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Abstract

The existence of an adapted solution to a backward stochastic dif-

ferential equation which is not adapted to the �ltration of the underlying

Brownian motion is proved. This result is applied to the pricing of contin-

gent claims. It allows to compare the prices of agents who have di�erent

information about the evolution of the market. The problem is considered

in both the classical and the F�ollmer-Schweizer hedging case.
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1 Introduction

The existence of an adapted solution to a backward stochastic di�erential equa-

tion has been proved when the �ltration under consideration is generated by the

underlyng Brownian motion. In the �rst part of this article we use Girsanov's

theorem to derive an existence result for a larger �ltration to which the Brown-

ian motion is adapted. This result is applied to the pricing of a contingent claims

by using forward-backward stochastic di�erential equations. This approach has

several advantages in comparison to the classical techniques: There is no need

to de�ne an optimal hedging strategy and the whole system can be considered

under the original measure. The power of this tool will be described here when

we derive the price of a claim in both an incomplete and a complete market

under di�erent information structures available to the agent. Especially we are

interested in the question when these prices are equal. The methods we use

are described in [15], where techniques from control theory establish the rela-

tion between the price of a claim and the adjoint equation of a trivial control

problem.

2 An existence result for a BSDE under addi-

tional information

From the results in [18], [19], [20] and [21] and the counterexamples in [1] it is

common belief that a BSDE has an ordinary, that is adapted solution only if

the underlying �ltration is generated by the Brownian motion which is assumed

to be augmented to satisfy the usual conditions in the sense of Meyer. In this

section we shall establish an existence result for a BSDE where the �ltration is

greater than the one generated by the Brownian motion.

Let (Ft)t2[0;T ] be a �ltration on a given probability space (
; F; P ) which

carries a standard Brownian motion (wt) adapted to this given �ltration. Note

that this �ltration might be larger than (Fw
t ) the one generated by (wt)

Fw
t � Ft: (1)

Let

r : [0; T ]! < (2)

be a deterministic B (0; T )-measurable function and

� : [0; T ]� 
! < (3)

be an (Ft)-progressively measurable function such that

P (

Z T

0

�2udu <1) = 1 (4)
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and

E(zT ) = 1 (5)

for (zt) the solution of the Dol�eans-Dade equation

dzt = �zt�tdwt (6)

z0 = 1:

We are given a BSDE

dyt = � [yur + Z�u�u] du� Z�udwu (7)

yT = � (8)

on (
; F; Ft; P ), where � is an FT -measurable random variable. The problem

now consists in �nding an (Ft)-adapted pair (yt; Zt) which satis�es integrability

conditions such that the integral equation

yt = � �

Z T

t

[yur + Z�u�u] du�

Z T

t

Z�udwu: (9)

holds P-a.s..

Now consider the auxiliary problem

deyt = �eyurdu� eZ�ud ewu (10)eyT = �

where (fwt)is the Girsanov transform of (wt) with respect to the Girsanov func-

tional associated with �, i.e.

fwt = wt +

Z T

0

�udu: (11)

( ewt) is a standard Ft-Brownian motion with respect to eP where

d eP = zT dP (12)

is a probability measure on (
; F ). Let
�
F ew
t

�
be the �ltration generated by ewt:

Clearly, �
F ew
t

�
� (Ft) : (13)

The crucial assumption which at �rst sight might appear quite technical is

the equality
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�
F ew
T

�
= (FT ) : (14)

In the following section we will show that it is quite natural in an application

to �nance: (FT ) is the information available to an agent who has anticipative

knowledge of the behavior of part of the market. This additional information is

given right from the beginning. A second agent has to gather this information

as time goes on until in the end the additional information becomes useless:

F ew
T = FT : (15)

Under this assumption we may now consider

deyt = � �

Z T

t

eyurdu� Z T

t

eZ�ud ewu (16)

on
�

; F; F ew

t ;
eP� and from the results in [2] and [21] it is straightforward that

an
�
F ew
t

�
-adapted solution

�eyt; eZt� exists.

Theorem 1 The unique solution of (16) also solves (9).

Proof. As � is F ew
T = FT -measurable the following equation holds:

eyt = � �

Z T

t

eyurdu� Z T

t

eZ�ud ewu (17)

= � �

Z T

t

eyurdu� Z T

t

eZ�udwu �

Z T

t

eZ�u�udwu

= � �

Z T

t

heyur + eZ�u�ui du�
Z T

t

eZ�udwu

This proves that
�eyt; eZt� solves (9).

