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Abstract: The paper proposes a technique for the estimation of possibly nonlinear panel
data models in the presence of heterogeneous unit nonresponse. Attrition or unit nonresponse
in panel data usually renders parameter estimators inconsistent unless the unavailable infor-
mation is missing completely at random. For moment based estimators this problem can be
expressed in terms of the impossibility to construct the sample equivalents of the population
moments of interest. However, if the attrition process is conditionally mean independent of
the variables of interest then the sample equivalents of the population moments can be recov-
ered by weighting the moment functions with the conditional response probability (or propen-
sity score). The latter is usually unknown and has to be estimated. In the presence of nonre-
sponse heterogeneity the propensity score can be estimated by conventional parametric esti-
mation methods like the multinomial logit or probit model. The technique proposed in this
paper leads to a moment estimator which simultaneously exploits the weighted moment func-
tions of interest and the score function of the multinomial choice model. The use of simulated
moments is discussed for applications with many nonresponse reasons. An applications of the
estimator to firm level data is presented where the variables of interest are R&D investments
related to product and process innovations.
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1. Introduction

With an increasing length of the large-N panel data sets which have stimulated the develop-
ment of panel data estimation techniques during the previous three decades, the attrition or
unit nonresponse problem has attracted increasing interest of statisticians and econometri-
cians. Unit (non-)response can be thought of as a particular sample selection problem which is
well known to imply inconsistent parameter estimators (cf. Heckman, 1979). For moment
based estimators, which are central in the current paper, the sample selection problem can be
explained by the impossibility to construct a sample equivalent of the population moment of
interest from the sample selected by the attrition process.

The existing approaches to the correction of the attrition bias have in common that they
focus on a single nonresponse category: a sample unit either responds or not. This binary in-
dicator prohibits any distinction between different nonresponse reasons. As an illustration
consider the work by Harhoff, Stahl and Woywode (1998) who estimate firm survival and
employment growth equations using firm panel data. The authors have information on two
different causes of firm exit: voluntary liquidation and bankruptcy. While they use this dis-
tinction in estimating competing risk models of the instantaneous firm exit probability (haz-
ard), they merge these two nonresponse reasons into a single exit category in estimating the
employment growth equations. This was done although the competing risk model revealed
substantial differences between the determinants of voluntary liquidation and bankruptcy. An
obvious explanation for neglecting the different nonresponse mechanisms is the lack of ap-
propriate panel data estimation techniques which account for nonresponse heterogeneity.

This paper attempts to provide one possible solution to the problem of estimating poten-
tially nonlinear panel data models in the presence of nonresponse heterogeneity. This solution
is based on the "selection on observables"” assumption which originates in the statistics litera-
ture where the associated conditions eliminating the sample selection bias are known as the
"missing at random" (Rubin, 1976) or “conditional independence assumption™ (Rubin, 1977).
The distinction between selection on observables and selection on unobservables is empha-
sized by Heckman and Robb (1985) and Heckman and Hotz (1989) in the context of evaluat-
ing the impact of treatments where program participation serves as a selection mechanism.
Fitzgerald, Gottschalk, and Moffitt (1998) adopt this classification for conditions eliminating
nonresponse bias. According to their definition, selection on observables occurs if the variable

of interest is independent of the attrition process conditional on the explanatory variables and



a set of "auxiliary" variables or "attributes" in the language of Holland (1986). Selection on
unobservables occurs if this conditional independence does not hold which is the case in the
parametric sample selection models in the tradition of Heckman (1979) which rely on a speci-
fication of the joint error term distribution for the response equation and the equation of inter-
est (e.g. Hausman and Wise, 1979, and Ridder, 1990).

The popularity of the missing at random or conditional independence assumption in the
statistics literature is due to a result by Rosenbaum and Rubin (1983) who show that this as-
sumption implies that the set of conditioning variables can be replaced by the conditional se-
lection probability (or propensity score) which is the conditional response probability in the
application considered here. This result reduces the dimension of the conditioning set to one
and facilitates the development of estimators implementing the conditional independence as-
sumption. For moment based estimators calculated from the selected sample it can be shown
that a sample equivalent of the population moment of interest can be generated by scaling
each contribution with its conditional response probability. This result, which essentially goes
back to Horvitz and Thompson (1952), is used throughout the nonresponse literature, e.g. by
Cassel, Sarndal, and Wretman (1983), Little (1986, 1988), Little and Rubin (1987, p. 58),
Czaja, Hirabayashi, Little and Rubin (1992), Little and Schenker (1995), Robins, Rotnitzky
and Zhao (1995), Abowd, Crepon and Kramarz (1997), Fitzgerald, Gottschalk, and Moffitt
(1998), Horowitz and Manski (1998) and Hirano, Imbens, Ridder, and Rubin (1999).

Imbens (2000) and Lechner (2001) introduce an extension of the Rosenbaum and Rubin
result for the evaluation of multiple treatments which cause selection problems which are
similar to those implied by nonresponse heterogeneity. Their results are applied by Lechner
(1999b) and Gerfin and Lechner (2000) to evaluate the impact of heterogeneous active labor
market policy programs in Switzerland and will be used below.

Before returning to the details of the identification and estimation approach it is conven-
ient to introduce the basic notation and to define nonresponse heterogeneity. Assume that the
dependent and explanatory variables of interest are collected in the (k, +k, )xT matrix
Z'= (Y',X’)' where T is the maximum number of available waves of the panel. Values of
k, exceeding one are allowed to maintain the possibility of estimating panel data models
with multiple contemporaneous equations, e.g. systems of simultaneous or seemingly unre-
lated equations. The components of the nonresponse process are summarized by the

(1+ky, )T matrix Z* = (A", W ) where A denotes a row vector of attrition indicators to be
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described below and W a set of conditioning variables. Define Z° = (Z’l,Z’z)’. Note that all
matrices are defined in such a way that the t-th column, indicated by the subscript t, always
contains the information for period t (t=1...,T). Suppose the data {Zf’:i =1,..., N} con-
sists of N independent draws from the probability distribution of the random vector
(Zf,...,Z’f)' . However, most arguments will be made on the population level.

