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Abstract

We consider dependence structures in multivariate time series that
are characterized by deterministic trends. Results from spectral anal-
ysis for stationary processes are extended to deterministic trend func-
tions. A regression cross covariance and spectrum are defined. Es-
timation of these quantities is based on wavelet thresholding. The
method is illustrated by a simulated example and a three-dimensional
time series consisting of ECG, blood pressure and cardiac stroke vol-
ume measurements.
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1 Introduction

We consider dependence structures in multivariate time series that are due
to similarities in underlying deterministic trends. Suppose that we observe
a multivariate time series Y(i) = (Y1(i), ..., Yp(i))

T , (i = 1, . . . , n). In classi-
cal spectral analysis, a time series and its autocorrelations are decomposed
into sinusoidal components. Grenander and Rosenblatt (1957) extended the
idea of spectral decomposition to parametric regression with deterministic
explanatory variables. They show that consistency and efficiency of least
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squares estimators depend on the regression spectrum. For further results
on the interplay between regression spectrum and spectral properties of the
stochastic part see e.g. Yajima (1988).

In the present paper, spectral analysis of regression functions is extended
to multivariate nonparametric trend functions that are estimated by wavelet
thresholding. The definitions of the regression cross covariance and regres-
sion cross spectrum are adapted to this context. Asymptotic properties of
estimators of these quantities are derived. Specifically, the paper is orga-
nized as follows. Basic definitions are given in section 2. Estimation of the
regression spectrum, the regression cross covariances and their asymptotic
distribution are considered in section 3. Algorithmic issues and a data exam-
ple are discussed in section 4. Final remarks in section 5 conclude the paper.
Proofs are given in the appendix.

2 Definition of the regression cross covari-

ance and spectrum

2.1 Cross covariance and correlation

Assume that the observed time series Y(j) = (Y1(j), ..., Yp(j))
T is of the form

Y(j) = f(tj) + ε(j), (1)

where tj = j/n (j = 1, . . . , n), f(t) = (f1(t), ..., fp(t))
T ∈ Cp (t ∈ R) is a

multivariate deterministic trend function and ε(j) is zero mean stationary

noise. We will assume that fr(t) is Lebesque measurable and
∫ 1

0
|fr(t)|2dt <

∞, i.e. fr ∈ L2 where L2 = L2(C) denotes the space of complex-valued
functions that are square integrable on [0, 1]. For fr, fs ∈ L2, we define

< fr, fs >=

∫ 1

0

fr(t)fs(t)dt

Note that <,> is a nonnegative sesquilinear form. If we restrict attention
to functions that are periodic with period 1, then <,> is a scalar product
and the corresponding space L2[0, 1] is a Hilbert space. Also note that, since
||fr||2 =< fr, fr ><∞, the mean vector

m(f) =

∫ 1

0

f(t)dt
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is well defined and finite. Without loss of generality (and since m(f) can
easily be estimated and subtracted from the data), we will from now on
assume m(f) = 0. The corresponding space of functions will be denoted by
L2

o[0, 1] = {f ∈ L2[0, 1] : m(f) = 0}.
We first define the autocorrelation function of f(t) ∈ L2

o. Grenander
and Rosenblatt (1957) introduced a definition of cross- and autocorrelation
ρrs(u) between parametric regression functions φr(t), φs(t) with t ∈ N (also
see Priestley 1989, chapter 7). In contrast, here, we consider nonparametric
regression functions fj(t) ∈ L2

o that are observed on an increasingly fine grid
t1, t2, ..., tn of t−values in [0, 1]. A natural modification of the definition by
Grenander and Rosenblatt definition is therefore

γrs(u) = lim
n→∞

1

n

n∑
j=1

fr(tj + u)fs(tj). (u ∈ [−1, 1])

and

ρrs(u) =
γrs(u)√
γr(0)γs(0)

.

This leads to

Definition 1 Let f(t) = (f1(t), ..., fp(t))
T ∈ Cp (t ∈ R) be a p-dimensional

deterministic function as defined above, and such that, for each r ∈ {1, 2, ..., p},
fr ∈ L2

o and ||fr(t)|| > 0. Then the regression (cross-)covariance func-
tion Γ(u) = [γrs(u)]r,s=1,...,p and the regression (cross-)correlation function
R(u) = [ρrs(u)]r,s=1,...,p of f(t) are defined by

γrs(u) =< fr(· + u), fs >=

∫ 1

0

fr(t+ u)fs(t)dt

and

ρrs(u) =
γrs(u)√
γr(0)γs(0)

. (2)

The Hermitian property and non-negative definiteness of ρrs(·) are ob-
tained in the following

Proposition 1 The regression cross correlation function ρrs(u) defined in
(2) is Hermitian and non-negative definite.

In practice, γrs and ρrs have to be estimated, since they depend on the
unobservable function f(t).
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2.2 The spectrum

The function f(t) is observed for time points in the interval [0, 1] only. To
extrapolate f beyond the unit interval, we will assume that f(t) can be de-
composed into a nonperiodic ”long-term” trend component μ(t) (t ∈ R) and
a component α(t) with α(t+T) = α(t) for some T ≤ 1

2
. To simplify presen-

tation, it will be assumed throughout the paper that μ ≡ 0, or μ has been
estimated and removed from the data. Thus,

f(t) = α(t)

with α periodic with period T ≤ 1
2
.

Remark 1 The assumption of strict periodicity can be replaced by local pe-
riodicity, allowing the periodic shape of α to change smoothly in time (see
e.g. Heiler and Feng 2000). In this case, γrs(u) can be approximated by
extrapolating α, e.g. using local trigonometric polynomials (Heiler and Feng
2000) together with nonparametric extrapolation (see e.g. Beran and Ocker
1999).

Consider now the characterization of f in the frequency domain. For
t ∈ [0, 1], and fr ∈ L2

o such that
∫ 1

0
|fr(t)|dt <∞ we may write

f(t) =

∞∑
j=−∞

a(j)ei2πjt

where a(j) = (a1(j), a2(j), ..., ap(j))
T ∈ Cp are given by

ar(j) =< fr, e
i2πj· >=

∫ 1

0

fr(t)e
−i2πjtdt.

Note that
m(f) = a(0) = 0

and Parseval’s equation yields

||fr||2 =
∞∑

j=−∞
|ar(j)|2.

For the covariance function we then have

Γ(u) = Γα(u)
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where Γα = [γα;rs]r,s=1,...,p is a p× p matrix with

γα;rs(u) =< αr(· + u), αs >

More explicitly, we have

Γα(u) =

∫ 1

0

α(t+ u)αT (t)dt

=

∞∑
j=−∞

ei2πjua(j)aT (j)

and we may introduce the following

Definition 2 The sequence of p×p matrices H(j) = [hrs(j)]r,s=1,...,p (j ∈ Z)
defined by

H(j) = a(j)aT (j)

is called regression spectrum of α.

By definition we have the following relationship between regression spec-
trum and covariances:

Γα(u) =
∞∑

j=−∞
H(j)ei2πju

and

H(j) =

∫ 1
2

− 1
2

e−i2πjuΓα(u)du,

where
∫ 1/2

−1/2
|Γα(u)|du < ∞. Writing H(j) in polar representation, the con-

tribution of frequency j can also be expressed in relative terms as follows.

Definition 3 Let H(j) = [hrs(j)]r,s=1,...,p be defined as above. Then, H̃ =
[h̃rs]r,s=1,...,p with

h̃rs(j) =
hrs(j)√

γα;rr(0) · γα;ss(0)
=

|ar(j)as(j)|√
γα;rr(0) · γα;ss(0)

exp(iφrs(j))
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is called the standardized regression spectrum of α,

κrs(j) =
|hrs(j)|√

γα;rr(0) · γα;ss(0)
=

|hrs(j)|
||αr|| · ||αs||

=
|ar(j)as(j)|√∑

l |ar(l)|2
∑

m |as(m)|2

is the relative spectral modulus and φrs(j) the phase shift at frequency j.

Remark 2 Note that, in contrast to coherence for stochastic processes, the
standardization

√
γα;rr(0) · γα;ss(0) is not frequency dependent. The reason

is that, for a deterministic signal, no frequency dependent variances can be
observed. Alternatively, one may consider the classical squared coherency
function |hrs(j)|2/(|hrr(j)||hss(j)|). However, this quantity is either 0 or 1.
In contrast, κrs(j) defined above can assume any number between 0 and 1,
thus giving a relative measure of the contribution of frequency j to the cross-
covariance.

Example 1 Suppose that fs is a shifted version of fr, i.e.

fs(t) = c · fr(t+ Δ)

for some Δ, c ∈ R. Then

fs(t) =
∑

as(j) exp(i2πjt) = c
∑

ar(j) exp(i2πj(t+ Δ))

with
as(j) = car(j) exp(i2πjΔ).

