), we find (2.21c), (2.22), and (2.23).
Finally, we consider (2.25). We compute

Lq(q
∗, u∗, p∗)q =

∫ T

0

∫

Ω

β
(
q∗t qt + q∗q + q∗xqx + q∗xxqxx

)
+ (qλ∗)xu

∗
x dxdt (2.34)

for all q ∈ Qad. For λ∗ ∈ L2(0, T ;H1
0(Ω)) and u∗x ∈ L2(Q) the integral

∫ T

0

∫

Ω

(qλ∗)xu
∗
x dxdt

is bounded for all q ∈ Qad. Moreover, (λ∗u∗x)(·,M) = (λ∗u∗x)(·, R) = 0 holds. Thus,
the function g = −λ∗u∗xx can be identified with an element in (H2,1(Q))′ and we
derive from (2.34)

Lq(q
∗, u∗, p∗)q = β 〈q∗, q〉H2,1(Q) + 〈g, q〉(H2,1(Q))′,H2,1(Q) (2.35)

for all q ∈ Qad. Employing the Riesz isomorphism R, inserting (2.35) into (2.25)
we find

〈βq∗ −R(λ∗u∗xx), q − q∗〉H2,1(Q) ≥ 0 for all q ∈ Qad,

which is the variational inequality (2.24). �

Remark 2.11. The usage of the Riesz operator R : (H2,1(Q))′ → H2,1(Q) in
(2.24) requires to solve a problem of the form

−utt + uxxxx − uxx + u = f in Q,

including initial and boundary conditions. Hence, in our numeric realization we
will employ the ‘weaker’ norm in L2(0, T ;H1(Ω)), see Section 3. Then R can be

replaced by the Riesz operator R̃ : (H1(Ω))′ → H1(Ω), that requires only the
solution of the Neumann problem

−u(t)xx + u(t) = f(t) in Ω, u(t)x|δΩ = 0,

for a.e. t ∈ (0, T ).

Utilizing variational techniques we can prove the following error estimate for the
adjoint variable λ∗.
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Corollary 2.12. Let all hypotheses of Theorem 2.10 hold. Then there exists a
constant C2 > 0 depending on ‖q∗‖L∞(0,T ;L4(Ω)) and qmin such that

‖λ∗‖L2(0,T ;H1
0 (Ω)) ≤ C2 ‖u∗(T )− uT ‖L2(Ω)

Hence, if the residual ‖u∗(T )−uT‖L2(Ω) becomes small the norm of the Lagrange
multiplier λ∗ is small. We will make use of this estimate in the next section.

From Theorem 2.10 we infer the existence of a Lagrange multiplier associated
with the constraint q∗ ∈ Qad. To formulate the result we introduce the following
sets.

Definition 2.13. Let K be a convex subset of a (real) Banach space Z and z∗ ∈ K.
The cone of feasible directions RK at the point z∗, the tangent cone TK at the point
z∗ and the normal cone NK at the point z∗ are defined by

RK(z∗) = {z ∈ Z : ∃σ > 0 : z∗ + σz ∈ K},
TK(z∗) = {z ∈ Z : ∃z∗(σ) = z∗ + σz + o(σ) ∈ K,σ ≥ 0},
NK(z∗) = {z ∈ Z ′ : 〈z, z̃ − z∗〉Z′,Z ≤ 0 for all z̃ ∈ K}.

In case of z∗ 6∈ K the normal cone NK(z∗) is set equal to the empty set.

Let us recall the concept of polyhedricity.

Definition 2.14. Let K be a closed convex subset of the Hilbert space Z, z ∈ Z and
v ∈ NK(z). Then K is called polyhedric at z for the normal direction v provided

TK(z) ∩ {v}⊥ = RK(z) ∩ {v}⊥.
If K is polyhedric at each z ∈ K for all directions v ∈ NK(z), we call K polyhedric.

In the following we choose Z = H2,1(Q), K = Qad and z∗ = q∗. Then, the
following proposition follows directly from [11, Prop. 4.3].

Proposition 2.15. The closed convex set Qad is polyhedric.

Corollary 2.16. Let all hypotheses of Theorem 2.10 be satisfied. Then there exists
a Lagrange multiplier ξ̃∗ ∈ NQad

(q∗) associated with the inequality constraints such
that

Lq(ω
∗, p∗) + ξ̃∗ = 0 in (H2,1(Q))′. (2.36)

Proof. Defining ξ̃∗ = −βq∗ + λ∗u∗xx ∈ (H2,1(Q))′ and using (2.24) we obtain ξ̃∗ ∈
NQad

(q∗). In particular, (2.36) follows. �

Remark 2.17. Using the Riesz isomorphismR introduced in Theorem 2.10 we can
identify ξ̃∗ ∈ (H2,1(Q))′ with an element in the Hilbert space H2,1(Q) by setting
ξ∗ = −βq∗ +R(λ∗u∗xx).