Nonresponse heterogeneity is defined as J>1 where J is the number of different attri-

tion categories. Hence, the attrition indicator A, for period t=1,..., T is defined as follows

0 response in period t,
B nonresponse in period t because of reason "1",
A=0 : 1)
O
H nonresponse in period t because of reason "J".

Occasionally, it is more convenient to work alternatively with a (J +1)><1 vector of dummy
variables D, :(Di’Dﬂ) where D! =1(A, =j) for j=0,...,J.

Suppose the interest focuses on estimating the conditional expectation E[Yt | Xt] 1 The
identification problem in the presence of nonresponse results from the impossibility to con-
struct a sample counterpart of this conditional expectation in the sample selected by A, =0.
Without further assumptions it is only possible to identify bounds for E[Yt | Xt] as suggested
by Horowitz and Manski (1998). To see this, write E[Y,|X,]=Pr[A, =0[X] O
E[Y, X, A, =0 +Pr[A, #0|X] H Y, | X, A, #( . If a priori knowledge allows restricting
the domain of Y, to an interval [B,B, ], then E[Y,| X, A, #0][B,,B,] and

Pr[A, =0|X ] E[ Y, | X, A, =0 +P] A, 20|X] B,
<E[Y,|X]< (2)

PrlA, =0 X ] E[ Y, | X, A, =0 +P] A, 20| X] B,.

These bounds can be readily estimated using the selected sample.lz:I

In the subsequent two sections alternative identifying assumptions are proposed which
are sufficient to estimate the unknown parameters of a parametric specification of E[Yt | Xt]
by a conditional moment approach to GMM estimation in the presence of nonresponse het-
erogeneity. The first assumption, MCAR (missing completely at random), leads to a GMM

estimator which exploits unconditional moment functions implied by the conditional moment

For simplicity, it is assumed in expression (2) that the conditioning variables can be observed despite attrition
(which would be the case, e.g., if they consist of lagged information).

See Lechner (1999a) for an application to the evaluation of treatment effects where the bounds are estimated
by nonparametric estimation techniques.



restrictions without any modification. The second assumption, MAR (missing at random),
requires scaling the unconditional moment functions by the conditional response probability
or propensity score which can be estimated simultaneously using GMM. Parametric specifi-
cations of the propensity score are discussed in Section 4. Section 5 presents some Monte
Carlo experiments for a GMM estimator which implements the MAR assumption proposed in
Section 3 using a multinomial probit specification of the propensity score. The different
GMM estimators are applied in Section 6 to estimate R&D equations using a panel of West

German manufacturing firms. Section 7 concludes.

2. Missing Completely at Random (MCAR): Mean Independence

Following the conditional moment approach to GMM estimation of nonlinear panel data
models (see e.g. Lechner and Breitung, 1996, Breitung and Lechner, 1999, and Inkmann
2000a, 2001) assume that E[Y, | X,] =p(X,.B,). Then a r,x1 vector of unconditional mo-

ment functions

W, (21,8) =B (X) 1Y, -1 (X..B)) 3)

can be obtaiEIed using any r, xk, matrix of instruments B(X,), e.g. B(X,)=2X, which im-

plies r, =k %, The population moment of interest is the orthogonality condition

ERp, (2.8, H=0 (4)

which holds by the law of iterated expectations. Without further assumptions a counterpart of
@lcan not be identified from the sample selected by A, =0. The first identifying assumption

to be considered is MCAR (missing completely at random) which states that
Z. 11D; ()

where a]Ib means that a is independent of b. For the current purpose a weaker mean inde-

pendence assumption can be imposed

EH"Jl(ZLBONAt:OE:Ele(ZLBO)lAt#% (6)

®  For notational simplicity only contemporaneous instruments are considered. If the explanatory variables are

(weakly) strictly exogenous then overidentifying restrictions can be gained from using the regressors from
(past) all periods as additional instruments. These overidentifying restrictions will lead to asymptotic effi-
ciency gains for the associated GMM estimator but are likely to increase its small sample bias (see the dis-
cussion in Inkmann (2001, ch. 6/7). Note also, that lagged explanatory variables are not available for all units
in the presence of temporary nonresponse. For these reasons the restriction to contemporary instruments
seems to be reasonable.



which is sufficient to ensure thatlé| can be identified from the selected sample without any
modification of the unconditional moment functions @ Obviously, the conditionslw(:)I andlgI
are extremely restrictive and will be weakened therefore in the next section. Note, however,
that MCAR is implicitly assumed to hold in all panel data applications where the nonresponse
issue is not addressed.

Before turning to the MAR assumption, the GMM estimator for the panel data model de-
scribed by some general moment function y(Z,,8), with an underlying true qx1 parameter
vector 8,, will be reviewed in short. The moment functions for each period are collected in a

single rx1 (with r > q for identification) vector of moment functions

I

qJ(z,e):(w(zl,e)’,...,w(zT,e)') (7)

which serves as a basis for the GMM estimator 6 of 0,

é:argeéninﬁ,{‘— > w(Zi,e)E\/A\@ﬁZw(Zi,GE (8)

where W is some positive aemidefinite weight matrix and © denotes the space of possible
parameters (Hansen, 1982).* Under some regularity conditions (cf. Newey and McFadden,
1994), plim6 =8, and Jﬁ(é—eo) i N(0,A), where A :(G{)VO*GO)_1 provided that W
satisfies plimW =V, , and denoting G, = E y(Z,8,)/d6H, V, =EFI(Z, &) w(Z 8 )'B.

The GMM estimator of (3, in I{??I can be calculated according to@ using the moment
functions L|J(Zt,9) =y, (Zi,B)DD? in @ This unbalanced panel estimator should be more
efficient than the balanced panel estimator which is based on those observations satisfying

D{ =1, Ot. However, both estimators are consistent under MCAR.