Hence
γrs(u) = c

∑
|ar(j)|2 exp(i2πj(u− Δ)).

and

h̃rs(j) =
|ar(j)|2∑
l |ar(l)|2 · exp(−i2πΔj) (j ∈ Z \ {0})

Hence, for all integer frequencies j �= 0

|hrs(j)| =
|ar(j)|2∑
l |ar(l)|2
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and the phase-shift
φrs(j) = −2πΔj

is a linear function of the shifting parameter Δ. Thus, |hrs(j)| is equal to the
relative contribution of frequency j to total energy ||fr||2 of fr.

3 Estimation

3.1 General considerations

The definitions above suggest the following approach to analyzing an ob-
served multivariate time series Y(j) = f(tj) + ε(j). In a first step, the
function f is estimated by a suitable nonparametric method. In a second
step, α is estimated by eliminating the mean m and the nonperiodic com-
ponent μ(t). The regression spectrum of α(t) can now be analyzed based on
the resulting series

Ỹ(j) = Y(j) − m̂ − μ̂(t)

The issue of estimating μ(t) optimally in the given context is beyond the
scope of this paper and will be considered elsewhere. Note, however, that in
some applications, the size of μ is negligible compared to α. For instance,
for high frequency financial data, the dominating feature in the deterministic
part is likely to be a (local) seasonal periodicity of one day. Similar comments
apply to physiological time series such as the heart beat data considered in
section 4.

In this section we consider estimation of f and the resulting estimation
of the regression cross covariance Γα and the regression spectrum H.

3.2 Trend estimation

Since Γα and the regression spectrum H are functionals of f (which we assume
to be equal to α - see remark at the end of the previous section), we first
consider nonparametric estimation of the trend function. Methods based on
wavelets are known to have attractive features, such as general applicability
to L2-functions and localization in time and frequency (see e.g. Daubechies
1999, Percival and Walden 2000). We therefore consider estimation of f
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via wavelet analysis. Let φ(·) and ψ(·) be the father and mother wavelet
respectively, i.e. φ(·), ψ(·) ∈ L2(R) and the set of functions

{φl,k(x), ψj,k(x), j, k, l ∈ Z, j ≥ l}
with

φl,k(x) = 2
l
2φ(2lx− k),

ψj,k(x) = 2
j
2ψ(2jx− k), k, j ∈ Z,

form a basis in L2(R). The wavelet series expansion of a univariate function
f ∈ L2(R) is then given by

f(x) =
∑

k

αl,kφl,k(x) +
∞∑
j≥l

∑
k

βj,kψj,k(x) (3)

for almost all x, where

αl,k =

∫
φl,k(x)f(x)dx,

βj,k =

∫
ψj,k(x)f(x)dx.

For the univariate model

Y (j) = f(tj) + ε(j)

with f ∈ L2[0, 1] and ε(j) stationary with mean 0 and variance σ2, Nason
(1996) and Johnston and Silverman (1997) consider the estimator

f̂(t) =
∑

k

α̂l,kφl,k(t) +
Jn∑
j≥l

∑
k

β̂j,kψj,k(t), (4)

where

α̂l,k =
1

n

n∑
u=1

φl,k(tu)Y (u) (5)

and

β̂j,k =
1

n

n∑
u=1

ψj,k(tu)Y (u), (6)
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for some Jn. Under suitable regularity assumptions on f , on the wavelet basis
and moment conditions on ε(j), the parameter estimators α̂l,k and β̂j,k are
asymptotically normal and unbiased (see Brillinger 1994,1996). These results
carry over to the trend estimator f̂ , for suitable choices of Jn. Brillinger
(1994, 1996) shows, in particular,

var (2−
j
2 α̂j,k) = var (2−

j
2 β̂j,k) = 2πhε(0)2−jn−1 +O(n−2)

cov (2−
j
2 β̂j,k, 2

− j′
2 β̂j′,k′) = O(n−2),

for (j, k) �= (j′, k′). Analogously, cov (2−
l
2 α̂l,k, 2

− j′
2 α̂l′,k′) = O(n−2) for (l, k) �=

(l′, k′) and cov (2−
l
2 α̂l,k, 2

− j′
2 β̂j′,k′) = O(n−2) for all l, k, j′, k′. Here hε(·) de-

notes the spectral density of ε(j). The error terms are uniform in j, j′, k, k′, l.
In wavelet thresholding, noise is removed by shrinking wavelet coefficients
towards zero at a suitable rate (see e.g. Donoho and Johnstone 1994, 1995,
Abramovich, Sapatinas and Silverman 1998). Here, a hard thresholding
method will be applied, i.e. each β̂j,k is multiplied by ŵj,k := 1{|β̂j,k|≥

√
var (β̂j,k)λj}

such that (4) changes to

f̂(t) :=
∑

k

α̂l,kφl,k(t) +

Jn∑
j≥l

∑
k

ŵj,kβ̂j,kψj,k(t). (7)

To conclude this section, we state asymptotic results for f̂ that will be
needed to derive properties of ρ̂rs and ĥrs. The following two assumptions
will be used:

(A1) The mother wavelet ψ(·) and the father wavelet φ(·) are of bounded
variation and have compact support. Dilation and translation result in
an orthonormal basis for a finite interval containing [0, 1].

(A2) For each j, 1 ≤ j ≤ p, the univariate functions fj(·) (1 ≤ j ≤ p)
are bounded, of bounded variation on [0, 1] and vanish outside the
interval. In addition, only a finite number of coefficients in the wavelet
representation is non-zero.

Brillinger (1994) considers shrunken wavelet estimators for univariate
f ∈ L2[0, 1] under the assumptions (A1) and (A2) and shows that, almost ev-
erywhere in t, finite collections of f̂(t) are asymptotically normal with mean
f(t). These results can easily be carried over to multivariate trend functions:
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Lemma 1 Assume model (1) together with (A1), (A2) and assumptions on
the cumulants of ε(i) as given in Brillinger (1994). For 1 ≤ r ≤ p, let

α̂
(r)
l,k =

1

n

n∑
u=1

φl,k(tu)Yr(u), (8)

β̂
(r)
j,k =

1

n

n∑
u=1

ψj,k(tu)Yr(u), (9)

ŵ
(r)
j,k := 1{|β̂(r)

j,k |≥
�

var (β̂
(r)
j,k )λj}

,

Jn → ∞, n2−Jn/2 → ∞, λj such that 2
j
2λj = o(n1/2) (j = l, l + 1, . . . , Jn)

and
Jn∑
j≥l

2
j
2 exp(−λ2

j/(1 + η)2) = o(1)

for some η > 0. Define

f̂r(t) :=
∑

k

α̂
(r)
l,kφl,k(t) +

Jn∑
j≥l

∑
k

ŵ
(r)
j,k β̂

(r)
j,kψj,k(t), (10)

1 ≤ r ≤ p. Also denote by hε = (hε;rs)1≤r,s≤p the matrix of cross spectral
densities between {εr(i), i ∈ N} and {εs(i), i ∈ N}. Then, almost everywhere
in t ∈ [0, 1], finite collections of

√
n(f̂r(t) − fr(t)) are asymptotically normal

with mean zero. Moreover,

γf(x, y; r, s) = cov (f̂r(x), f̂s(y)) =
2πhε;rs(0)

n

∑
k

φl,k(x)φl,k(y)

+
2πhε;rs(0)

n

J0∑
j,k

w
(r)
j,kw

(s)
j,kψj,k(x)ψj,k(y) + r(n),

where w
(i)
j,k = 1{β(i)

j,k �= 0}, J0 = J0(r, s) is the largest common integer such

that w
(r)
j,kw

(s)
j,k �= 0 for some j = Jo, and r(n) = O(22Jnn−2).

Remark 3 One possible threshold that satisfies the assumptions of lemma 1
is given by λj =

√
2 log(2−jn).

10



Remark 4 Note that additional asymptotic properties for the estimators of
the wavelet coefficients are also easily carried over to the multivariate case.
For instance, cov (β̂

(r)
j,k , β̂

(s)
j′,k′) = O(n−2) for (j, k) �= (j′, k′).

Remark 5 If var (β
(r)
j,k ) is unknown, then the variance has to be estimated.

See Brillinger (1994) for consistent estimation of the variance and asymptotic
properties.

Remark 6 Lemma 1 implies var (f̂r(t)) = O(n−1), uniformly in t, so that
f̂r(t) is a asymptotically consistent estimator of fr(t), i.e. f̂r(t) → fr(t) in
probability for almost all t in [0, 1].