Let ω∗ = (q∗, u∗) ∈ Kad denote a local solution to (P). If the solution q∗ ∈ Qad

is inactive with respect to the norm constraint, i.e., ‖q∗‖L∞(0,T ;H2(Ω)) < Cad, then
(P) is locally equivalent to

min J(ω) s.t. ω ∈ K̂ad and e(ω) = 0, (P̂)

where K̂ad = Q̂ad ×W (0, T ) and

Q̂ad =
{
q ∈ H2,1(Q) : qmin ≤ q ≤ qmax in Q a.e.

}
,
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which is a closed, convex and bounded subset in L2(Q). We define by

Ê = {ω ∈ K̂ad : e(ω) = 0}

the admissible set of (P̂). Monitoring the sequence ‖qn‖L∞(0,T ;H2(Ω)) we solve (P̂)

in our numerical experiments, see Section 4 below. For that reason we focus on (P̂)
in the remainder of this section.

The Lagrange multiplier ξ∗ associated with the inequality constraints for the
optimal coefficient q∗ is characterized by the following corollary.

Corollary 2.18. Let all hypotheses of Theorem 2.10 be satisfied. Suppose that
‖q∗‖L∞(0,T ;H2(Ω)) < Cad. Then ξ∗ satisfies

ξ∗
∣∣
A∗−
≤ 0, ξ∗

∣∣
A∗+
≥ 0, ξ∗

∣∣
I∗

= 0, (2.37)

where

A∗− =
{

(t, x) ∈ Q : q∗(t, x) = qmin(t, x)
}
,

A∗+ =
{

(t, x) ∈ Q : q∗(t, x) = qmax(t, x)
}
,

I∗ =
{

(t, x) ∈ Q : qmin(t, x) < q∗(t, x) < qmax(t, x)
}

are the active and inactive sets for the optimal coefficient q∗.

Proof. The proof uses similar arguments as the proof of Theorem 2.3 in [27]. There-
fore, we give only the proof of ξ∗

∣∣
A∗−
≤ 0. Define

A>− =
{

(t, x) ∈ Q : (q∗(t, x) = qmin(t, x)) ∧ (ξ∗ > 0)
}
,

A>,l− =

{
(t, x) ∈ A>− : ξ∗ >

1

l

}
,

Cl− =

{
(t, x) ∈ A>,l− : qmax(t, x)− qmin(t, x) >

1

l

}
.

Assume that A>− has positive measure µ(A>−) > ε > 0. Since

µ{(t, x) ∈ Q : qmax(t, x) = qmin(t, x)} = 0

and A>,l− ↑ A>− for l→∞, it follows µ(C l−) > 0 for l sufficiently large and C l− ↑ A>−.

Hence there exists l > 0 such that µ(C l−) > ε because of the lower continuity of µ.

Define δ ∈ (H2,1(Q))′ by ϕ 7→
∫ T

0

∫
Ω

(qmax− qmin)χCl−ϕ dxdt and its Riesz represen-

tative by R(δ) ∈ H2,1(Q). Recall that ξ∗ = −βq∗+R(λ∗u∗xx) by Remark 2.17 and
consider the directional derivative (see (2.35))

Lq(q
∗, u∗, p∗)R(δ) = 〈R(δ), βq∗ −R(λ∗u∗xx)〉H2,1(Q)

= 〈δ,−ξ∗〉(H2,1)′,H2,1

= −
∫ T

0

∫

Ω

(qmax − qmin)χCl−ξ
∗ dxdt < − ε

l2
< 0.

This contradicts the optimality of q∗. Hence, µ(A>−) = 0. �

The primal–dual active set algorithm used below makes use of the following result
from convex analysis [26, 31]. Using the generalized Moreau–Yosida regularization
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of the indicator function χQ̂ad
of the convex set Q̂ad of admissible controls, i.e.,

χQ̂ad
(q∗) = inf

q∈H2,1(Q)

{
χQ̂ad

(q∗ − q) + 〈ξ∗, q〉H2,1(Q) +
c

2
‖q‖2H2,1(Q)

}

with c > 0, one can replace q∗ ∈ Q̂ad and condition (2.37) by

q∗ = Pad

(
q∗ +

ξ∗

c

)
for every c > 0, (2.38)

where
Pad : L2(Q)→ {q ∈ L2(Q) | qmin ≤ q ≤ qmax in Q a.e.}

by

Pad(q)(t, x) =





qmin(t, x) if q(t, x) < qmin(t, x),
q(t, x) if qmin(t, x) ≤ q(t, x) ≤ qmax(t, x),
qmax(t, x) if q(t, x) > qmax(t, x)

for almost all (t, x) ∈ Q. It can be proved that (2.38) is equivalent to the differential
inclusion ξ∗ ∈ ∂χQ̂ad

(q∗) (see [3]), where ∂χQ̂ad
denotes the subdifferential of the

indicator function χQ̂ad
.

The primal–dual active set method uses the identification (2.38) as a prediction
strategy, i.e. for a current primal–dual iteration pair (qk, ξk) and arbitrarily fixed
c > 0 the next active and inactive sets are given by

Ak− =
{

(t, x) ∈ Q | qk + ξk
c < qmin

}
, Ak+ =

{
(t, x) ∈ Q | qk + ξk

c > qmax

}
,

Ik = Q \ (Ak− ∪ Ak+).