This result will be applied to the case where an enlargement of �ltration can

be described by Girsanov's theorem.

3 Setting the hedging problem

We consider - in the usual notation - a (d+1)-dimensional asset consisting of a

bond

dP 0
t = r(t)P 0

t dt (18)

and d stocks
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dP i
t = �i(t; Pt)P

i
t dt+ �ij(t; Pt)P

j
t dw

j
t ; (19)

t 2 [s; T ] ; 1 � i; j � d

with initial

(1; p1; :::; pd): (20)

Here (wt) is a d-dimensional Brownian motion and (Ft) the augmented �ltration

of (wt). All processes are assumed to live on (
; F; Ft; P ) which is assumed to

satisfy the usual condition in the sense of Meyer. The coe�cients

�i : [0; T ]�Rd
! R (21)

and

�ij : [0; T ]�Rd
! R: (22)

are assumed to satisfy conditions such that a pathwise unique solution exists.

Finally � is assumed to be invertible. For details on the conditions, see [8] or

[14]. The claim is an FT -measurable random variable � , which e.g. is of the

form

� = g(PT ; !) (23)

where g is a B 
 FT -measurable function

g : Rd
�
! R (24)

such that � is twice integrable. In [15] we showed that the pricing and hedging

problem for the above claim and asset may be considered as a trivial control

problem. To this end we de�ne the risk premium process � by

�� = �� r1d (25)

where � = (�ij); � = (�i) and 1d is the d-dimensional vector whose every

component is 1.

We assume that � exists as a d-dimensional bounded, predictable vector

process, this ensuring the absence of arbitrage in our model (see [13], [14] ).

Next consider the following trivial control problem with dynamics

dzst = �zst [rdt+ ��t dwt] (26)

zss = 1 (27)

and cost criterion
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J = E [zsT �] : (28)

The formal adjoint of this problem is given by

yt = � �

Z T

t

[yur + Z�u�u] du�

Z T

t

Z�udwu: (29)

Following [6], [7], [8], [9] the unique solution (yt; Zt) of this forward-backward

stochastic di�erential equation is the hedging price of the claim �

yt = �E [� j Ft] (30)

where �E denotes expectation with respect to the Girsanov measure associated

with the Girsanov functional (zst). The hedging portfolio for the risk premium

process � is given by

�t = ��1Zt: (31)

This may be written in a more familiar way when we consider a generalized

pricing system, i.e. a predictable function

u : [s; T ]�Rd
�
! R (32)

such that

yt = u(t; Pt): (33)

The pricing system satis�es the stochastic partial di�erential equation

u(t; x) = g(x)+

Z T

t

�
1

2
�uxx� + (�� ��)ux � ru+ �kx � k�

�
ds�

Z T

t

k(s; x)dws:

(34)

Obviously the hedging portfolio is then given by

�t = ��1Zt = ru(t; Pt) + ��1k(t; Pt): (35)

The details of these results can be found in [15].

If in the above spde the coe�cients are deterministic then the solution is

given by (u; k) = (u; o) and the spde goes over into the form of the classical

Black-Scholes formula for the optimal hedging problem. Note however here that

for the pricing of the claim in this setting no change of measure and no explicit

optimal hedging strategy has to be considered. For the general development of

the theory of FBSDE see [6], [7], [18], [19], [20], [21], [22], [25].
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4 Available Information

We consider a market with two agents A0 and Ain.The latter has more infor-

mation about the evolution of the asset than the former. By making use of

results by [10], [12] and [23] we will consider the prices under these di�erent

information structures (F 0
t ) and (F in

t ), respectively.

Let �1(t); �2(t) be two nonsingular matrix valued deterministic, measurable

functions of t with

�1�
�
1 + �2�

�
2 = I (36)

for all t.

Then

w(t) = �1w1(t) + �2w2(t) (37)

is again an Ft-Brownian motion if both w1 and w2 are independent Ft-Brownian

motions. Let in the above model for our market w be decomposed in this way.