3.3 Estimation of the regression cross covariance

3.3.1 Consistency

By assumption m(f) =< f , 1 >= 0, and μ(t) = 0 so that Γ = Γα. Given f̂ ,
the cross-covariance Γα can be estimated by

Γ̂α(u) = Γ̂(u) =

∫ 1

0

f̂(t+ u)̂fT (t)dt (11)

and the regression spectrum by

Ĥ(j) =

∫ 1/2

−1/2

exp(−i2πju)Γ̂α(u)du.

Consistency of Γ̂(u) is given by

Theorem 1 Under the assumptions of lemma 1, Γ̂(u) converges in proba-
bility to Γ(u) such that Γ̂(u) − Γ(u) = Op(n

−1/2).

The proof is based on the following

Lemma 2 Let fr be estimated as in Lemma 1, and denote the estimation
error by

ε̃(r)n (t) = f̂r(t) − fr(t).
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Then, ∫
[0,1]

ε̃(r)n (t)dt→ 0 (12)

and ∫
[0,1]

|ε̃(r)n (t)|dt→ 0 (13)

almost surely, and both terms are of order Op(n
−1/2).

3.3.2 Asymptotic normality

First, we derive the asymptotic covariance function of γ̂rs(u).

Theorem 2 For u, v ∈ [−1, 1],

lim
n→∞

ncov(γ̂rs(u), γ̂rs(v)) = σrs(u, v)
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where σrs is finite and can be written as

σrs(u, v) = 2πhε;ss(0)

[∑
k

∫
fr(x+ u)φl,k(x)dx

∫
fr(y + v)φl,k(y)dy

+
∑
l,k

w
(s)
l,k

∫
fr(x+ u)ψl,k(x)dx

∫
fr(y + v)ψl,k(y)dy

]

+ 2πhε;rs(0)

[∑
k

∫
fs(x)φl,k(x+ u)dx

∫
fr(y + v)φl,k(y)dy

+
∑
l,k

w
(r)
l,kw

(s)
l,k

∫
fs(x)ψl,k(x+ u)dx

∫
fr(y + v)ψl,k(y)dy

]

+ 2πhε;sr(0)

[∑
k

∫
fr(x+ u)φl,k(x)dx

∫
fs(y)φl,k(y + v)dy

+
∑
l,k

w
(r)
l,kw

(s)
l,k

∫
fr(x+ u)ψl,k(x)dx

∫
fs(y)ψl,k(y + v)dy

]

+ 2πhε;rr(0)

[∑
k

∫
fs(x)φl,k(x+ u)dx

∫
fs(y)φl,k(y + v)dy

+
∑
l,k

w
(r)
l,k

∫
fs(x)ψl,k(x+ u)dx

∫
fs(y)ψl,k(y + v)dy

]
+O(n−1/2).

In order to obtain the asymptotic distribution of Γ̂ the following addi-
tional condition on ε(i) will be used.

(A3) For 1 ≤ r, s ≤ p, define ε∗t := εr(t), t = 1, . . . , n, and ε∗t = εs(t−n), t =
n + 1, . . . , 2n. Let {Ft, t = 1, . . . , n} be a non-decreasing sequence
of σ-fields of F sets and let the sequence (ε∗t ,Ft, t = 1, . . . , n) be a
square-integrable martingale difference array with constant variance
and E(ε∗2t |Ft−1) = E(ε∗20 ).

Theorem 3 Let

ξn = n
1
2 [γ̂rs(u1) − γrs(u1), γ̂rs(u2) − γrs(u2), ..., γ̂rs(uk) − γrs(uk)]

T
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Then, under (A3) and the assumptions of theorem 1,

ξn
d→ N(0,Σ)

where
Σ = [σrs(ui, uj)]r,s=1,...,p

and ”
d→” denotes convergence in distribution.

The proof is based on the following lemmas.

Lemma 3 Assume model (1) and the assumptions of theorem 1. Then, for
each s ∈ {1, . . . , p} and for almost all x ∈ [0, 1],

(f̂s − fs) (x) =
1

n

n∑
u=1

εs(u)
∑

k

φl,k(u/n)φl,k(x)

+
1

n

n∑
u=1

εs(u)

Jn∑
j≥l

∑
k

ŵ
(s)
j,kψj,k(u/n)ψj,k(x)

+ r(s)(n),

where r(s)(n) = Op(n
−1).

Lemma 4 Under the assumptions of theorem 3, we have, for each pair (r, s),
1 ≤ r, s ≤ p, and each u ∈ [−1, 1]

√
n(γ̂rs(u) − γrs(u))

d→ N (0, σrs(u, u)),

where σrs(u, u) is given in theorem 2.

Theorem 3 can be extended to a functional limit theorem.

Theorem 4 Let Pn be the probability distribution of
√
n(γ̂

(n)
rs (u)−γrs(u)) in

C[−1, 1], where C[−1, 1] is equipped with the uniform topology defined by the
metric d(f, g) = sup−1≤t≤1 |f(t) − g(t)|. Then Pn converges asymptotically
in C[−1, 1] (in the metric d) to the probability distribution P of a Gaussian
process where the finite-dimensional distributions are given in theorem 3.
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3.4 Estimation of the regression cross spectrum

3.4.1 Asymptotic normality

Theorem 4 together with the continuous mapping theorem (see e.g. Pollard
1984) lead to

Theorem 5 Under the assumptions of theorem 4, the vector

ζn =
√
n[ĥrs(j1) − hrs(j1), ..., ĥrs(jm) − hrs(jm)]T

converges in distribution to an m−dimensional zero mean normal vector with
covariance matrix

ncov (ĥrs(jk), ĥrs(jl)) =

∫ ∫
exp {−i2π(jku1 − jlu2)}σrs(u1, u2)du1du2

where σrs(u1, u2) is defined in theorem 2.

3.4.2 Estimation of amplitude and phase spectrum

Theorem 5 shows that finite vectors of the regression cross spectrum ĥrs(j)
converge to a complex-valued normal random variable. Let crs(j) = Re(hrs(j))
and qrs(j) = Im(hrs(j)) so that hrs(j) = crs(j) + iqrs(j). Then we have esti-
mators

ĉrs(j) =
1

2
(ĥrs(j) + ĥsr(j)) (14)

and

q̂rs(j) =
1

2i
(ĥrs(j) − ĥsr(j)). (15)

Due to theorem 5, the vector

√
n[ĉrs(j) − crs(j), q̂rs(j) − qrs(j)]

T

converges in distribution to a bivariate normal variable with mean 0 and
asymptotic covariance matrix

Σ(j) =

(
Σcc(j) Σcq(j)
Σqc(j) Σqq(j)

)
.

The asymptotic distribution of the amplitude and phase spectrum then fol-
lows by straighforward calculations. Let κ∗rs(j) be the non-normalized spec-
tral modulus. Then we have
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Corollary 1 Let κ∗rs(j) = |hrs(j)| and

κ̂∗rs(j) = (ĉrs(j)
2 + q̂rs(j)

2)
1
2 .

Then √
n(κ̂∗rs(j) − κ∗rs(j))

d−→ N (0, σ2
κ;rs(j)),

where

σ2
κ;rs(j) =

1

c2rs(j) + q2
rs(j)

(
c2rs(j)Σcc(j) + q2

rs(j)Σqq(j) + 2crs(j)qrs(j)Σcq(j)
)
.

(16)

Corollary 2 Let φrs(j) = arg hrs(j) and

φ̂rs(j) = arg(ĉrs(j) + iq̂rs(j)) ∈ (−π, π].

Then √
n(φ̂rs(j) − φrs(j))

d−→ N (0, σ2
φ;rs(j)),

where

σ2
φ;rs(j) =

1

(c2rs(j) + q2
rs(j))

2

(
q2
rs(j)Σcc(j) + c2rs(j)Σqq(j) − 2crs(j)qrs(j)Σcq(j)

)
.

(17)

4 Algorithm and data examples

4.1 General considerations

Consider example 1 with two functions that are shifted versions of each other.
In this case, the phase spectrum consists of a straight line modulo 2π, with
the slope being proportional to the shift. Discontinuities occur at frequen-
cies where φrs(j) crosses −π or π. More generally, if we are given a plot
of a phase spectrum between two deterministic functions the detection of
any linear or piecewise linear curve may be interpreted as a constant lag
over this particular range of frequencies. However, if f and H(j) have to
be estimated, we have a superposition of the linear structure of the phase
spectrum with the phase spectrum of the noise component. Comparing (16)
with (17) we see that σ2

κ;rs(j) and σ2
φ;rs(j) essentially differ by the factor

κ∗rs(j)
−2. Therefore, σ2

φ;rs(j) will be relatively large compared to σ2
κ;rs(j) for

16



all frequencies where the corresponding spectral modulus is small, and it will
be relatively small where the spectrum modulus is large. Thus, in general,
the phase spectrum will look more erratic than the amplitude spectrum, and
estimation of common frequencies in a multivariate trend function might be
easier than estimation of the phase shift. A pure visual inspection of the
phase spectrum may not be sufficient to detect linear structure. In the next
section, we propose a simple algorithm that takes this into account. In a first
step, frequencies are identified where the amplitude spectrum is significantly
larger than 0. In a second step, the phase shift is estimated using theses
frequencies only.