2.4. Second–order analysis. In Section 2.3 we have investigated first–order nec-
essary optimality conditions for (P̂). To ensure that a solution (ω∗, p∗) satisfying

ω∗ = (q∗, u∗) ∈ Ê, q∗ ∈ Q̂ad, (2.21) and (2.37) indeed solves (P̂), we have to guaran-
tee second–order sufficient optimality. This is the focus of this section. We review
different second–order optimality conditions and set them into relation. Then,
we prove that the second–order sufficient optimality condition holds, provided the
residual ‖u∗(T )− uT‖L2(Ω) is sufficiently small.

For any directions δω = (δq, δu), δ̃ω = (δ̃q, δ̃u) ∈ X the second Fréchet derivative
of the Lagrangian is given by

L′′(ω, p)(δω, δ̃ω) = β

∫ T

0

∫

Ω

δqtδ̃qt + δqδ̃q + δqxδ̃qx + δqxxδ̃qxx dxdt

+

∫

Ω

δu(T )δ̃u(T ) dx+

∫ T

0

∫

Ω

(δqλ)xδ̃ux + (δ̃qλ)xδux dxdt

with ω = (q, u) ∈ X and p = (λ, µ, ν) ∈ Y . In particular, we set

Q(δω) = L′′(ω, p)(δω, δω)

= ‖δu(T )‖2L2(Ω) + β ‖δq‖2H2,1(Q) + 2

∫ T

0

∫

Ω

(δqλ)xδux dxdt

for δω ∈ X . From the boundedness of the second derivative of the Lagrangian we
infer that Q is continuous.

Lemma 2.19. The quadratic form Q is weakly lower semi–continuous. Moreover,
let (δωn)n∈N be a sequence in N(e′(ω)), ω = (q, u) ∈ X, with δωn ⇀ 0 in X and
Q(δωn)→ 0 as n→∞. Then it follows that δωn → 0 strongly in X.
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Proof. Note that for δω = (δq, δu) ∈ X it holds

Q(δω) = J ′′(ω)(δω, δω) + 2

∫ T

0

∫

Ω

(δqλ)xδux dxdt,

and δω 7→ J ′′(ω)(δω, δω) is weakly lower semi–continuous. Since the integral is even
weakly continuous (see the proof of Theorem 2.9), it follows that Q is weakly lower
semi–continuous on X . Now assume that (δωn)n∈N = (δqn, δun)n∈N is a sequence
in N(e′(ω)) with δωn ⇀ 0 in X and Q(δωn)→ 0 as n→∞. Analogously as in the
proof of Theorem 2.9 we derive that δqn → 0 in C([0, T ];V ) as n→∞. Thus,

lim
n→∞

∫ T

0

∫

Ω

(δqnλ)xδu
n
x dxdt = 0.

Since Q(δωn) converges to zero, it follows that for every ε > 0 there exists an nε ∈ N
such that

0 ≤ J ′′(ω)(δωn, δωn) < ε for all n ≥ nε.
In particular, this implies that

β ‖δqn‖2H2,1(Q) < ε for all n ≥ nε,
which gives δqn → 0 in H2,1(Q) as n → ∞. Here we use that β > 0 holds. Since
δωn ∈ N(e′(ω)) holds, we infer from Proposition 2.6 that δun → 0 in W (0, T ) as
n→∞. �

Let us recall the following definition, see [11].

Definition 2.20. Let ω∗ = (q∗, u∗) ∈ Ê.

a) The point ω∗ is a local solution to (P̂) satisfying the quadratic growth
condition if there exists a ρ > 0 satisfying

J(ω) ≥ J(ω∗) + ρ ‖ω − ω∗‖2X + o(‖ω − ω∗‖2X) for all ω ∈ Ê. (2.39)

b) Suppose that ω∗ satisfies the first–order necessary optimality conditions with
associated unique Lagrange multipliers p∗ ∈ Y and ξ∗ ∈ NQ̂ad

(q∗). At

(ω∗, p∗) the second–order sufficient optimality condition holds if there exists
a constant κ > 0 such that

L′′(ω∗, p∗)(δω, δω) ≥ κ ‖δω‖2X for all δω ∈ C(ω∗), (2.40)

where

C(ω∗) =
{
δω ∈

(
TQ̂ad

(q∗) ∩ {ξ∗}⊥
)
×W (0, T ) : δω ∈ N(e′(ω∗))

}

denotes the critical cone at ω∗, ⊥ denotes the orthogonal complement in
H2,1(Q) and TQ̂ad

(q∗) the tangential cone at q∗ (introduced in Def. 2.13).

The critical cone C(ω∗) is the set of directions that are tangent to the feasible
set. It turns out that (2.39) and (2.40) are related to the weaker condition

L′′(ω∗, p∗)(δω, δω) > 0 for all δω ∈ C(ω∗) \ {0}, (2.41)

which is very close to the necessary optimality condition. In particular, the following
theorem holds.