3. Missing at Random (MAR): Conditional Mean Independence

The second identifying assumption to be considered is MAR (missing at random)
Z, 11D | W, ©)

where a]lb|c means that a is independent of b conditional on ¢ (cf. Dawid, 1979, Angrist,

1997). Again, I(-;}lcan be weakened to a conditional mean independence assumption

* This paper focuses on GMM because it is the most frequently applied method of moments. A number of

alternative estimators using moment functions of the type (7) can be employed instead without changing the
basic procedure, e.g. the continuous updating estimator, the empirical likelihood estimator or the exponential
tilting estimator (cf. Imbens, Spady and Johnson, 1998, or Inkmann, 2000b).

6



R (Z,8,) I W, A, =05=EFu, (Z3.B, ) | W, A, # 0] (10)

which is sufficient in the GMM context. The difference between MCAR and MAR s the set
of conditioning variables W, not entering the set of explanatory variables in u(Xt,B). Note
that the conditioning variables or attributes have to be observed for both the respondents and
nonrespondents. This suggests using lagged values of Z; as possible candidates for W,. Also
information on lagged item nonresponse (e.g. to a question related to earnings) should be use-
ful in determining unit nonresponse as pointed out by Lechner (1995) and Rendtel (1995). In
any case, a reasonable application of the identification conditions Ig}land I(—I_G)I requires rich
data sets containing information on nonrespondents. In answering the requests of researchers
(e.g. Schnell, 1997), special nonrespondent surveys are carried out on a more regular basis
today by the institutions collecting the data (e.g. by the ZEW, Mannheim, responsible for the
Mannheim Innovation Panel, MIP, used in Section 6), which suggests that MAR will become
more and more useful for analyzing nonresponse behavior.

To implement MAR within the GMM framework define the propensity score as the con-

ditional response probability
P(W,)=EHD{ |WH=Pr[A =0|W,]. (11)

The following properties of the propensity score are derived by Rosenbaum and Rubin (1983)
for J=1 and by Imbens (2000) and Lechner (2001) for J>1:

W, LID; |P(W,) (12)

Z1ID? P (W,). (13)

The first result states that given the same response probability the attributes are independently
distributed of the response indicator. This balancing property of the propensity score follows
mechanically from @ and is sometimes used to evaluate the quality of an estimator of
P(W,) in applied work (e.g. Dehejia and Wahba, 1999). The second result requires MAR to
hold and allows reducing the dimension of the conditioning set from k,, in Ig}lto one inl(—l_e-)l.

The propensity score will be used in the following to show that the population moment of
interest@has a sample counterpart if the original moment functions (), (Zi, B) are replaced
by the modified moment functions

D;

O, (Zf B) =y (Zi B) %W (14)



which can be calculated from the selected sample. Therefore it has to be shown that

E [P, (27,8, JH=EHw, (Z:.8, ] (15)

which is done in Appendix A in a similar way as in Fitzgerald, Gottschalk, and Moffitt
(1998), Horowitz and Manski (1998) and Imbens (2000). However, the moment functions
@are generally unavailable because the propensity score P(Wt) is unknown. A feasible
estimation strategy consists of estimating the propensity score in a first step and estimating
GMM using the moment functions @ in a second step after replacing P(Wt) with its esti-
mator. The propensity score can be estimated using parametric, or semi-/nonparametric meth-
ods (see Horowitz, 1993) whereby the latter techniques usually focus on the binary case with
J=1. Therefore parametric methods are proposed in the next section. Regardless of the
method being used it has to be taken into account that P(Wt) is replaced by an estimator in
order to[| obtain reliable inference as emphasized by Little (1988) and Little and Schenker
(1995).> Using a parametric estimate of the propensity score this adjustment is particularly
simple in the GMM framework as shown by Newey (1984) and Newey and McFadden (1994)
and demonstrated now.

In parametric multinomial response models the conditional mean of the vector of dummy
variables D, indicating the respective category of A, can be written in general form as
E[D, |W,] =m(W,,y,) with elements 1;(W,,y,), j=0,...,J. Hence, the conditional mo-

ment approach to an unconditional moment function can be employed again and yields

W, (22,v)=c(w,) D, - (W, v)) (16)

where C(W,) is some r, x(J +1) matrix of instruments to be specified below. A feasible ver-

sion of the moment function I@]can be written now as
s (28,8) =w(z B B—t— (17)

where &=(p, V)'. The unknown parameters &, =(By, Y, ) of both the propensity score equa-
tions and the equations of original interest can be estimated jointly using @ and moment
functions of the type (Z,,8) = (qJ2 (Zf y)', g, (Zf 6)) in I(;&l The formula for the variance-
covariance matrix of the stabilizing transformation of the resulting GMM estimator & auto-

matically adjusts for the estimated propensity score. The same idea has been employed before

> This potential source of erroneous inference is usually ignored in the treatment effects literature.
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in the context of estimating a conditional response probability (with J=1) by Abowd, Crepon
and Kramarz (1997).
The next section proposes alternative specifications of 1 (W,,y) and C(W,) in @for

estimating the propensity score..

4. Propensity Score Estimation
Well known parametric models for the estimation of multiple choice models include the mul-
tinomial logit and the multinomial probit. This section shows that the first order conditions for
the Maximum Likelihood estimators of these models can be written in termini of the moment
functionsl(-t_ﬁy.|

Because of its computational simplicity a convenient starting point is the multinomial
logit model defined by the following parameterization of the conditional choice probabilities:

(W, ) = () (18)
1+ Z exp (Wt'\/ )

for j=0,...,J and y:(y’o,..., VJ)'. To ensure that the probabilities add up to one the pa-
rameter values of the first (arbitrarily chosen) category have been restricted to zero, i.e.
v’ =0. In addition, exclusion restrictions may be imposed on some elements of W, in some
categories when the corresponding explanatory variables should not affect the conditional
mean functions of these categories.