Let

F 0
t = Ft = Fw

t and F in
t = �(w1(T )) _ Ft: (38)

Both F 0
t and F in

t are again assumed to satisfy the usual conditions. In this

case the results of [10], [12], and [23] allow us to describe the enlargement of

�ltration by Girsanov's theorem:

Theorem 2 Let

4u(x) = �1(TI � �1�
�
1t)

�1(x� ��1w(t)) (39)

be the cross variation of the Ft-conditional density of (w1 (t)) and (wt) divided

by the density, then

B(t) = w(t)�

Z t

s

4u(w1(T ))du (40)

is a d-dimensional
�

; F in

t ; P
�
-standard Brownian motion.

Remark 1 Note here that (Bt) is an F in
t -Brownian motion for which in general

the natural �ltration (FB
t ) will be di�erent from (F in

t ). Below we consider an

FBSDE with driving Brownian motion (Bt). Following the arguments in the

�rst section we will derive a solution to this FBSDE.

For the informed agent Ain the asset appears as

dP 0
t = r(t)P 0

t dt

dP in
t = P in

t (�i(t; P
in
t )P in

t dt+ �ij4
j
t(w1(T ))dt+ �ij(t; P

in
t )dB

j
t );

t 2 [s; T ] ; 1 � i; j � d:
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The risk premium processes for the two agents are respectively

�0 = ��1(�� r1d) (41)

and

�in = ��1(�+ �4t � r1d): (42)

We now formally apply the arguments of section 1 to compute the prices y0t
and yint for A0 and Ain:

Let z0st be a solution of

dz0st = �z0st
�
rdt + �0�dwt

�
(43)

z0ss = 1

and zinst be a solution of

dzinst = �zinst
�
rdt + �in�dwt

�
(44)

zinss = 1;

then the prices for the F in
T = F 0

T = FT claim is given by

y0t = � �

Z T

t

�
y0ur + Z0�

u �0
�
dt�

Z T

t

Z0�
u dwu (45)

and

yint = � �

Z T

t

�
yinu r + Zin�

u �i
�
dt�

Z T

t

Zin�
u dBu (46)

on
�

; F; F 0

t ; P
�
and

�

; F; F in

t ; P
�
respectively.

Theorem 3 The prices (y0t ) and (yint ) are equal, if the price (y0t ) exists. More-

over under the above assumptions it is a standard result that (y0t ; Z
0
t ) exists.

Proof. Let (y0t ; Z
0
t ) be a solution then (y0t ) and (Z0

t ) are also

F in
t �measurable. Then

y0t = � �

Z T

t

�
y0ur + Z0�

u �0
�
dt�

Z T

t

Z0�
u dwu (47)

= � �

Z T

t

�
y0ur + Z0�

u 4u + Z0�
u �0

�
dt�

Z T

t

Z0�
u dwu

= � �

Z T

t

�
yinu r + Zin�

u �in
�
dt�

Z T

t

Zin�
u dBu

= yint
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so that (y0t ; Z
0
t ) solves for (y

i
t; Z

i
t).

Corollary 4 The optimal hedging strategies are equal for both agents, if (y0t ; Z
0
t )

exists.

Proof. From section 1 the optimal hedging strategies are given by

�0
t = ��1Z0

t and �int = ��1Zin
t : (48)

As Z0
t = Zin

t by the uniqueness of solutions the result follows. Note, how-

ever,that the risk premium processes are di�erent.

Instead of studying the forward-backward equations we could also look at

the corresponding pricing systems:

u0(t; x) = g(x) +

Z T

t

�
1

2
�u0

xx� + (�� ��0)u0
x � ru0 + �k0x � k0�0

�
ds

�

Z T

t

k0(s; x)dws (49)

and

uin(t; x) = g(x) +

Z T

t

�
1

2
�uinxx� + (�� ��in)uinx � ruin + �kinx � kin�in

�
ds

�

Z T

t

kin(s; x)dBs (50)

in an abbreviated notation.

Again
�
u0
t ; k

0
�
solves the equation for

�
uint ; kin

�
, if it exists, and hence

y0t = u0(t; Pt; !) = uin(t; Pt; !) = yint : (51)

Remark 2 If in the above spde all coe�cients are deterministic, then a solution

is given by �
u0
t ; k

0
�
=
�
u0
t ; 0

�
and

�
uint ; kin

�
=
�
u0
t ; 0

�
: (52)

Furthermore y0s = yins are deterministic as a consequence of the Markov nature

of the processes.