Theorem 2.21. The quadratic growth condition (2.39), the second–order sufficient
optimality condition (2.40), and (2.41) are equivalent.
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Proof. The proof is similar to the proof of Theorem 2.7 in [11]. We show (2.39) =⇒
(2.40) =⇒ (2.41) =⇒ (2.39). Assume that (2.39) holds, ω∗ satisfies the first-order
necessary optimality conditions with associated Lagrange multipliers p∗ ∈W (0, T )
and ξ∗ ∈ NQ̂ad

(q∗). Then there exists a number % > 0 such that w∗ is also a local
solution to

min
ω∈Ê

J(ω)− %

2
‖ω − ω∗‖2X .

Hence, due to the second-order necessary optimality conditions we have

L′′(ω∗, p∗)(δw, δw) − % ‖δw‖2X ≥ 0 for all δw ∈ C(ω∗).

This gives (2.40). From (2.40) we directly infer (2.41). Suppose now that (2.41) is

satisfied, while (2.39) is not. Then there exists a sequence (wn)n∈N ⊂ Ê such that
ωn → ω∗ as n→∞ and

J(ωn) < J(ω∗) +
1

n
‖ωn − ω∗‖2X . (2.42)

Extracting if necessary a subsequence we can write ωn − ω∗ = tnv
n with tn ↘ 0,

‖vn‖X = 1, and vn ⇀ v in X . Next we prove that v ∈ C(ω∗) holds. From ωn =

ω∗+tnvn ∈ Q̂ad×W (0, T ) and tn > 0 for all n we infer that vn ∈ RQ̂ad
(ξ∗)×W (0, T ).

Since RQ̂ad
(ξ∗) is weakly closed, v ∈ RQ̂ad

(ξ∗) ×W (0, T ). By Proposition 2.15 the

set Q̂ad is polyhedric. Thus, v ∈ TQ̂ad
(ξ∗)×W (0, T ). Moreover, e(ωn) = e(ω∗) = 0

leads to

e′(ω∗)v = lim
n→∞

e(ω∗ + tnv
n)− e(ω∗)
tn

= 0,

i.e., v ∈ N(e′(q∗)). By second order expansion,

L(ωn, p∗) = L(ω∗, p∗) + tnL
′(ω∗, p∗)vn +

t2n
2
L′′(ω∗, p∗)(vn, vn) + o(t2n).

Using again e(ωn) = e(ω∗) = 0 and (2.42), we obtain

J(ω∗)+
t2n
n
‖vn‖2X > J(ωn) = J(ω∗)+ tnL

′(ω∗, p∗)vn+
t2n
2
L′′(ω∗, p∗)(vn, vn)+o(t2n).

(2.43)
It follows that L′(ω∗, p∗)v = 0. Together with (2.36) we conclude that vq ∈ {ξ∗}⊥
for v = (vq , vu) ∈

(
TQ̂ad

(ξ∗) ×W (0, T )
)
∩ N(e′(ω∗)). Therefore, we have proved

that v ∈ C(ω∗). Due to (2.25) and (2.26) we know L′(ω∗, p∗)vn ≥ 0. Using (2.43)
we deduce

2

n
‖vn‖2X ≥

2L′(ω∗, p∗)vn

tn
+ L′′(ω∗, p∗)(vn, vn) + o(1)

≥ L′′(ω∗, p∗)(vn, vn) + o(1) = Q(vn) + o(1).

Consequently, lim supn→∞ Q(vn) ≤ 0. Due to Lemma 2.19, Q is weakly lower semi-
continuous and therefore Q(v) ≤ 0. By (2.41) we obtain v = 0. Hence, vn ⇀ 0 and
limn→∞Q(vn) = 0. Again using Lemma 2.19 it follows that ‖vn‖X → 0, but this
is a contradiction to ‖vn‖X = 1 for all n. �

In the next theorem we present a sufficient condition for the second–order suffi-
cient optimality condition (2.40).

Theorem 2.22. Let all hypotheses of Theorem 2.10 be satisfied. Then (2.40) holds
provided ‖u∗(T )− uT ‖L2(Ω) is sufficiently small.
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Proof. Applying estimate (2.7) and Hölder’s inequality, we estimate for arbitrary
δω = (δq, δu) ∈ N(e′(ω∗))

L′′(ω∗, p∗)(δω, δω)

≥β ‖δq‖2H2,1(Q) + 2

∫ T

0

∫

Ω

(δqλ∗)xδux dxdt

≥β
2
‖δq‖2H2,1(Q) +

β

2C1
‖δu‖2W (0,T ) − 2C‖δq‖H2,1(Q)‖λ∗‖L2(0,T ;H1

0 (Ω))‖δu‖W (0,T )

≥
(β

2
min{1, 1/C1} − CC2‖u∗(T )− uT ‖L2(Ω)

)(
‖δq‖2H2,1(Q) + ‖δu‖2W (0,T )

)
,

where we used Corollary 2.12 and Young’s inequality in the last inequality. Sup-
posing that

‖u∗(T )− uT ‖L2(Ω) <
βmin{1, 1/C1}

2CC2
,

we conclude (2.40). �

3. The optimization method

In this section we turn to the optimization algorithm used to solve the param-
eter identification problem (P). We suppose that ‖q∗‖L∞(0,T ;H2(Ω)) < Cad. Since
empirical results suggest that the volatility is quite regular, this is not a severe
restriction for our application. Hence we solve (P̂) instead of (P). To solve (P̂) we
apply a globalized SQP method. The globalization is realized by a modification of
the Hessian matrix to ensure that every SQP step is a descent direction and by a
line search strategy. Since in each level of the SQP method a linear–quadratic opti-
mal control problem with box constraints has to be solved we utilize a primal–dual
active set strategy.