The matrix of instruments C(Wt) will be chosen optimally for the given set of condi-
tional moment restrictions E (D, —T[(Wt,yo)|Wt§:0 in such a way that lﬁ_ﬁ-)l reflects the

score function of the Maximum Likelihood estimator of the multinomial logit model. Hence,
C(W,)=(W,,....W,) (19)

which is of dimension k,, ><(J +1). If there are exclusion restriction then the corresponding
elements of the matrix have to be set to zero again. This matrix of instruments leads to the
most efficient combination of the conditional moment functions. Using these instruments, v,
is exactly identified from the moment functions of a single period and therefore overidentified
whenever T >1 (or T >2 when there is no initial nonresponse).

While the multinomial logit model can be readily estimated almost regardless of the

number of categories, the model suffers from the well known I1A (independence of irrelevant



alternatives) property which states that the ratio of two conditional choice probabilities is in-
dependent on the remaining categories as can be seen from @ Therefore the multinomial
probit model is considered as an alternative in the following.

Estimation of the multinomial probit model is much more difficult than estimation of the
multinomial logit model. Conventional ML estimation using numerical optimization routines
becomes impossible whenever there are more than four choice categories (i.e. J>3). There-
fore the score function of the model is derived for J=3 in a first step and the method of
simulated moments (McFadden, 1989) is discussed in a second step for applications with
J>3.

The J =3 case will be outlined in some detail because it will serve as a reference for the
Monte Carlo experiments in the next section. For the sake of providing simple identification
conditions a random utility model is employed although this model can be hardly interpreted
from an economic point of view in relationship with nonresponse heterogeneity. The "utility"
associated with nonresponse category j=1,...,J is specified as Ul = W/a! + ¢! while the util-
ity of the response category is normalized to U =0. It is assumed that the error terms
& =(s§,st2,sf)’ follow a trivariate normal distribution with mean zero and a within period

variance-covariance matrix

01 0
0 0

2, =0y Oy (20)
a1 Oz 0'33@

where the upper left element is set to one for Hentification reasons. Otherwise the intra-
temporal correlation structure is left unrestricted.® Then the conditional choice probabilities
can be derived from a pairwise comparison of the random utilities as

(W, y) =Pr[U, >U,,U, >U,,U, >U,]

2

O\ , o O
= CD(3) D’Wtal, _WtT7 —V\/t T, QOD
U 05 33 O

(21)

where ®® denotes the c.d.f. of the trivariate standard normal distribution and Q, denotes the
correlation matrix corresponding to Z,. The choice probabilities T (Wt,y), for j=1,2,3, can

be derived accordingly and are given in Appendix B. The parameter vector y contains both

®  The same holds for the inter-temporal correlation structure which needs not to be specified because only the

marginal moments of each period are used. Borsch-Supan, Hajivassiliou, Kotlikoff, and Morris (1993) and
Ziegler and Eymann (2000) discuss specifications of the inter-temporal correlation structure of the model.
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a= (a'l,...,a”)’ and the unknown elements of the lower triangular matrix L which is cho-
sen such that LL' = X to ensure positive definite variance-covariance matrices. The upper left
element of L is normalized again to one. For computational reasons, Keane (1992) strongly
recommends to impose at least one exclusion restriction on the elements of W, in each cate-
gory such that the same set of regressors is not used twice in different categories.

In order to mimic the score function of a ML estimator of the multinomial probit model
which is given e.g. by McFadden (1989, equ. 4) with the moment functionl(—f_QI it is necessary

to chose the matrix of instruments correctly. In this model the optimal instruments are

=Eﬁlnﬂo(Wﬂvo) N Olnm(Wt,vo)E

C(W. s
(t)m oy o 0O

(22)

a
and depend on the unknown parameter vector v,.” One strategy of obtaining feasible optimal

instruments consists of replacing y, with a first step estimator. In the Monte Carlo experi-
ments and the application given below v, is replaced with the ML estimator of the multino-
mial probit model which has the additional advantage of providing good starting values for
the GMM optimization routine. Alternatively, one might employ suboptimal instruments, for
example the optimal instruments I@]for the multinomial logit model, which circumvent the
first estimation step but will lead to asymptotically less efficient parameter estimators. Note,
however, thatlgaI is not sufficient to identify all parameters of the multinomial probit model
from the information of a single period because of the additional variance-covariance pa-
rameters. This should be no problem as soon as there are more waves available.

When the number of categories exceeds four (J >3) then the moment condition I@Jcan
be still used but its components in%I andl(—z_%)lhave to be simulated with the help of Monte
Carlo integration techniques as proposed in the influential paper by McFadden (1989). In this
case @Wi” be a set of simulated moment functions. Both components, the (non-)response
probability in I%land the matrix of optimal instruments in @ contain multivariate normal
probabilities which suggest using the GHK (Geweke-Hajivassiliou-Keane) simulator which
has proven to be the most successful simulator in this particular appliﬁation in a variety of

experiments carried out by Hajivassiliou, McFadden and Ruud (1996).% Appendix C derives

The exact analytical form of these derivatives is given in Lemma 10 in McFadden (1989).

The GHK simulator for the multinomial logit model is presented e.g. by Bérsch-Supan and Hajivassiliou
(1993) and Geweke, Keane and Runkle (1994) in the context of simulated ML estimation and applied in a
large number of recent studies (e.g. Inkmann, 2000a), in particular by Lechner (1999b) and Gerfin and Lech-
ner (2000) who estimate propensity scores for multiple program participation.

11
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the GHK simulator of the response probability I@lfor J >3. The simulator of the optimal
instruments @can be obtained accordingly using a different set of underlying random num-
bers as emphasized by McFadden (1989, p.1004). Alternatively, one might consider using
suboptimal instruments to circumvent this additional simulation step. McFadden derives the
asymptotic distribution of the method of simulated moments (MSM) estimator using argu-
ments from Pakes and Pollard (1989). The asymptotic variance-covariance matrix of the sta-
bilizing transformation of the MSM estimator can be shown to be (1+1/R) times the inverse
of the information matrix of the multinomial probit model where R is the number of Monte
Carlo replications used for simulating the response probability (see Lee, 1996, p. 80). Hence,
with an increasing R MSM becomes asymptotically as efficient as ML. Since the moment
functions I(-}_6}|mimic the score of ML, the GMM variance-covariance matrix A given in Sec-

tion 3 will remain valid despite simulation when R - oo.