5 The F�ollmer-Schweizer uninformed agent

Here we assume that

P
p
t =

�
P 1
t ; :::; P

m
t

��
(53)
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are the primary securities which are actually traded, m < d . Split up the

matrix � into

p1 = (�ij)i�m;j�d
(54)

p2 = (�ij)m<i;j�d

� =

�
p1

p2

�
:

Note that if � has full rank, then p1p1� is invertible. Again let � be a

contingent claim which is assumed to be square integrable and (Fw
T )-measurable.

As there might not be an admissible hedging strategy �FS which �nances �, i.e.

the BSDE

yt = � �

Z T

t

�
yur + Z01�

u �0
�
du�

Z T

t

Z01�
u dwu (55)

p1��FS = Z01

might not have a solution. F�ollmer and Schweizer introduced a self-�nancing-

in-mean strategy which in terms of FBSDEs is a triple

(yt; Z
01
t ; Ot) (56)

solving

yt = � �

Z T

t

�
yur + Z01�

u �0
�
du�

Z T

t

Z01�
u dwu +OT �Ot; (57)

where by de�nition the tracking error OT �Ot and
R T
t
Z01�
u dwu are orthogonal

martingales. For details the reader is referred to [11] and [7].

The aim of this chapter is to compare the uninformed and informed F�ollmer-

Schweizer-(FS-)prices and hedging strategies.

We �rst consider the uninformed agent. His risk premium is given by

�0 = ��1(�� r1d) (58)

-in the above notation - if both sets of securities are traded. If only the �rst m

securities are traded the risk premium �01 obviously is the projection of �0 onto

the range of p1�, so that

�01 = p1�(p1p1�)p1�0: (59)

When we compute the adjoint of the control problem associated with

dz01st = �z
01
st

�
rdt+ �01�dwt

�
(60)
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we �nd the formal adjoint

y01t = � �

Z T

t

�
y01u r + Z01�

u �01
�
dt�

Z T

t

Z01�
u dwu: (61)

Decompose Z01
t as

Z01
t = Z011

t + Z012
t (62)

where

Z011
t = projrange(p1�)Z

01
t (63)

Z012
t = projker(p1)Z

01
t :

and rewrite

y01t = � �

Z T

t

�
y01u r + Z011�

u �01 + Z012�
u �01

�
dt�

Z T

t

Z011�
u dwu �

Z T

t

Z012�
u dwu:

(64)

As Z T

t

Z011�
u dwu and

Z T

t

Z012�
u dwu (65)

are orthogonal y01t is the F-S-price. The FS-strategy �011 is de�ned by

p1��011 = Z011 (66)

or

p1��011 = p1�(p1p1�)
�1

p1Z01 (67)

= p1�(p1p1�)
�1

p1(p1�(p1p1�)
�1

p1)Z01 + p1�(p1p1�)
�1

p1Z012:

Note here that (p1p2�) = 0 implies that

p1��011 = p1�(p1p1�)
�1

p1Z011 (68)

so that this proves the well known fact that the F-S-strategy can be computed

by completing the market such that (p1p2�) = 0 and the optimal strategy is

given by

�011 = (p1p1�)
�1

p1Z011 (69)

which does not involve p2. It is also easily seen that then

p1��011 = p1�projrange(p1�)�
01
t : (70)
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Next we are going to compare the F-S-price to the price when all securities

are traded. To this end we decompose �0 into

�0 = �01 + �02 (71)

�01 = projrange(p1�)�
0;

�02 = projker(p1)�
0:

Then
R
�01�t dw and

R
�02�t dw are orthogonal and z0st may be written as

z0st = z01st z
02
st (72)

where

dz01st = �z01st
�
rdt+ �01�dwt

�
; (73)

dz02st = �z02st
�
�02�dwt

�
:

With this the price is given by

y0t = � �

Z T

t

�
y0ur + U0�

u �0
�
du�

Z T

t

U0�
u dwu (74)

= � �

Z T

t

�
y0ur + U0�

u (�01 + �02)
�
du�

Z T

t

U0�
u dwu

= � �

Z T

t

�
y0ur + U01�

u �01 + U02�
u �02)

�
du�

Z T

t

U01�
u dwu �

Z T

t

U01�
u dwu

where U0i are the respective projections. Then

y02t = y0t � y01t (75)