The globalized SQP method is addressed in Section 3.1. Section 3.2 is concerned
with the primal–dual active set method. The line search strategy is discussed in
Section 3.3.

3.1. The globalized SQP method. In the numerical realization we initialize our
SQP method by taking a function u0 ∈ W (0, T ), which satisfies u0(·,M) = uD in
(0, T ) and u0(0) = u0 in Ω. Hence, the next iterate un+1 = un + δun, n ≥ 0, can
be determined by choosing δun in the linear space

U =
{
δu ∈W (0, T ) : δu(t, ·) ∈ H1

0 (Ω) for t ∈ (0, T ) and δu(0) = 0 in Ω
}
,

which is a Hilbert space endowed with the topology of W (0, T ). Thus, the con-
straints e2(ωn) = 0 and e3(ωn) = 0 are guaranteed by construction for any n ≥ 0.
Consequently, there is only one constraint that is e1(ω) = 0 in L2(0, T ;H−1(Ω)).
Therefore, the Lagrange variables µ and ν are redundant. It follows from

µ∗ = (q∗λ∗)x(· ,M) and ν∗ = λ∗(0)

that µ∗ and ν∗ can be computed after determining the optimal coefficient q∗ and
the Lagrange multiplier λ∗ associated with the constraint e1(ω∗) = 0. We set
Y1 = L2(0, T ;H1

0 (Ω)) and identify its dual space Y ′1 with L2(0, T ;H−1(Ω)).
It turns out that by replacing the H2,1(Q)–norm for the regularization term in

(2.14) by the ‘weaker’ norm in L2(0, T ;H1(Ω)), relative to a prior qd, we get good
results while saving computational effort, since we only have to solve a Neumann
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problem for q in each time step (see Remark 2.11). Hence, in the following X =
X1 ×X2 = L2(0, T ;H1(Ω))×W (0, T ).

The linear–quadratic minimization problems that have to be solved in each step
of the SQP method are well–defined provided L′′(ωn, λn) is coercive on N(e′(ωn))
and e′(ωn) on N(e′(ωn)) is surjective for every iterate. Often these requirements
hold only locally so we consider in the following a globalization strategy using a
modified Hessian; compare [26]. For γ ∈ [0, 1] let us define the function γL :
X × Y1 → R by (see [27])

γL(ω, λ) = J(ω) + γ 〈e1(ω), λ〉Y ′1 ,Y1
for (ω, λ) ∈ X × Y1.

Notice that for γ = 1 the function γL is the usual Lagrangian associated with the
single constraint e1(ω) = 0 in Y ′1 . Therefore, we set L = γL for γ = 1.

Algorithm 1 (Globalized SQP method).

1) Choose ω0 = (q0, u0) ∈ X = X1×X2 that satisfies u0(·,M) = uD in (0, T )
and u0(0) = u0 in Ω, λ0 ∈ Y1 with λ0(T ) = uT − u0(T ) in Ω. Fix relative
and absolute stopping tolerances 1 > εrel ≥ εabs > 0. Choose the maximal
number of SQP iterations nsqp ∈ N. Set n := 0 and κ̄ ∈ (0, 1].

2) For ωn = (qn, un) evaluate e1(ωn), e′1(ωn), J(ωn), J ′(ωn). If

‖∇L(ωn, λn)‖2X′×Y ′1 = ‖L′(ωn, λn)‖2X′ + ‖e1(ωn)‖2Y ′1 < εabs

or
‖∇L(ωn, λn)‖2X′×Y ′1 < εrel ‖∇L(ω0, λ0)‖2X′×Y ′1

or n = nsqp, then STOP. Otherwise continue with step 3).
3) Set γ = 1.
4) Solve for δωn = (δqn, δun) the following linear–quadratic optimal control

problem

min L(ωn, λn) + L′(ωn, λn)δω +
1

2
γL′′(ωn, λn)(δωn, δωn)

s.t.

{
e′1(ωn)δωn + e1(ωn) = 0 in Y ′1 ,

qmin ≤ qn + δqn ≤ qmax in X1.

(QP)

5) If ‖δω‖X > 0 evaluate the quotient

κn =
γL′′(ωn, λn)(δωn, δωn)

‖δqn‖2X1
+ ‖δun‖2L2(0,T ;L2(Ω))

.

where
γL′′(ωn, λn)(δωn, δωn) = J ′′(ωn)(δωn, δωn) + γ 〈e′′1(ωn)(δωn, δωn), λn〉Y ′1 ,Y1

holds. If κn ≤ 0 then set γ = 0 and go back to step 4). If κn ∈ (0, κ̄) then
set κ̄ = κn.

6) Determine a step size parameter αn ∈ (0, 1] by a backtracking line search
(see Section 3.3).