4.2 Algorithm

A data-driven algorithm for estimating the regression cross spectrum can be
defined as follows.

1. Choose a wavelet basis {φl,k(x), ψj,k(x), j, k, l ∈ Z, j ≥ l} and thresh-
olds λj , j = 1, . . . , Jn, according to equation (10), and estimate fr,
r = 1, . . . , p. This step can be carried out, for instance, using the func-
tion waveshrink in the S-Plus wavelet module.

2. Apply the fast Fourier transform to obtain

âr(j) =
1

n

n∑
t=1

f̂r(t/n)e−i2πjt/n, r = 1, . . . , p,

and calculate the regression cross spectrum

ĥrs(j) = âr(j)âs(j)

and estimators of the amplitude and phase spectrum (section 3.4.2).

3. Estimate the cross spectrum hε,rs(0) of ε(i) from the estimated residuals

ε̂ = Ŷ − f̂ .

4. Use equation (16) to calculate σ2
κ;rs(j) and determine the set

J∗ = {j : κ̂∗rs(j) > cκ;rs ·
√
σ2

κ;rs(j)}
for a suitably chosen cκ;rs ∈ R.

5. To estimate the phase shift, apply a local robust regression to the points
{(j, φrs(j)) : j ∈ J∗}, taking into account possible 2π-jumps.
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4.3 Examples

The application of the asymptotic results and the practical performance of
the algorithm are illustrated by two data examples.

4.3.1 Simulated example

The trend function f(x) = (f1(x), f2(x))
T (x ∈ [0, 1]) is defined by

f1(x) = − sin(4πx) − sin(10πx) − sin(20πx) − sin(30πx) − sin(51πx),

f2(x) = f1(x+ Δ),

and
Δ = .03125.

Moreover, ε1(i), ε2(i) are iid N(0, σ2
ε ) with σ2

ε = 4 and ε1, ε2 independent
of each other. Figure 1 shows the simulated series (figures 1a,b), the true
trend functions f1 and f2 (figures 1c,d), and the true regression cross spec-
trum in terms of the amplitude (figure 1e) and the phase spectrum (figure
1f). The sample size is n = 2048. For better visibility, only the lowest 80
frequencies are used in the spectral plots. The estimated spectral modulus
and the phase spectrum between f̂1 and f̂2, obtained by wavelet thresholding
with s12−wavelets (see e.g. Daubechies 1999, Bruce and Gao 1996) and λj

as in remark 3, are displayed in figures 1g and h. While the common fre-
quencies are identified quite accurately, the linear structrue of the theoretical
regression phase spectrum is lost almost entirely in its (unweighted) empir-
ical counterpart. However, if we consider only values of φ̂12 where κ̂∗12(j)
exceeds four times its standard deviation (horizontal line in figure 1g), the
linear structure can be identified. In figure 1h, the five frequencies corre-
sponding to the five highest values of κ̂∗12(j) are marked by black squares.
The estimate of the phase line based on these frequencies is very close to the
true line.

To check the accuracy of our estimates, a small simulation study was
carried out. For n =256, 512, 1024 and 2048, 500 series were simulated, and
the spectral density and the lag between f1 and f2 were estimated. Figure
2 shows a comparison of the simulated standard deviation of κ̂∗12(j) and the
values of σκ;12 (equation (16)) calculated by plugging in the true and the
estimated functions fj respectively. The standard deviations are fairly close
together for n = 256 and almost identical for n = 2048. This confirms the
theoretical results.
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n 256 512 1024 2048
true value -.03125 -.03125 -.03125 -.03125
median -0.0337069 -0.0317893 -0.0312525 -0.0312118
mean -0.0429855 -0.0319160 -0.0312776 -0.0311385
std.dev. 0.1490462 0.01350248 0.00311929 0.00208201
mse 0.02768125 0.00417189 0.00391940 0.00389665
skewness 0.78195065 0.48571213 0.01500243 0.18100068

Table 1: Detailed summary of the lag estimation for various sample sizes, in
each case running 500 simulations.

Detailed results for the lag-estimates are listed in table 1. Boxplots in
figure 2 illustrate the fast convergence of Δ̂ to the true value Δ = −.03125.
Note that for small sample sizes, the true frequencies in the amplitude spec-
trum might fail to show up due to insufficient accuracy of the trend estimates.
In particular, high deterministic frequencies may be hidden or smoothed out
by the shrinkage estimate. Moreover, the true lead-lag structure may not
be detected due to effects of the noise component. In the example here, a
reliable estimate of Δ is obtained for n = 512, whereas n = 256 seems to be
too small.

4.3.2 ECG data

We consider a trivariate time series consisting of electrocardiogram (ECG),
blood pressure (BP) and the cardiac stroke volume (SV) measurements of
a sleeping patient, recorded at the Beth Israel Deaconess Medical Center
in Boston (Goldberger et al. 2000). The data are represented in units of
50mV (ECG), 50mmHG (BP) and 50ml (SV). The observational period con-
sists of n = 8192 observations recorded at a rate of 200 observations per
second. A detailed description of the data set can be found in Ichimaru
and Moody (1999). For better visibility, only the first 1000 observations (5
seconds) of the raw time series are displayed in figure 3. The analysis is
carried out for all 8192 observations. As expected, all time series mainly
consist of a deterministic almost periodic movement, with a period of about
200 observations, indicating a heart rate around 60 beats per minute. The
ECG signal starts with a small bump indicating the atrial contraction and
is followed by a sharp peak representing the contraction of the ventricles.
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The third peak represents the repolarization period. At the same time, con-
traction of the ventricles causes the stroke volume to increase up to a peak
value, after which it falls back to its minimum shortly after the repolariza-
tion. The growing amount of blood pushed into the arteries also induces a
rise in blood pressure. The electrocardiogram receives information directly
from the heart whereas the blood pressure is measured by a catheder in the
radial artery. Therefore, the delay represents the time it takes the pressure
wave, initialized by a heart beat, to reach the catheder. Consider now the
regression cross spectra in figure 4. All three amplitude spectra reveal dom-
inating common frequencies around j = 40 indicating a common period of
length around 1s. Moreover, the phase spectrum of ECG and BP exhibits
linear structures over certain ranges of frequencies. The phase spectrum be-
tween ECG and BP for the interval j ∈ [34, 40] is drawn in the lower left
panel of figure 4. We see an almost perfectly linear structure in the phase
spectrum and the estimated phase-shift is about 26 time units indicating a
lead of BP against ECG. Note, however, that for the corresponding dominat-
ing lag the regression cross-correlation is negative. This effect can be noticed
visually when comparing e.g. local maxima of the BP signal with minima of
the ECG signal after the repolarization period (local maxima of the blood
pressure occur shortly before the ECG signal reaches its minimum). Due
to the physiological fact that the peaks in ECG representing contractions of
the ventricals are constantly around 94 data points away from the minimum
after the repolarization period, we estimate a lag between the contraction of
the ventricals and the maximum of the blood pressure of around 94−26 = 68
time units which is equivalent to a time delay of 340ms. A similar analysis
between ECG and SV results in a lead of the ECG signal of about 11 data
points or 55ms.

5 Final remarks

We defined the regression cross covariance and cross spectrum for multivari-
ate deterministic trend functions. This is a nonparametric multivariate ex-
tension of an analogous concept used by Grenander and Rosenblatt to obtain
asymptotic results in the context of parametric regression. The usefulness
of the nonparametric regression spectrum goes far beyond a purely mathe-
matical device. It can be used as a data analytical tool to identify common
frequencies and lead-lag effects in multivariate time series with strong deter-
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ministic components. The physiological series considered above is a typical
example. Other examples can be found, for instance, in high frequency data
with a strong daily seasonality and a large number of intra-day measure-
ments. The greatest challenge appears to be estimation of the phase spec-
trum. The question in how far more accurate methods than the algorithm
proposed here can be devised, will be worth pursuing in future research.
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7 Appendix: Proofs

Proof 1 (Proposition 1)
For u ≥ 0,

ρrs(−u) =
< fr(· − u), fs >

||fr|| · ||fs|| =
< fs(· + u), fr >

||fr|| · ||fs|| = ρsr(u).

Hence ρrs is Hermitian. Consider now ρrs, u1, . . . , un ∈ [0, 1], and let
θ1, . . . , θn be arbitrary coefficients in C. Then

n∑
i,j=1

p∑
r,s=1

θiρrs(ui − uj)θj

=
∑
i,j

∑
r,s

θi

∫
fr(x+ ui − uj)fs(x)dx√∫ |fr(x)|2dx

∫ |fs(x)|2dx
θj .