5. Monte Carlo Experiments

In order to shed some light on the small sample performance of the GMM estimators intro-
duced in the proceeding sections, a number of Monte Carlo experiments is carried out. Be-
cause the basic estimation procedure is not affected by the number of periods involved, the
experiments are carried out on a cross-section such that the index t can be omitted in this sec-
tion. Both, linear and nonlinear equations of interest are considered. There are J=3 nonre-
sponse categories. The conditional (non-)response probabilities are estimated using the multi-
nomial probit specification with optimal instrumentsl(—z_—zaI which are obtained from a first step
ML estimation of this model.

The data generating process is specified as follows

Y =1(B, +B,X + ) IA =0) with B=( B B)
U'=a + a3 X +a;W+a,D, +¢' with alz(

(23)
U?=a?+aX+aiW+a’D,+g*>  with 0(2:(0(12,0(2,0(3,0(2)
Ul =a+aiX+aiW+aD,+¢° with 0(3:(
where t(e) denotes an observability rule defined as T(e)=e in the first experiment (E1) and
as T(e):l(e >O) in the second experiment (E2). Hence, the equation of interest is a linear

regression model in E1 while it is a binary choice model in E2. Correspondingly, the moment

12



functions Y, (Zl,B) of original interest are specified as the scores of the ML estimators of
these models. The nonresponse indicator is determined by a random utility model with the
utility of the response category normalized to zero, i.e. U° =0 as demonstrated in Section 4.
The explanatory variables D,,D,,D, are used to integrate Keane's (1992) recommendation to
apply exclusion restrictions to the variables of the multinomi:zlall probit model in order to ensure
identification of the unknown parameters in practical work.” Each of these dummy variables
has a mean of 0.5. The continuous explanatory variable is generated as X ~ N(2,4). The true

mean parameters are set to

B,=(-11) and d}=af =0} =(-11-11) @4

and the elements of %, in @ are set to one on the main diagonal and to O.?:Ioff diagonal.

The data generating process implements the MAR assumption by assuming that°

Hod N(E% 1 0.7 S (25)

wH THdHors  1H g
The Tables 1-3 contain summary statistics for the parameter estimates of the equation of in-
terest using estimators under both, the correctly specified MAR assumption and the misspeci-
fied MCAR assumption. The Tables A1-A3 in Appendix D contain summary statistics for the
unknown parameters of the propensity score equations under the MAR assumption. The sam-
ple sizes are N = 500 in E1 and N = 500 and N = 2000 in E2. The number of Monte Carlo
replications is M = 1000 for the experiment with N = 500 and M = 500 for N = 2000.

As expected, the correctly specified MAR estimator exhibits much less bias in the linear
regression model in Table 1 than the MCAR estimator ignoring the selection on observables
mechanism. The same holds for the estimators of the slope coefficient in the binary choice
model in Table 2. Surprisingly, the intercept is estimated with less bias by the misspecified
MCAR estimator. However, this result is mitigated when the sample size increases from N =

500 to N = 2000 as Table 3 clearly shows and should reverse in a larger sample.

Of course, these restrictions are not required from a theoretical point of view. The specification of the multi-
nomial probit model presented in Section 4 ensures identification. In a discussion of this paper, Richard
Blundell has pointed out that these exclusion restrictions also serve as a main reason for considering nonre-
sponse heterogeneity. In the absence of these restrictions the different nonresponse categories can be pooled
for the estimation of the propensity score provided there is no original interest in the parameters of the selec-
tion process itself. This pooling issue will be investigated in future work in more detail.

Torsten Persson has suggested to evaluate the performance of the estimators which implement the selection
on observables assumption under a data generating process which produces selection on unobservables in or-
der to shed some light on the estimator's performance under misspecification. This idea remains an important
task for future work as well.

10

13



Table 1: GMM estimation of the equation of interest under MCAR and MAR

Summary statistics from 1000 replications of Monte Carlo experiment E1 (N = 500)

param. true mean bias se rmse
MCAR B, -1.0000 -0.8217 0.1783 0.0679 0.1908
MAR -1.0000 -1.0058 -0.0058 0.1162 0.1164
MCAR B, 1.0000 1.1506 0.1506 0.0436 0.1568
MAR 1.0000 1.0752 0.0752 0.1002 0.1253

Table 2: GMM estimation of the equation of interest under MCAR and MAR

Summary statistics from 1000 replications of Monte Carlo experiment E2 (N = 500)

param. true mean bias se rmse
MCAR B, -1.0000 -0.9543 0.0457 0.1722 0.1782
MAR -1.0000 -1.1109 -0.1109 0.1944 0.2238
MCAR B, 1.0000 1.2795 0.2795 0.1649 0.3245
MAR 1.0000 1.1819 0.1819 0.2328 0.2954

Table 3: GMM estimation of the equation of interest under MCAR and MAR

Summary statistics from 500 replications of Monte Carlo experiment E2 (N = 2000)

param. true mean bias se rmse
MCAR B, -1.0000 -0.9322 0.0678 0.0868 0.1101
MAR -1.0000 -1.0721 -0.0721 0.1163 0.1368
MCAR B, 1.0000 1.2505 0.2505 0.0775 0.2622
MAR 1.0000 1.1034 0.1034 0.1694 0.1985
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6. Application