7) Set qn+1 = qn + αnδq
n, un+1 = un + αnδu

n, λn+1 = λn + αnδλ
n, set

n := n+ 1, and go back to step 2).

Remark 3.1. 1) Alternatively, γ can be adjusted by using the following iter-
ation strategy after step 3)

a) Choose η ∈ (0, 1) and set i = 0.
b) Perform steps 4) and 5).
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c) If κn ≤ 0 set

γ := min

{
η,
κ̄ ‖δωn‖2X − J ′′(ωn)(δωn, δωn)

〈e′′1 (ωn)(δωn, δωn), λn〉Y ′1 ,Y1

}
. (3.1)

Set i := i+ 1 and go back to b).
From J ′′(ωn)(δωn, δωn) ≥ 0 and κn ≤ 0 it follows that

〈e′′1(ωn)(δωn, δωn), λn〉Y ′1 ,Y1
< 0.

The procedure using (3.1) is less strict than setting directly γ = 0 if κn ≤ 0.
However, it may involve solving (QP) several times, i.e., more often than
at most two times as needed by the strategy that switches directly from
γ = 1 to γ = 0.

2) In Algorithm 1, the positive scalar κ̄ serves as an estimate for the coercivity
constant in (2.40).

3.2. The primal–dual active set method. To solve the linear–quadratic op-
timal control problem (QP) in step 4) of Algorithm 1 we apply the primal–dual
active set method [27]. It involves both primal and dual variables and is therefore
different from conventional active set strategies that involve primal variables only,
see, e.g. [42]. In practice, the algorithm behaves like an infeasible one, since its iter-
ates violate the constraints up to the last–but–one iterate. The algorithm stops at a
feasible and optimal solution. Based on the identification (2.38) for the inactive and
active sets, the algorithm exhibits a low number of iterations to find the optimal
solution and is very robust [27, 6]. Note also that the algorithm uses only one La-
grange multiplier to realize both inequality constraints, which reduces the number
of variables and hence the amount of memory needed by its implementation.

Suppose that we are at level n of the SQP method. Thus, we have iterates
(qn, un, λn) and start our primal–dual active set strategy to determine the directions
(δqn, δun, δλn). Let us define qnmin = qmin − qn and qnmax = qmax − qn. Then we are
looking for a step δqn satisfying the inequality constraints qnmin ≤ δqn ≤ qnmax in
Q. The method uses the identification (2.38) as a prediction strategy, i.e. given
a current primal–dual iteration pair (δqk, ξk) the next inactive and active sets are
given by (3.2)–(3.4) (see below). The method stops at a feasible and optimal
solution as soon as two consecutive tuples of active and inactive sets are equal.
This solution is then used in Algorithm 1.

Instead of solving problem (QP) with inequality constraints we solve

min L(ωn, λn) + L′(ωn, λn)δω +
1

2
γL′′(ωn, λn)(δωn, δωn)

s.t.





e′1(ωn)δωn + e1(ωn) = 0 in Y ′1 ,

δqk = qnmin in Ak−,
δqk = qnmax in Ak+,
qnmin ≤ qn + δqk ≤ qnmax in X1.

(QPIk)

Hence, it is solved for δqk only on the inactive set Ik, but δqk is fixed on the active
set Ak = Ak− ∪ Ak+. We have the following algorithm.

Algorithm 2 (Primal–dual active set method).

1) Choose initial values (δq0, ξ0) ∈ X1 × X1, the parameter c > 0 and set
k := 0.
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2) Determine the active and inactive sets

Ak− =
{

(t, x) ∈ Q | δqk +
ξk
c
< qnmin

}
, (3.2)

Ak+ =
{

(t, x) ∈ Q | δqk +
ξk
c
> qnmax

}
, (3.3)

Ik = Q \ Ak . (3.4)

with Ak = Ak− ∪ Ak+, and set

δ̃qk =





qnmin in Ak−,
qnmax in Ak+,
δqk in Ik.

3) If k > 0 and Ak = Ak−1 holds then STOP.
4) Solve for (δqk , δuk, δλk) ∈ X1 × U× Y1 the linearized state equations

(δuk)t − qn(δuk)xx − δ̃qkunxx = −(unt − qnunxx) in Q, (3.5a)

δuk(· ,M) = δuk(· , R) = 0 in (0, T ), (3.5b)

δuk(0) = 0 in Ω, (3.5c)

the linearized adjoint system

−(δλk)t − (qnδλk)xx − γ(δ̃qkλ
n)xx = −(−λnt − (qnλn)xx) in Q, (3.5d)

δλk(·,M) = δλk(·, R) = 0 in (0, T ), (3.5e)

δλk(T ) + δuk(T ) = uT − un(T )− λn(T ) in Ω, (3.5f)

and the linearized optimality condition on the inactive set

β(−(δqk)xx + δqk)− δλkunxx − γλn(δuk)xx

= −
(
β
(
− (qn − qd)xx + (qn − qd)

)
− R̃(λnunxx)

)
in Ik,

(3.5g)

where (qn, un, λn) denotes the current SQP iterate and R̃ = (−∆ + Id)−1

is the Riesz operator between (H1(Ω))′ and H1(Ω).
5) Set qnk = qn + δqk, unk = un + δuk, λnk = λn + δλk and

ξk = −β(−(qnk − qd)xx + qnk − qd) + R̃(λnk (unk )xx) in Q.