Since the denominator does not depend on i and j, non-negative definiteness
follows from ∫ ∑

r

∑
i

θifr(x+ ui)
∑

s

∑
j

θjfs(x+ uj)dx

=

∫ ∣∣∣∣∣∑
r

∑
i

θifr(x+ ui)

∣∣∣∣∣
2

dx ≥ 0.
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Proof 2 (Lemma 1) The proof essentially follows directly from Theorem 3
in Brillinger (1994). To see uniform convergence of r(n) consider

cov(f̂r(x), f̂s(y)) =
∑
k,k′

cov(α̂l,k, α̂l,k′)φl,k(x)φl,k′(y) (18)

+
∑

j,k,j′,k′
cov (ŵ

(r)
j,k β̂

(r)
j,k , ŵ

(s)
j′,k′β̂

(s)
j′,k′)ψj,k(x)ψj′,k′(y) (19)

+
∑

k,j′,k′
cov (α̂l,k, ŵ

(s)
j′,k′β̂

(s)
j′,k′)φl,k(x)ψj′,k′(y) (20)

+
∑
j,k,k′

cov (ŵ
(r)
j,k β̂

(r)
j,k , α̂l,k′)ψj,k(x)φl,k′(y). (21)

The remainder r(n) essentially consists of terms with (j, k) �= (j′, k′). Sepa-
rate e.g. (19) into∑

j,j′≤J0

∑
k,k′

cov (ŵ
(r)
j,k β̂

(r)
j,k , ŵ

(s)
j′,k′β̂

(s)
j′,k′)ψj,k(x)ψj′,k′(y)

+
∑

j>J0∨j′>J0

∑
k,k′

cov (ŵ
(r)
j,k β̂

(r)
j,k , ŵ

(s)
j′,k′β̂

(s)
j′,k′)ψj,k(x)ψj′,k′(y). (22)

For j, j′ ≤ J0 and suitable constants A1 and A2, we have

|
J0∑

j 	=j′

∑
k 	=k′

cov (ŵ
(r)
j,k β̂

(r)
j,k , ŵ

(s)
j′,k′β̂

(s)
j′,k′)ψj,k(x)ψj′,k′(y)|

≤
J0∑

j 	=j′

∑
k 	=k′

|cov (ŵ
(r)
j,k β̂

(r)
j,k , ŵ

(s)
j′,k′β̂

(s)
j′,k′)| · 2 j

2 2
j′
2 sup

x
{ψ(x)2}

≤ A1

J0∑
j 	=j′

∑
k 	=k′

|cov (β̂
(r)
j,k , β̂

(s)
j′,k′)|2 j

2 2
j′
2

≤ A2

J0∑
j 	=j′

∑
k 	=k′

n−22j2j′ = O(n−2).

Now for j > J0 or j′ > J0, we have, recalling that |cov (β̂
(r)
j,k , β̂

(s)
j′,k′)| =
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O(2j/22j′/2n−2) for (j, k) �= (j′, k′),∣∣∣∣∣ ∑
j>J0∨j′>J0

∑
k,k′

cov (ŵ
(r)
j,k β̂

(r)
j,k , ŵ

(s)
j′,k′β̂

(s)
j′,k′)ψj,k(x)ψj′,k′(y)

∣∣∣∣∣
≤

∑
j>J0∨j′>J0

∑
k,k′

∣∣∣cov (ŵ
(r)
j,k β̂

(r)
j,k , ŵ

(s)
j′,k′β̂

(s)
j′,k′)

∣∣∣ |ψj,k(x)ψj′,k′(y)|

≤
∑

j>J0∨j′>J0

∑
k,k′

∣∣∣cov (β̂
(r)
j,k , β̂

(s)
j′,k′)

∣∣∣ ·A12
j/22j′/2

≤ A2n
−2

∑
j>J0∨j′>J0

2j2j′ sup
x
{ψ(x)2}

= O(22Jnn−2), (23)

uniformly in x and y where A1, A2 are suitable constants.

Proof 3 (Lemma 2) As mentioned in remark 6, Brillinger shows that for
each r, 1 ≤ r ≤ p, the variance of the thresholding estimators, var (f̂r(x)),

is of order n−1. To indicate its dependence on Ω, we write ε̃
(r)
n (ω, x) instead

of ε̃
(r)
n (x). Define X := [0, 1], let μ be the Lebesgue measure on (X ,FX ) and

denote by FΩ the σ-algebra generated by the open subsets of Ω. We consider
the product space (Ω × X ) with σ-algebra F = FΩ ⊗ FX and corresponding
measure P ⊗ μ. Due to the uniform convergence of var [f̂r(x)],∫

X

∫
Ω

(ε̃(r)n (ω, x) − E[ε̃(r)n (ω, x)])2dPdx→ 0

and

n

∫
X

∫
Ω

(ε̃(r)n (ω, x) − E[ε̃(r)n (ω, x)])2dPdx = O(1).

This implies ∫
X

∫
Ω

ε̃(r)n (ω, x)2dPdx = O(n−1). (24)

Note that X is a finite interval so that (P ⊗ μ)(Ω × X ) < ∞. Square inte-
grability in finite measure spaces implies that∫

X

∫
Ω

|ε̃(r)n (ω, x)| dP dx = O(n−1/2).
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Due to the existence of both integrals we can apply Fubini’s theorem so that∫
Ω

∫
X
|ε̃(r)n (ω, x)| dx dP → 0, n→ ∞.

Define the random variable zn =
∫
X |ε̃(r)n (x)| dx. Then zn ≥ 0 for all n and

E[zn] → 0. Hence, ∫
[0,1]

ε̃(r)n (ω, x) dx→ 0

almost surely.

Proof 4 (theorem 1) Without loss of generality it suffices to show that the
theorem is true for real-valued functions fr and for non-negative values of
u. By adding and substracting terms, we split the regression covariance into
four terms

(I) =

∫ 1

0

(
f̂r(x+ u) − fr(x+ u)

)(
f̂s(x) − fs(x)

)
dx

(II) =

∫ 1

0

fr(x+ u)
(
f̂s(x) − fs(x)

)
dx

(III) =

∫ 1

0

(
f̂r(x+ u) − fr(x+ u)

)
fs(x)dx

(IV ) =

∫ 1

0

fr(x+ u)fs(x)dx.

The functions fr and fs are bounded and of bounded variation. Then

|(III)| ≤ A

∫
ε̃(r)n (x+ u)dx,

which tends to 0 almost surely according to lemma 2. The same holds for
term (II). Moreover, the Cauchy-Schwarz inequality implies∣∣∣∣∫ (f̂r(x+ u) − fr(x+ u)

)(
f̂s(x) − fs(x)

)
dx

∣∣∣∣ (25)

≤
(∫

(f̂r(x+ u) − fr(x+ u))2dx

) 1
2
(∫

(f̂s(x) − fs(x))
2dx

) 1
2

.
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The proof of lemma 2 shows that both factors converge to zero almost surely.
Therefore,

γ̂rs(u)
P→
∫ 1

0

fr(x+ u)fs(x)dx = γrs(u).

Proof 5 (theorem 2) Recall, that

γ̂rs(u)− γrs(u) =

∫
[fr(x+ u)ε̃(s)n (x) + ε̃(r)n (x+ u)fs(x) + ε̃(r)n (x+ u)ε̃(s)n (x)]dx.

Hence,

lim
n→∞

ncov (γ̂rs(ui), γ̂rs(uj))

= lim
n→∞

nE[

∫ (
fr(x+ ui)ε̃

(s)
n (x) + fs(x)ε̃

(r)
n (x+ ui) + ε̃(r)n (x+ ui)ε̃

(s)
n (x)

)
dx

·
∫ (

fr(y + uj)ε̃
(s)
n (y) + fs(y)ε̃

(r)
n (y + uj) + ε̃(r)n (y + uj)ε̃

(s)
n (y)

)
dy]

=: (I) + (II) + (III),

where

(I) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
limn→∞ n

{
E[
∫ ∫

fr(x+ ui)fr(y + uj)ε̃
(s)
n (x)ε̃

(s)
n (y)dx dy]

+E[
∫ ∫

fs(x)fr(y + uj)ε̃
(r)
n (x+ ui)ε̃

(s)
n (y)dx dy]

+E[
∫ ∫

fr(x+ ui)fs(y)ε̃
(s)
n (x)ε̃

(r)
n (y + uj)dx dy]

+E[
∫ ∫

fs(x)fs(y)ε̃
(r)
n (x+ ui)ε̃

(r)
n (y + uj)dx dy]

}
,

(II) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
limn→∞ n

{
E[
∫ ∫

fr(x+ ui)ε̃
(s)
n (x)ε̃

(r)
n (y + uj)ε̃

(s)
n (y)dx dy]

+E[
∫ ∫

fs(x)ε̃
(r)
n (x+ ui)ε̃

(r)
n (y + uj)ε̃

(s)
n (y)dx dy]

+E[
∫ ∫

fr(y + uj)ε̃
(s)
n (y)ε̃

(r)
n (x+ ui)ε̃

(s)
n (x)dx dy]

+E[
∫ ∫

fs(y)ε̃
(r)
n (y + uj)ε̃

(r)
n (x+ ui)ε̃

(s)
n (x) dxdy]

}
,

(III) = lim
n→∞

n

{
E[

∫ ∫
ε̃(r)n (x+ ui)ε̃

(s)
n (x)ε̃(r)n (y + uj)ε̃

(s)
n (y)dx dy]

}
.