In this section the proposed estimators are applied to a firm level data set to estimate R&D
(research and development) equations for the amount of R&D investments devoted to the de-
velopment of process and product innovations, process R&D and product R&D, henceforth.
According to a hypothesis formulated by Cohen and Klepper (1996) and Klepper (1996) the
proportion of process R&D on total R&D increases with increasing firm size. This hypothesis
will be investigated in the following by estimating a SURE model of process and product
R&D equations and comparing the estimated parameters of the firm size variables. If the
Cohen/Klepper hypothesis holds then the firm size parameter in the process R&D equation
should exceed the corresponding parameter in the product R&D equation. A similar estima-
tion strategy has been employed by Fritsch and Meschede (2000) who find weak evidence for
the Cohen/Klepper hypothesis in separate regressions for product and process R&D,

A data set which contains information on process and product R&D for German manu-
facturing firm is the Mannheim Innovation Panel (MIP) which is collected by the Centre for
European Economic Research (ZEW) in Mannheim. This data set contains detailed informa-
tion on the R&D and innovation activities of the firms (see Harhoff and Licht, 1994, for de-
tails). A distinction between process and product R&D is possible in the first two waves
raised in 1993 and 1994 which are used in the following. Similar to other surveys included in
the European Community Innovation Surveys (CIS) program, the MIP is affected by the
problem that the R&D information is only collected for those firms who plan to introduce an
innovation within the three years subsequent to the interview date (so called "innovation fil-
ter"). In the first wave the innovation filter is defined slightly different: firms which have in-
troduced an innovation within the three years before the interview or expect to introduce an
innovation within the three years following the date of the interview pass the innovation filter.
Those firms who pass the innovation filter in the first wave are defined as the population of
interest in the subsequent analysis. This assumption facilitates the estimation procedure be-
cause it rules out initial nonresponse. Looking at the response behavior in 1994 of the 1019
firms included in the 1993 sample (after deleting item nonresponse information), it turns out
that more than 50% (525) of these firms do not respond in the second wave in 1994. However,
172 of the 1994 nonrespondents return in later waves (1995 — 1997). To distinguish these
firms from permanent nonrespondents and to account for the innovation filter described above

which absorbs 59 firms in the second wave, the (non-)response indicator is defined as follows:
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response in period 2 and innovation filter passed,

response in period 2 but innovation filter not passed,

A, = (26)

nonresponse in period 2 but at least one response in periods 3-5,
nonresponse in periods 2-5.

B

The R&D equations of interest are linear in the log of process and product R&D. The under-
lying moment functions are specified as the scores of the ML estimators of the two separate
equations. The main explanatory variable is the log of the number of employees as a firms
size measure. To control for different R&D capabilities, an indicator for the presence of a
R&D department is included. To control for industry heterogeneity a vector of 10 sector
dummies is added. Finally, the list of explanatory variables is extended by an indicator for a
firm located in the former East Germany. The list of attributes consists of (lagged) firm size,
lagged total R&D expenditures, the R&D department indicator, the dummy variable for East
German firms and indicators for innovation constraints and expectations regarding the future
(3 ys.) development of the firm. Table 4 presents the GMM estimla:tlion results for the process
and product R&D equations of interest under MCAR and MAR.!! Table A4 in Appendix E
contains summary statistics for the respondents. Table 5 displays the GMM estimation results
for the (non-)response equations used for the estimation of the propensity score under MAR.
Table A5 in Appendix E compares the means of the attributes over the (non-)response catego-
ries. From the list of attributes listed in Table A5 only those are usually maintained in the fi-
nal regression in Table 5 which turned out significant.

The GMM estirElator is based on a multinomial logit specification of the conditional re-
sponse probabilities*? and an optimal weight matrix using the usual two step estimation pro-
cedure. Apart from the J test (or Hansen-Sargan test) of overidentifying restrictions, a LM test
developed by Imbens, Spady and Johnson (1998) is employed to test the model specification
whereby the latter (based on the empirical likelihood approach) is expected to have better
small sample size properties according to the Monte Carlo experiments carried out by these
authors. Neither the MAR nor the MCAR specification is rejected by the LM test as Table 4

shows.

11 A statistical test whether MCAR or MAR can be preferred is not available unless refreshment samples are
exploited as shown by Hirano, Imbens, Ridder, and Rubin (1999). However, because the current paper fo-
cuses on estimation under nonresponse heterogeneity and not on hypotheses testing, this test is left to future
research.

The multinomial probit specification is left for future work.
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Table 4: GMM estimation of the R&D equations (N = 1019)

MCAR MAR
parameters estimate t-value estimate t-value
equation 1: product R&D
Intercept -5.1640 -25.1732 -5.2941 -25.9882
Log number of employees 0.7382 20.2409 0.7534 20.9891
East German firm -0.2118 -2.4804 -0.2491 -2.8661
R&D department 1.2871 14.2021 1.2628 13.8153
equation 2: process R&D
Intercept -5.8346 -28.7268 -5.9593 -29.4326
Log number of employees 0.6611 17.8507 0.6772 18.0051
East German firm -0.2748 -3.4299 -0.3442 -4.1998
R&D department 0.5908 7.1618 0.5324 6.2484
hypotheses tests: X (dof) p-value x> (dof) p-value
LM test of overident. restrictions | 32.02 (28) 0.2739 32.93 (28) 0.2385
Wald test: employ. 1 = employ. 2 | 6.6086 (1) 0.0101 5.2563 (1) 0.0219
Wald test: joint sign. equation 1 1723 (13) 0.0000 1775 (13) 0.0000
Wald test: joint sign. equation 2 770.1 (13) 0.0000 839.6 (13) 0.0000
Wald test: sector dummiesequ. 1 | 154.9 (10) 0.0000 144.4 (10) 0.0000
Wald test: sector dummies equ. 2 | 33.89 (10) 0.0002 37.92 (10) 0.0000
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Table 5: GMM estimation of the (non-)response equations (N = 1019)