From (3.5g) we infer that ξk = 0 on Ik. Set k:=k+1 and go back to step
2).

Recall that we have chosen λ0 in such a way that λ0(T ) = uT − u0(T ) holds in Ω.
Thus, by induction we have λn(T ) = uT − un(T ) in Ω and (3.5f) reads

δλk(T ) + δuk(T ) = 0 in Ω.

Remark 3.2. In [30] a global and local convergence analysis is done for the non-
linear primal–dual active set strategy in an abstract setting. It turns out that it
converges globally as k →∞ provided a certain merit function satisfies a sufficient
decrease condition. This merit function depends on integrals of the positive part
functions max{0, δqk − qnmax} and max{0, qnmin − δqk} over the set Q as well as of
the positive part functions max{0,−ξk} and max{0, ξk} over the active sets. If, in
addition, a smoothness and Lipschitz condition hold, the method converges locally
superlinearly.
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3.3. The line search strategy. In this section we address the line search strategy
employed in step 6) of Algorithm 1. Notice that Algorithm 2 ensures feasibility of
each solution to (QP) with respect of the solution to the inequality constraints.
Thus, the goal is to find a compromise between the descent of the cost functional
J and the reduction of the violation of the equality constraint e(ω) = 0. This
is realized by a line search method utilizing a suitable chosen merit function. Of
course, there are many suggestions for merit functions in the literature; see, for
instance, in [7, 42]. Here, we use the exact penalty functional

ϕn(αn) = J(ωn) + µ ‖e1(ωn + αnδωn)‖Y ′1 , (3.6)

where αn ∈ (0, 1] is the step size parameter, which has to be determined, and µ > 0
is a parameter penalizing violations of the constraint e1(ω) = 0. The reason for
our choice (3.6) comes from the fact that — apart from evaluating the norm — our
merit function does not introduce an additional nonlinearity into our problem.

In a first–order variation we use the approximation

ϕ̄n(αn) = J(ωn) + αnJ ′(ωn)δωn + µ ‖e1(ωn) + αne′1(ωn)δωn‖Y ′1
= J(ωn) + αnJ ′(ωn)δωn + µ(1− αn) ‖e1(ωn)‖Y ′1 ,

where we have used that e1(ωn)+e′1(ωn)δωn = 0 holds for the SQP step δωn. Notice
that ϕ̄n(1) does not depend on µ. For appropriately chosen penalty parameter
µ > 0, our line search strategy is based on the well–known Armijo rule (see e.g.
[10, 23])

ϕn(αn)− ϕn(0) ≤ cαn
(
ϕ̄n(1)− ϕ̄n(0)

)
for c ∈

(
0,

1

2

)
. (3.7)

In [26] sufficient conditions are given for the existence of a sufficiently large penalty
parameter µ̄ > 0 such that

ϕ̄n(1)− ϕ̄n(0) < 0 for all µ ≥ µ̄. (3.8)

To find an appropriate value for µ we check whether (3.8) holds and increase µ if
not and iterate. If (3.8) is fulfilled we determine αn from (3.7) by a backtracking
strategy starting with αn = 1. If (3.7) is violated we decrease αn by setting
αn := ζαn with ζ ∈ (0, 1) and iterate until (3.7) holds or αn falls below a minimal
step size parameter.

4. Numerical experiments

In this section we report the results of our numerical experiments. The algorithm
proposed in Section 3 is discretized for the numerical realization. We make use
of a finite element method with piecewise linear finite elements for the spatial
discretization. To solve the discrete version of (3.5) we apply a preconditioned
GMRES method.

A typical amount of data noise in option prices, that can be caused for example
by bid–ask spreads, is δ = 0.1%. For the choice of the regularization parameter β
we follow here the strategy proposed in [20], and define a decreasing sequence of
admissible regularization parameters by

(β1, . . . , β6) = (102, 101, . . . , 10−3)δ = (10−1, 10−2, . . . , 10−6).
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Strike E 95 97.5 100 102.5 105

True value 5.24433 3.23921 1.72734 0.77577 0.28866
Good guess 5.24429 3.23921 1.72734 0.77576 0.28861
Good guess & noise 5.24430 3.23921 1.72734 0.77576 0.28861
Bad guess 5.24435 3.23922 1.72733 0.77578 0.28866
Bad guess & noise 5.24435 3.23922 1.72733 0.77578 0.28866
Good guess, fine grid 5.24433 3.23921 1.72734 0.77577 0.28866

Table 4.1. Run 4.1: True option price and reconstructed option
prices computed for different strikesE and different a priori guesses
qd. The true values were computed using the Black–Scholes for-
mula with constant volatility σ = 0.15.