Consider just one part of the sum in part (I). Due to Fubini’s theorem

lim
n→∞

nE[

∫ ∫
fr(x+ ui)fr(y + uj)ε̃

(s)
n (x)ε̃(s)n (y)] dx dy
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= lim
n→∞

n

∫ ∫
fr(x+ ui)fr(y + uj)E[ε̃(s)n (x)ε̃(s)n (y)] dx dy

=

∫ ∫
fr(x+ ui)fr(y + uj) lim

n→∞
nE[ε̃(s)n (x)ε̃(s)n (y)] dx dy, (26)

where the second equation is due to Lebesgue’s theorem. By applying the
results of lemma 1,

(26) =

∫ ∫
fr(x+ ui)fr(y + uj) lim

n→∞
ncov

(
f̂s(x), f̂s(y)

)
dx dy

=

∫ ∫
fr(x+ ui)fr(y + uj)

[
2πhε(ss)(0)

∑
k

φl,k(x)φl,k(y)

+ 2πhε(ss)(0)
∑
j≥l,k

w
(s)
j,kψj,k(x)ψj,k(y) +O(n−1)

]
dx dy.

Rearrangig the sums and integrals results in

2πhε(ss)(0)
∑

k

∫
fr(x+ ui)φl,k(x)dx

∫
fr(y + uj)φl,k(y)dy

+ 2πhε(ss)(0)
∑
j≥l,k

w
(s)
j,k

∫
fr(x+ ui)ψj,k(x)dx

∫
fr(y + uj)ψj,k(y)dy

+O(n−1).

Analogous results for the other parts of (I) yield σrs(ui, uj). It remains to

show that the remaining parts converge to 0. By lemma 2,
∫
ε̃
(r)
n (x)dx → 0

almost surely with rate n−1/2. Then (24) together with the Cauchy-Schwarz

inequality yield
∫
ε̃
(r)
n (y + uj)ε̃

(s)
n (y)dy = Op(n

−1). Hence,

lim
n→∞

n

∣∣∣∣E[

∫ ∫
fr(x+ ui)ε̃

(s)
n (y)ε̃(r)n (y + uj)ε̃

(s)
n (x)dx dy]

∣∣∣∣
≤ lim

n→∞
n · AE[

∫
|ε̃(s)n (x)|dx︸ ︷︷ ︸

=Op(n−1/2)

∣∣∣∣∫ ε̃(r)n (y + uj)ε̃
(s)
n (y)dy

∣∣∣∣︸ ︷︷ ︸
=Op(n−1)

]

= 0.

Analogous considerations imply that (III) converges to 0.
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Proof 6 (Lemma 3) Consider the shrinkage estimator

f̂s(x) =
∑

k

α̂
(s)
l,kφl,k(x) +

Jn∑
j≥l

∑
k

ŵ
(s)
j,kβ̂

(s)
j,kψj,k(x). (27)

As above, let J0 be the largest number such that the corresponding resolution
component of fs contains at least one non-zero coefficient.
Hence,

(f̂s − fs)(x) =
∑

k

α̂
(s)
l,kφl,k(x) −

∑
k

α
(s)
l,kφl,k(x)︸ ︷︷ ︸

=:S(x)

+

Jn∑
j≥l

∑
k

ŵ
(s)
j,k β̂

(s)
j,kψj,k(x) −

J0∑
j≥l

∑
k

β
(s)
j,kψj,k(x)︸ ︷︷ ︸

=:D(x)

= S(x) +D(x).

Inserting the empirical Fourier coefficients yields

S(x) =
∑

k

[
1

n

n∑
u=1

Ys(u)φl,k(u/n) − α
(s)
l,k ]φl,k(x)

=
∑

k

[
1

n

n∑
u=1

(Ys(u) −E[Ys(u)] + E[Ys(u)])φl,k(u/n) − α
(s)
l,k ]φl,k(x)

=
∑

k

[
1

n

n∑
u=1

(εs(u)φl,k(u/n) + fs(u/n)φl,k(u/n)) − α
(s)
l,k ]φl,k(x)

=
1

n

n∑
u=1

εs(u)
∑

k

φl,k(u/n)φl,k(x) +
∑

k

[
1

n

n∑
u=1

fs(u/n)φl,k(u/n) − α
(s)
l,k ]φl,k(x).

Now ∣∣∣∣∣1n
n∑

u=1

fs(u/n)φl,k(u/n) −
∫ 1

0

fs(x)φl,k(x)dx

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

u=1

fs(u/n)φl,k(u/n) − α
(s)
l,k

∣∣∣∣∣ ≤ V (fsφl,k)

n
, (28)
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where V (·) denotes total variation (see e.g. Polya and Szegö 1964). Hence,

S(x) =
1

n

n∑
u=1

εs(u)
∑

k

φl,k(u/n)φl,k(x) +O(n−1). (29)

For n large enough such that Jn > J0:

D(x) =

Jn∑
j

∑
k

ŵ
(s)
j,kβ̂

(s)
j,kψj,k(x) −

J0∑
j

∑
k

β
(s)
j,kψj,k(x)

=

J0∑
j

∑
k

(ŵ
(s)
j,kβ̂

(s)
j,k − β

(s)
j,k)ψj,k(x) +

Jn∑
j=J0+1

∑
k

ŵ
(s)
j,kβ̂

(s)
j,kψj,k(x). (30)

Now,

J0∑
j

∑
k

(ŵ
(s)
j,kβ̂

(s)
j,k − β

(s)
j,k )ψj,k(x)

=
∑
j,k

(ŵ
(s)
j,k

1

n

n∑
u=1

ψj,k(u/n)Ys(u) − β
(s)
j,k)ψj,k(x)

=
∑
j,k

{ŵ(s)
j,k [

1

n

n∑
u=1

ψj,k(u/n)(Ys(u) − E[Ys(u)] + E[Ys(u)])] − β
(s)
j,k}ψj,k(x)

=
∑
j,k

{ŵ(s)
j,k

1

n

n∑
u=1

ψj,k(u/n)εs(u) + ŵ
(s)
j,k

1

n

n∑
u=1

ψj,k(u/n)fs(u/n) − β
(s)
j,k}ψj,k(x)

=
∑
j,k

ŵ
(s)
j,k

1

n

n∑
u=1

ψj,k(u/n)εs(u)ψj,k(x) (31)

+
∑
j,k

[ŵ
(s)
j,k

1

n

n∑
u=1

ψj,k(u/n)fs(u/n) − β
(s)
j,k ]ψj,k(x). (32)

For the term in (32), we have

| 1
n

n∑
u=1

ψj,k(u/n)fs(u/n) − β
(s)
j,k | ≤

V (ψj,kfs)

n
,

where the total variation is A · 2 j
2 , with A a suitable constant. Consider now

the binary random variable ŵ
(s)
j,k. We distinguish between the cases β

(s)
j,k = 0
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and β
(s)
j,k �= 0. In the first case, n−1

∑n
u=1 ψj,k(u/n)fs(u/n) = O(2

j
2n−1).

Recall that j ≤ J0. This implies that (32) converges in probability to 0 and

is of order Op(n
−1). If β

(s)
j,k �= 0, consider first the case ŵ

(s)
j,k = 1. Then, the

rate of convergence in equation (32) is n−1. Moreover,

P (ŵ
(s)
j,k = 1) = P (|β̂(s)

j,k | > λj ·
√

var (β̂
(s)
j,k)) → 1.

This implies that there exists a sequence of subspaces Ωn ↑ Ω such that
P (Ωn) → 1 and

P (ŵ
(s)
j,k = 1|ω ∈ Ωn) = 1.