MAR
parameters estimate t-value
equation 3: innovation filter
Intercept -4.7062 -10.3687
East German firm -1.0349 -2.6016
Log number of employees 0.5510 7.9871
Lagged log R&D -0.6424 -6.4956
Qualified staff missing 0.8203 2.5928
equation 4: transitory nonresponse
Intercept -2.0887 -4.3739
East German firm -0.6000 -2.6222
Lagged log number of employees 0.2053 2.5344
Lagged log R&D -0.1105 -1.6610
High risk of imitation 0.4234 2.3969
equation 5: permanent nonresponse
Intercept -1.0243 -2.7485
East German firm -0.1495 -0.9013
Lagged log number of employees 0.1363 2.0985
Lagged log R&D -0.1464 -2.9277
Decreasing demand expected 0.2895 1.9731
hypotheses tests: x*(dof) p-value
Wald test: joint significance equation 3 78.70 (4) 0.0000
Wald test: joint significance equation 4 21.87 (4) 0.0002
Wald test: joint significance equation 5 14.45 (4) 0.0060
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Contrary to the results predicted by the Cohen/Klepper model, the impact of firm size on
product R&D is larger than the impact on process R&D. Equality of the firms size coeffi-
cients in the product and process equations is clearly rejected by a Wald test. These results
holds regardless on the specification (MCAR or MAR) being used. Actually, the magnitude of
the parameter estimates is very similar in both specifications of the (non-) response mecha-
nism. The only exception is the coefficient of the dummy variable for East Germany which
increases in absolute terms if selection on observables is taken into account. This variable is
also an important predictor of the nonresponse reasons "innovation filter" and "transitory non-

response” but turns out insignificant in the "permanent nonresponse™ category.

7. Conclusion

This paper has suggested a possible way of dealing with nonresponse heterogeneity in panel
data. The proposed GMM estimator simultaneously exploits the propensity-score-weighted
moment functions of interest and the score of the ML estimator of a multinomial choice
model for the propensity score estimation.

It should be emphasized that the general estimation procedure is not restricted to the at-
trition problem but can be applied to any other selection problem as well which is character-
ized by multiple selection possibilities (e.g. programme heterogeneity in the treatment effect
literature, see e.g. Lechner, 2001).

The basic prerequisite of the proposed method is the availability of rich data sets which
include all relevant information for the selection on observables assumption. A very interest-
ing route for future research is the analysis of the performance of those estimators which rely
on the propensity score under circumstances which are characterized by missing information
on the set of relevant conditioning variables or by selection on unobservables which has been
the dominant assumption in the econometric sample selection literature since Heckman's early
contributions (e.g. Heckman, 1979).

The results in this paper indicate that the proposed estimator works well in experimental
setups but behaves very similar to an estimator ignoring the attrition process in an application
to real data. The latter result might be explained by the lack of the relevant variables driving

the selection on observables assumption.
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Appendix A

Proposition: E [, (20,8 5= (2.8 5

Proof:
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MAR is used to obtain the first expression in the last row.
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Here Q, denotes the correlation matrix corresponding to Z,, i=1,2,3, where %, can be ex-

pressed in termini of the elements of the matrix %, defined in I(%_ejl as
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where a term like X} denotes the element in the i-th row and j-th column of %, and where j

and k are the remaining two numbers from the set [1, 2,3] after deleting i.
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Appendix C
To simulate J-variate probabilities of the form given in Appendix B (for J=3) for J >3 write

the conditional choice probabilities for j=0,...,J in general form as

(W, y)=E[D,|W,] =Pr& <B!|W,H= " (B{ Q‘_)
where & ~ N (0, Qj) isa Jx1 vector of differences in the elements of the error term vector ¢!
of the random utility model, where the appropriate differences are implied by the J pairwise
comparisons of the utilities. B! is a Jx1 vector of upper bounds of the multiple integrals over
the density function of the multivariate standard normal distribution (see Appendix B for the
exact bounds in the trivariate case). The GHK simulator is based on Jx1 vectors of standard
normal distributed random variables n" satisfying Ln" ~ N (O,Qj) where L; is chosen such

that L,L; = Q,. Denote the elements of L; and B! by | and b, respectively, and write

i, Oth; O Obg O
% I 0 ad., 0 DbD 0
_ 2 12 Odk0 O~ 0
Pr H—,ﬂr <B| WtE: Pr %’31 ly s EE}];E Bb% |th
| 0o og:g O
@Jl I.]2 |J3 HEh B HbB H
which implies a triangular structure of the form
ﬂi <b,/l
n; <(b;- Ijlr]; - |,-2r]£ T Ij,j—ln;—l)/ljj

Ny < (b =1y =Nz == 1) 7
which can be used to generate estimators of T, (Wt,y) by calculating the product of the single
probabilities that each n; falls in the respective truncated interval. Replicating this procedure
R times to reduce the sampling variance yields the unbiased simulated response probability

R

(W, ) :%Z(Pr arf <b, /by [WHL BrEn <(by Ay rf Ayt = A i)/, [WE)

__Z b “11 D DD(( =0 =l - _IJ—l,ln]—l)/IJJ))

(cf. Bérsch-Supan and Hajivassiliou, 1993, for more details) which is based on products of the

c.d.f. @ of the univariate standard normal distribution which can be readily calculated.
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Appendix D

Table Al: GMM estimation of the propensity score equations under MAR
Summary statistics from 1000 replications of Monte Carlo experiment E1 (N = 500)

parameter true mean bias se rmse
o -1.0000 -1.0036 -0.0036 0.4046 0.4046
a; 1.0000 1.0147 0.0147 0.1582 0.1589
a; -1.0000 -1.0065 -0.0065 0.1826 0.1827
a; 1.0000 0.9860 -0.0140 0.2866 0.2870
a’ -1.0000 -1.0263 -0.0263 0.5244 0.5250
0(§ 1.0000 1.0206 0.0206 0.2066 0.2076
al -1.0000 -1.0153 -0.0153 0.2242 0.2248
a; 1.0000 1.0002 0.0002 0.3713 0.3713
a; -1.0000 -1.0391 -0.0391 0.5207 0.5222
al 1.0000 1.0242 0.0242 0.2056 0.2070
0(3 -1.0000 -1.0220 -0.0220 0.2190 0.2201
ol 1.0000 1.0061 0.0061 0.3510 0.3511
Uy 0.5000 0.4893 -0.0107 0.3298 0.3300
Lo 0.8660 0.8248 -0.0413 0.2969 0.2997
Uy 0.5000 0.4868 -0.0132 0.3541 0.3544
La 0.2887 0.2580 -0.0307 0.3178 0.3192
la 0.8165 0.7315 -0.0850 0.2825 0.2950
0, 0.5000 0.4893 -0.0107 0.3298 0.3300
0, 1.0000 1.1163 0.1163 0.6176 0.6285
O3 0.5000 0.4868 -0.0132 0.3541 0.3544
03, 0.5000 0.5228 0.0228 0.4509 0.4514
O3 1.0000 1.1445 0.1445 0.6374 0.6536