Strike E 95 97.5 100 102.5 105

True value 0.1500 0.1500 0.1500 0.1500 0.1500
Good guess 0.1454 0.1500 0.1517 0.1506 0.1470
Good guess & noise 0.1457 0.1500 0.1517 0.1506 0.1470
Bad guess 0.1458 0.1500 0.1517 0.1506 0.1472
Bad guess & noise 0.1460 0.1500 0.1517 0.1506 0.1472
Good guess, fine grid 0.1488 0.1500 0.1508 0.1502 0.1494

Table 4.2. Run 4.1: Reconstructed volatilities for different strikes
E and different a priori guesses qd.

We start minimizing the functional with the highest value β = β1 and subsequently
decrease the regularization parameter, starting the method at the minimizers ob-
tained in the previous step. For the SQP method we choose stopping tolerances
εabs = 10−6 and εrel = 10−3 and a maximal number of iterations nsqp = 20. We use
a non–uniform grid with 140 nodes locally refined around x = S0 for the spatial
discretization. In time, we employ a fixed, non–equidistant grid consisting of 35
points with small time steps close to t = 0.

Run 4.1. As a first example we apply our method to an artificial data set of Black–
Scholes prices, i.e. prices computed with the Black–Scholes formula, with S0 = 100,
r = 0, one month to maturity and constant volatility σ = 0.15. We consider four
different cases with a priori guess qd = 1

2σ
2
dx

2. In our first simulation we use the
‘good’ a priori guess σd = 0.16, in a second one we add 0.1% uniformly distributed

noise. We compare these results to those from a third and fourth run using a
‘bad’ a priori guess σd = 0.1, where in the fourth run again we added 0.1% uni-
formly distributed noise. The resulting option prices are given in Table 4.1 and the
corresponding volatilities are shown in Table 4.2. The error–free true values for the
option prices were computed using the Black–Scholes formula. Table 4.3 displays
the residuals ‖u(T ) − uT‖L2(Ω) remaining after reconstruction. In all four tests,
the identified option prices correspond very well to the true values, the difference
is neglectably small. The corresponding volatilities are well identified, with small
differences remaining due to discretization errors, which can be reduced by using
a finer grid. This can be seen from the results of a fifth run which was executed
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‖u(T )− uT ‖L2(Ω)

Good guess 6.76× 10−3

Good guess & noise 3.56× 10−2

Bad guess 6.50× 10−3

Bad guess & noise 3.47× 10−2

Good guess, fine grid 1.51× 10−3

Table 4.3. Run 4.1: Residuals remaining after reconstruction.
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Figure 4.1. Run 4.1: Residual ‖u(T )− uT‖L2(Ω) on [95, 105] for
decreasing values of the regularization parameter β.
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Figure 4.2. Run 4.1: Error in reconstructed option prices (left
figure) and relative error in the associated volatilities (right figure)
for different values of the regularization parameter β.

on a grid with halved mesh size in space and time. Figures 4.1 and 4.2 show the
influence of the regularization parameter β. Figure 4.1 is in double logarithmic
scale and shows the residual ‖u(T ) − uT ‖L2(Ω) for the fifth run on the domain
[95, 105] for decreasing values of β. Figure 4.2 displays the error in reconstructed
option prices (left figure) and the relative error in the associated volatilities (right
figure) for different values of the regularization parameter β. Decreasing β further
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Strike E Price C

5825 469.5
6175 223.5
6225 195.5
6275 169.0
6325 144.5
6575 56.5
6875 10.5
7225 0.5

Table 4.4. Run 4.2: Call option prices for maturity 0.09589.

is not advisable since for very small values of β, the reconstructed σ shows oscilla-
tions, since we do not control the H1 norm (Remark 2.11), while the residual still
decreases.
Overall, the method shows only a very small dependence on the chosen a priori
guess and it is robust regarding to additional data noise. In all runs, Algorithm 1
needs very few iterations, typically one to three, to meet the prescribed stopping
tolerances. We find that the identification process is very stable and the option
prices and associated volatilities are very well recovered.

Run 4.2. In our second example we use market data from [14]. These data involve
FTSE index call option prices from February 11, 2000. The option prices are
given in Table 4.4. The spot price is S0 = 6219, the constant interest rate is
r = 0.061451, and the maturity is 0.095890. Note that meaningful empirical data,
i.e., prices of options that are actually traded, are usually only available for strike
prices E in a small region around the spot price S0, typically S0 ± 10% or even
only S0 ± 5% [33]. Restricting the computational domain to this small region
is not advisable, hence one needs to extrapolate the data outside of this region.
Here, we compute the implied volatilities of the options with the largest and the
smallest strike price available by inverting the Black–Scholes formula, and use prices
computed by the Black–Scholes formula with these volatilities in those regions in
which no market data are available. The data are interpolated using a cubic spline.
The resulting local volatility function is shown in Figure 4.3. It is skewed, as is
typical for equity index options. The volatility function is higher for options in–
the–money, i.e. for options with E < S0, than for options at–the–money and out–
of–the–money. Furthermore, it shows a term structure, with volatility decreasing
as time approaches maturity. These characteristics are consistent with empirically
observed patterns in equity index options [34].
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[13] S. Crépey. Calibration of the local volatility in a generalized Black-Scholes model using

Tikhonov regularization. SIAM J. Math. Anal. 34(5), 1183-1206, 2003.
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