Define Ωc
n = Ω − Ωn. Then, for a suitable constant A,

P

(
|ŵ(s)

j,k

1

n

n∑
u=1

ψj,k(u/n)fs(u/n) − β
(s)
j,k | ≤

V (ψj,kfs)

n

)

= P

(
|ŵ(s)

j,k

1

n

n∑
u=1

ψj,k(u/n)fs(u/n) − β
(s)
j,k | ≤

V (ψj,kfs)

n

∣∣∣∣ Ωn

)
P (Ωn)

+ P

(
|ŵ(s)

j,k

1

n

n∑
u=1

ψj,k(u/n)fs(u/n) − β
(s)
j,k | ≤

V (ψj,kfs)

n

∣∣∣∣ Ωc
n

)
P (Ωc

n)

→ 1.

Term (32) contains a finite amount of coefficients β
(s)
j,k �= 0 so that conver-

gence is uniform (= Op(n
−1)). The second part of (30) is given by

Jn∑
j=J0+1

∑
k

ŵ
(s)
j,kβ̂

(s)
j,kψj,k(x). (33)

For all j, k ∈ Z, β̂
(s)
j,k is a root-n consistent estimator for β

(s)
j,k (s = 1, . . . , p)

and for all j > J0, β
(s)
j,k = 0. With the preliminary remarks of section 3.2

about var (β̂
(s)
j,k), consider the estimator ŵ

(s)
j,k in the case w

(s)
j,k = 0.

P (ŵ
(s)
j,k = 1) = P (|β̂(s)

j,k | > λj ·
√

var (β̂
(s)
j,k))

= P (
√
n|β̂(s)

j,k | > λj

√
n ·
√

var (β̂
(s)
j,k ))

≤ P (
√
n|β̂(s)

j,k | > Aλj)

≤ P (
√
n|β̂(s)

j,k | > η) → 0
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for a suitable constant A and η > 0. Convergence is uniform in j so that
(33) can be neglected asymptotically. Rearranging (31) and combining this
with (29) yields the desired result.

Proof 7 (Lemma 4) It is sufficient to show the assertion for positive values
of u.

√
n(γ̂rs(u) − γrs(u)) =

√
n

∫ 1

0

[fr(x+ u)ε̃(s)n (x)

+ fs(x)ε̃
(r)
n (x+ u) + ε̃(r)n (x+ u)ε̃(s)n (x)]dx.

Applying lemma 3, the first part leads to

√
n

∫
fr(x+ u)

[
1

n

n∑
u=1

εs(u)
∑

k

φl,k(u/n)φl,k(x)

+
1

n

n∑
u=1

εs(u)
∑
j,k

ŵ
(s)
j,kψj,k(u/n)ψj,k(x) +Op(n

−1)

]
dx

=
1√
n

n∑
u=1

εs(u)
∑

k

φl,k(u/n)

∫
fr(x+ u)φl,k(x)dx

+
1√
n

n∑
u=1

εs(u)
∑
j,k

ŵ
(s)
j,kψj,k(u/n)

∫
fr(x+ u)ψj,k(x)dx+Op(n

−1/2)

=:
n∑

u=1

εs(u)w
(s)
u,n +Op(n

−1/2), (34)

where w
(s)
u,n is a triangular array of partly deterministic weights given by

w(s)
u,n :=

1√
n

(∑
k

φl,k(u/n)

∫
fr(x+ u)φl,k(x)dx

+
∑
j,k

ŵ
(s)
j,kψj,k(u/n)

∫
fr(x+ u)ψj,k(x)dx

)
.

Therefore,

√
n

∫
fs(x)ε̃

(r)
n (x+ u) =

n∑
u=1

εr(u)w
(r)
u,n +Op(n

−1/2),
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where

w(r)
u,n ≈ 1√

n

∑
k

φl,k(u/n)

∫
fs(x)φl,k(x+ u)dx

+
1√
n

∑
j,k

w
(r)
j,kψj,k(u/n)

∫
fs(x)ψj,k(x+ u)dx.

As a result of the proof of theorem 1

n

∫
ε̃(r)n (x+ u)ε̃(s)n (x)dx = Op(1).

It follows that

√
n(γ̂rs(u) − γrs(u)) =

n∑
u=1

(w(r)
u,nεr(u) + w(s)

u,nεs(u)) +Op(n
−1/2),

=

2n∑
u=1

ε∗uw
∗
u,n +Op(n

−1/2),

where ε∗u = εr(u), u = 1, . . . , n, and ε∗u = εs(u − n), u = n + 1, . . . , 2n, with
the weights w∗

u,n defined accordingly. Denote by B̂n(u) the random part of

w
(s)
u,n. Then,

w(s)
u,n := An(u) + B̂n(u) = An(u) +Bn(u) + (B̂n(u) − Bn(u)),

with

An(u) =
1√
n

∑
k

φl,k(u/n)

∫
fr(x+ u)φl,k(x)dx,

B̂n(u) =
1√
n

∑
j,k

ŵ
(s)
j,kψj,k(u/n)

∫
fr(x+ u)ψj,k(x)dx,

Bn(u) =
1√
n

∑
j,k

w
(s)
j,kψj,k(u/n)

∫
fr(x+ u)ψj,k(x)dx,

n∑
u=1

εs(u)w
(s)
u,n =

n∑
u=1

ε(s)u (An(u) +Bn(u)) +
n∑

u=1

εs(u)(B̂n(u) − Bn(u)) (35)
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and
n∑

u=1

εs(u)(B̂n(u)−Bn(u)) =
1√
n

n∑
u=1

[
∑
j,k

(ŵ
(s)
j,k −w(s)

j,k)ψj,k

(u
n

)
b
(r)
j,k ]εs(u), (36)

where b
(r)
j,k :=

∫
fr(x+ u)ψj,k(x)dx. Since

ŵ
(s)
j,k − w

(s)
j,k = 1{|β̂(s)

j,k |≥
�

var (β̂
(s)
j,k)λj}

− 1{|β(s)
j,k |>0},

(36) only contains non-zero elements for those indices (j, k) where either

|β̂(s)
j,k | ≥

√
var (β̂

(s)
j,k)λj and β

(s)
j,k = 0 or |β̂(s)

j,k | <
√
var (β̂

(s)
j,k)λj and β

(s)
j,k �= 0.

Consider first (j, k) with β
(s)
j,k �= 0. Since P (ŵ

(s)
j,k = 1) → 1, ŵ

(s)
j,k −w(s)

j,k → 0 in

probability. Convergence is uniform in the set of (j, k) with β
(s)
j,k �= 0, since

this set is finite. For β
(s)
j,k = 0,

(36) =
n∑

u=1

B̂n(u)εs(u).

and P (ŵ
(s)
j,k = 1) → 0 uniformly in j, k. Consider B̂n(u) for the case u = k2−j

with (j, k) arbitrary. In this case there is at most a finite number of b
(r)
j,k �= 0.

For each η > 0 and a suitable constant A,

P (|√nB̂n(u)| > η)

= P

(∣∣∣∣∣
Jn∑
j

∑
k

ŵ
(s)
j,kψj,k

(u
n

)
b
(r)
j,k

∣∣∣∣∣ > η

)

≤ P

(
A

J0∑
j

∑
k

|ŵ(s)
j,k| > η

)
→ 0. (37)

Consider now u �= k2−j. For sufficiently large n there exists an integer k
such that |u− k · 2−Jn| < 2−Jn. For suitable constants A1, A2∣∣∣∣∫ fr(x+ u)ψj,k(x)dx−

∫
fr(x+ k2−Jn)ψj,k(x)dx

∣∣∣∣
≤ A1 · 2j/2

∫
|fr(x+ u) − fr(x+ k2−Jn)|dx

≤ A1 · 2j/2 sup
x

|fr(x+ u) − fr(x+ k2−Jn)| · |u− k2−Jn|.
≤ A2 · 2−Jn → 0.
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due to assumption (A2). Therefore,

P

(
|
∑
j,k

ŵ
(s)
j,kψj,k

(u
n

)
b
(r)
j,k| > η

)

≤ P

(∑
j,k

∣∣∣ŵ(s)
j,kψj,k

(u
n

)∣∣∣ [∫ |fr(x+ k2−j)ψj,k(x)dx| + A22
−Jn] > η

)

≤ P

(∑
j,k

∣∣∣ŵ(s)
j,kψj,k

(u
n

)∣∣∣ ∫ |fr(x+ k2−j)ψj,k(x)dx| > η

2

)
(38)

+ P

(
A22

−Jn
∑
j,k

∣∣∣ŵ(s)
j,kψj,k

(u
n

)∣∣∣ > η

2

)
. (39)

(38) converges to 0 in probability according to (37). Moreover,

P

(∣∣∣∣∣A22
−Jn

Jn∑
j,k

|ŵ(s)
j,kψj,k

(u
n

)∣∣∣∣∣ > η

2

)
≤ P

(∣∣∣∣∣A22
−Jn

Jn∑
j

2j/2

∣∣∣∣∣ > η

2

)
→ 0,

so that P (
√
nB̂n(u)| > η) → 0. Since ε

(s)
u form a square-integrable mar-

tingale difference array with constant variance, n− 1
2

∑n
u=1 εs(u) converges in

distribution to a normal variable and
∑n

u=1 B̂n(u)εs(u) → 0 in probability.