= �

Z T

t

�
(y0u � y01u )r + (U01�

u � Z011�
u )�01 + U02�

u �02)
�
du

�

Z T

t

(U01�
u � Z011�

u )dwu �

Z T

t

(U02�
u � Z012�

u )dwu

Theorem 5 If the tracking error of the FS-strategyZ T

t

(Z012�
u )dwu (76)

is identically zero, then the FS-price and the price for the claim when the

complete asset is traded are equal.
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Proof. We can rewrite the above equation as

y02t = �

Z T

t

�
y02u r + V �u �

01 + U02�
u �02)

�
du�

Z T

t

V �u dwu �

Z T

t

U02�
u dwu (77)

By the uniqueness of solutions, this equation has a solution�
y02; V; U02

�
= (0; 0; 0) : (78)

So in this case also U02 is zero, which means that also the optimal hedging

strategy against the risk premium �02 is zero. In this sense the secondary

securities are not traded even if they are o�ered, which obviously makes sense.

Remark 3 We are in a very lucky position, when we trade in an almost com-

plete market like the FS-market. In this case, the optimal FS-hedging strategy

can be given in closed form as above. This is completely di�erent when we try

to apply the above techniques to the following toy problem:

The two dimensional asset is given as a semimartingale whose martingale

part is given by a double martingale in the sense of [3], [4], i.e. the martingale

splits into a Brownian martingale w and an (orthogonal) Poisson martingale q.

Then

dzst = �zst(�
�
1dwt + ��2dqt): (79)

With this the price is the formal adjoint of a trivial control problem is given by

yt = � �

Z T

t

�
yur + Z1�

u �1 + Z2�
u �2

�
du�

Z T

t

Z1�
u dwu �

Z T

t

Z2�
u dqu: (80)

Under quite strong assumptions this equation is shown in [24] to have a

unique solution. When we compare this equation to equations (64) and (68) we

are tempted to rewrite (yt) as

yt = � �

Z T

t

�
yur + Z1�

u �1
�
du�

Z T

t

Z1�
u dwu � st (81)

where (st) is a special semimartingale with martingale term strongly orthogonal

to
R T
t
Z1�
u dwu. But (st) depends on the hedging strategy so that the argument

following cannot be applied. A possible way out of this di�culty might be to

consider a more general de�nition of what a solution of an FBSDE is: Let a

solution of

yt = � �

Z T

t

[yur + Z�u�] du�

Z T

t

Z�udmu (82)

be de�ned as a nonanticipative pair (y; Z) which minimizes

E (yT � �)
2

(83)

with respect to Z. This leads to a control problem which describes the minimal

variance price. Details will be found in the forthcoming paper [16].
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6 The F-S- informed agent

The informed agent's price of the asset is seen as

dP 0
t = r(t)P 0

t dt (84)

dP in
t = P in

t (�i(t; Pt)P
in
t dt+ �ij4

j
t(w1(T ))dt+ �ij(t; Pt)dB

j
t )

in the notation of the preceding sections. By �int we denote the risk premium

of the whole asset de�ned by

��in = (�+ �4t � r1d): (85)

Again we denote by �i1 the projection of �i onto the range of p�1, so that

�in1 = p1�(p1p1�)p1�in: (86)

By exactly the same arguments as above the price then is given by

yin1t = � �

Z T

t

�
yin1u r + Zin11�

u �i1u
�
du�

Z T

t

Zin11�
u dBu �

Z T

t

Zin12�
u dBu: (87)

and the following theorem holds:

Theorem 6 Let
�
y01; Z011; Z012

�
solve (61), then it also solves (87) and the

optimal hedging portfolio is given by

p�1�
in11 = Zin11 = Z011 = p�1�

011: (88)

Proof. The result is immediate from the consideration above.

7 Conclusion

In the �rst section we derive an existence result for an adapted solution to

a BSDE which is not adapted to the �ltration generated by the underlying

Brownian motion. This result is used to exemplify the power of the FBSDE-

techniques as a tool to derive the prices of a claim in di�erent situations of

available information to di�erent agents. Especially we �nd examples where the

prices coincide. Many of these results are known from the literature, but these

approaches use the hedging and/or minimal martingale measure approach. The

new feature of this contribution is the exclusive use of FBSDE interpreted as

the adjoint of a trivial control problem.
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