Note: An estimate of the variance-covariance matrix X, was obtained by optimizing
with respect to the elements /¢;; of the lower triangular matrix L such that LL'=2,.
The elements o;; of Z, were obtained afterwards by means of the delta method.
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Table A2: GMM estimation of the propensity score equations under MAR
Summary statistics from 1000 replications of Monte Carlo experiment E2 (N = 500)

parameter true mean bias se rmse
o -1.0000 -0.9911 0.0089 0.4182 0.4183
a; 1.0000 1.0208 0.0208 0.1579 0.1592
o -1.0000 -1.0204 -0.0204 0.1778 0.1790
o 1.0000 0.9912 -0.0088 0.2943 0.2944
a? -1.0000 -1.0299 -0.0299 0.5314 0.5323
o’ 1.0000 1.0287 0.0287 0.2027 0.2047
a’ -1.0000 -1.0275 -0.0275 0.2227 0.2244
a? 1.0000 1.0076 0.0076 0.3657 0.3657
al -1.0000 -1.0457 -0.0457 0.5523 0.5542
o 1.0000 1.0303 0.0303 0.2038 0.2060
as -1.0000 -1.0251 -0.0251 0.2177 0.2192
ol 1.0000 1.0077 0.0077 0.3728 0.3729
Uy 0.5000 0.4987 -0.0013 0.3524 0.3524
o 0.8660 0.8336 -0.0324 0.2896 0.2914
U3 0.5000 0.4967 -0.0033 0.3308 0.3309
g 0.2887 0.2600 -0.0286 0.3153 0.3166
la 0.8165 0.7262 -0.0903 0.3118 0.3246
Oy 0.5000 0.4987 -0.0013 0.3524 0.3524
Oy 1.0000 1.1515 0.1515 0.6384 0.6562
O3 0.5000 0.4967 -0.0033 0.3308 0.3309
O3 0.5000 0.5328 0.0328 0.4510 0.4522
O3 1.0000 1.1474 0.1474 0.6318 0.6488

Note: See Table Al.
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Table A3: GMM estimation of the propensity score equations under MAR
Summary statistics from 500 replications of Monte Carlo experiment E2 (N = 2000)

parameter true mean bias se rmse
a; -1.0000 -1.0081 -0.0081 0.1917 0.1919
aj 1.0000 1.0000 0.0000 0.0703 0.0703
a; -1.0000 -0.9998 0.0002 0.0864 0.0864
a; 1.0000 0.9996 -0.0004 0.1345 0.1345
a’ -1.0000 -1.0041 -0.0041 0.2323 0.2323
a; 1.0000 1.0006 0.0006 0.0905 0.0905
al -1.0000 -1.0014 -0.0014 0.1037 0.1037
o 1.0000 0.9977 -0.0023 0.1636 0.1636
al -1.0000 -1.0082 -0.0082 0.2332 0.2334
al 1.0000 1.0007 0.0007 0.0920 0.0920
as -1.0000 -1.0013 -0.0013 0.1030 0.1030
ol 1.0000 0.9981 -0.0019 0.1611 0.1611
Uy 0.5000 0.4928 -0.0072 0.1531 0.1533
L2 0.8660 0.8545 -0.0115 0.1383 0.1388
Uy 0.5000 0.4865 -0.0135 0.1647 0.1652
La 0.2887 0.2808 -0.0079 0.1493 0.1495
la 0.8165 0.8004 -0.0160 0.1346 0.1356
Oy 0.5000 0.4928 -0.0072 0.1531 0.1533
Oy 1.0000 1.0155 0.0155 0.2562 0.2567
O3 0.5000 0.4865 -0.0135 0.1647 0.1652
O3, 0.5000 0.4965 -0.0035 0.1813 0.1813
O3 1.0000 1.0236 0.0236 0.2621 0.2632

Note: See Table Al.
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Appendix E

Table A4: Descriptive statistics for respondents (A = 0)

1993

mean std.dev. mean std.dev.
Log process R&D expenditures -1.8422 1.9346 -1.7642 1.8734
Log product R&D expenditures -0.7736 2.2660 -0.7584 2.2167
Log number of employees 5.4598 1.6325 5.3433 1.6384
East German firm 0.2905 0.4542 0.3356 0.4728
R&D department 0.5594 0.4967 0.5931 0.4918
Observations 1019
Table A5: Means of attributes by (non-)response indicator
1994 A=0 A=1 A=2 A=3
East German firm 0.3356 0.2034 0.1977 0.2946
Log number of employees 5.3433 4.7357 - -
Lagged log number of employees 5.4248 4.8047 5.7580 5.4664
Log process R&D expenditures -1.7472 -2.5157 -1.6755 -1.9265
Log product R&D expenditures -0.6227 -2.0830 -0.4628 -0.8918
Lagged R&D department 0.5885 0.2712 0.5988 0.5524
High risk of imitation 0.2805 0.3729 0.3953 0.3229
Qualified staff missing 0.2046 0.4068 0.2791 0.2578
External funds missing 0.4667 0.4237 0.3663 0.4334
Decreasing employment expected 0.4161 0.4915 0.4826 0.4448
Decreasing sales expected 0.2207 0.3220 0.3081 0.2550
Decreasing demand expected 0.2161 0.3390 0.3031 0.3031
Observations 435 59 172 353
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