Combining all cases,
∑

u εs(u)(B̂n(u) − Bn(u)) → 0 in probability so that
asymptotically the second part of the sum in (35) can be neglected. Hence,

w
(s)
u,n reduce to the deterministic weights

w̃(s)
u,n = An(u) +Bn(u)

=
1√
n

∑
k

φl,k(u/n)

∫
fr(x+ u)φl,k(x)dx

+
1√
n

∑
j,k

w
(s)
j,kψj,k(u/n)

∫
fr(x+ u)ψj,k(x)dx.

Similarly, w
(r)
u,n can be replaced by w̃

(r)
u,n and hence also w∗

u,n by w̃∗
u,n.

Defining σ2
n := var [

∑n
u=1 w̃

∗
u,nε

∗
u], we have σ2

n → σrs(u, u). Since w
(s)
j,k = 0,
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j > J0,

max
1≤u≤n

|w(s)
u,n| = max

1≤u≤n

∣∣∣∣∣ 1√
n

∑
k

φl,k(u/n)

∫
fr(x+ u)φl,k(x)dx

+
1√
n

∑
j,k

w
(s)
j,kψj,k(u/n)

∫
fr(x+ u)ψj,k(x)dx

∣∣∣∣∣
≤ A√

n

∑
k

∫
|fr(x+ u)φl,k(x)|dx

+
A√
n

J0∑
j,k

∫
|fr(x+ u)ψj,k(x)|dx,

= O(n−1/2),

where A is a suitable constant, we have

max
1≤u≤n

|w∗
u,n| = max

1≤u≤n
|w(r)

u,n + w(s)
u,n| → 0.

From theorem 2 and the approximation of w∗
u,n by w̃∗

u,n we obtain var [
∑n

u=1 w̃
∗
u,nε

∗
u] =

O(1). Hence,

max
1≤u≤n

|w∗
u,n|
σn

→ 0, n→ ∞.

Then theorem 4 in Beran and Feng (2001) together with (A3) imply∑
u w

∗
u,nε

∗
u

σn

d→ N (0, 1),

and hence √
n(γ̂rs(u) − γrs(u))

d→ N (0, σrs(u, u)).

Proof 8 (Theorem 3) Applying the Cramér-Wold device, we show that for
any constants θl, l = 1, . . . , q, q ∈ N, not all equal to zero,

n
1
2

q∑
l=1

θl(γ̂rs(ul) − γrs(ul))
d→ N (0, σ̃2),
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where σ̃2 :=
∑q

l=1

∑q
m=1 θlθmσrs(ul, um) > 0. Note that

n
1
2

q∑
l=1

θl(γ̂rs(ul) − γrs(ul))

= n
1
2

∫
[ε̃(s)n (x)

q∑
l=1

θlfr(x+ ul)︸ ︷︷ ︸
=:A

+ fs(x)

q∑
l=1

θl ε̃
(r)
n (x+ ul)︸ ︷︷ ︸

=:B

+ ε̃(s)n (x)

q∑
l=1

θl ε̃
(r)
n (x+ ul)]dx︸ ︷︷ ︸

=:C

. (40)

As shown earlier, the first part (A) can be written approximately as

n∑
u=1

εs(u)

[
n− 1

2

∑
k

φl,k(u/n)

q∑
l=1

θl

∫
fr(x+ ul)φl,k(x)dx

+ n− 1
2

∑
j,k

ŵ
(s)
j,kψj,k(u/n)

q∑
l=1

θl

∫
fr(x+ ul)ψj,k(x)dx

]
,

where the term in brackets is a weight function for the individual εs(u). We

denote the weights by w
(s∗)
u,n and the analogous weights of term (B) by w

(r∗)
u,n .

As above, (C) converges to 0 almost surely.

Note that σ̃ :=

√
var [

∑
w

(r∗)
u,n εr(u) +

∑
w

(s∗)
u,n εs(u)]. Then a simple conse-

quence of previous arguments is that

max
1≤u≤n

|w(r∗)
u,n + w

(s∗)
u,n |

σ̃
→ 0.

Hence, the Central Limit Theorem for the weighted sum holds such that∑
w(r∗)

u,n εr(u) +
∑

w(s∗)
u,n εs(u)

d→ N(0, σ̃2).

By applying the Cramér-Wold Device, this is equivalent to finite collections
of γ̂rs(u) being asymptotically jointly normal with mean zero and covariance
matrix (σrs(ul, um)), l,m = 1, . . . , q, i.e.

n
1
2 (γ̂rs(u) − γrs(u))→N (0, (σrs(ul, um))1≤l,m≤q). (41)
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Proof 9 (theorem 4) Let Pn be the probability distribution of γ̂
(n)
rs (u) in

C[−1, 1] with corresponding σ-algebra C and let C[−1, 1] be given the uni-
form topology induced by the metric d(f, g) = sup−1≤t≤1 |f(t) − g(t)|. Then

for any Borel subset B: Pn(B) = P(γ̂
(n)
rs (u) ∈ B). It remains to prove tight-

ness of the family Pn of probability distributions of γ̂
(n)
rs (u) (Billingsley 1968).

Define the modulus of continuity of an element f ∈ C[−1, 1] by

wf(δ) = w(f, δ) = sup
|s−t|<δ

|f(s) − f(t)|, 0 < δ ≤ 2.

Then the sequence {Pn} is tight if and only if

(i) for each positive η there exists a constant A such that

Pn(|γ̂(n)
rs (0)| > A) ≤ η, n ≥ 1, (42)

(ii) For each positive η1 and η2, there exists δ (0 < δ < 2) and n0 ∈ IN
such that

Pn(w
γ̂
(n)
rs

(δ) > η1) ≤ η2, n ≥ n0. (43)

We first note that the probability distributions of γ̂
(n)
rs (0) are tight.

γ̂(n)
rs (0) =

∫
fr(x)fs(x)dx+

∫
fr(x)ε̃

(s)
n (x)dx

+

∫
fs(x)ε̃

(r)
n (x)dx+

∫
ε̃(r)n (x)ε̃(s)n (x)dx.

Lemma 2 shows that all parts of the sum in γ̂
(n)
rs (0) converge to 0 almost surely

except
∫
fr(x)fs(x)dx. Tightness of γ̂

(n)
rs (0) is not influenced by

∫
fr(x)fs(x)dx

and each of the other parts of the sum converges to 0 in probability due to
lemma 2. This implies that for each A > 0 and each η > 0 there exists an
n0 ∈ IN with e.g. Pn(| ∫ fs(x)ε̃

(r)
n (x)dx| > A) < η for all n ≥ n0. For the

first indices 1, . . . , n0 − 1 the statement is trivial since finitely many random
variables are always tight. For the second condition note that w

γ̂
(n)
rs

(δ) =

sup|u2−u1|<δ |γ̂n(u2)− γ̂n(u1)|. The continuity of the integral together with the
results of lemma 2 imply that there exists an n0 such that condition (ii) is
satisfied for all η1, η2 > 0.
Therefore, Pn is tight such that γ̂

(n)
rs (u) converges to a Gaussian process where

the finite dimensional distributions are given in equation (41).
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Proof 10 (theorem 5) Define Xn(u) :=
√
n(γ̂rs(u)−γrs(u)). The preceeding

discussion has shown that Xn is a random element in C[−1, 1] that converges
in distribution to a stochastic process whose finite dimensional distributions
are asymptotically normal. Theorem 5 then follows by the continuous map-
ping theorem (see e.g. Pollard 1984).
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Figure 1: Simulated series (Y1, Y2) of length n = 2048 (figures 1a,b), true
trend functions (f1, f2) (figures 1c,d), amplitude and phase spectrum (fig-
ures 1e,f) and estimated amplitude and phase spectrum (figures 1g,h). The
horizontal line in figure 1g represents 4

√
var(κ∗rs(j)), the solid line in figure

1h corresponds to the estimated phase line.
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Figure 2: Simulated, estimated and true asymptotic standard deviation of
the amplitude spectrum. Boxplots of the lag estimates are also given for
n = 256, 512, 1024 and n = 2048.
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Figure 3: Electrocardiogram (ECG), blood pressure (BP) and cardiac stroke
volume (SV) of a sleeping person over a period of 5 seconds (1000 observa-
tions).
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Figure 4: Amplitude and phase spectrum between the shrinkage estimates of
ECG, BP and SV. The two bottom panels show the phase spectrum (lower
left) between ECG and BP for j ∈ [34, 40] and the cross covariance (lower
right).
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