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Abstract

In this paper a robust data-driven procedure for decomposing seasonal time se-

ries based on a generalized Berlin Method (BV, Berliner Verfahren) as proposed by

Heiler and Michels (1994) is discussed. The basic robust algorithm used here is an

adaptation of the LOWESS (LOcally Weighted Scatterplot Smoothing) procedure

(Cleveland, 1979). For selecting the optimal bandwidth the simple double smooth-

ing rule (Heiler and Feng, 1999) is used. The optimal order of the local polynomial

is selected with a BIC criterion. The proposed procedure is applied to the macroe-

conomic time series used in the recent empirical studies carried out by the German

Federal Statistical O�ce (Speth, 1994 and H�opfner, 1998).

1 Introduction

Decomposing seasonal time series into unobservable trend-cyclical and seasonal compo-

nents has a long tradition. It is a very important issue of econometrics and provides

adjusted data for a prospective analysis (e.g. for a current business cycle analysis). There

exists a large number of di�erent methodical approaches and also ready-made software

systems to perform this. See Heiler (1995) for a survey of methods in this �eld from

the beginning of the 1960s. See also Eurostat (1998). Heiler (1966, 1970) developed a

decomposition procedure based on local regression with polynomials and trigonometric
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functions as local regressors. This idea became the basis of the so-called Berlin Method

(BV, Berliner Verfahren), which in its fourth version (BV 4) is being applied by the Ger-

man Federal Statistical O�ce since 1983. Comparisons among di�erent approaches for

time series decomposition including the BV 4 with empirical macroeconomic data were

carried out by the German Federal Statistical O�ce (Speth, 1994 and H�opfner, 1998).

The traditional idea of local regression was generalized by Stone (1977) and Cleveland

(1979) to a so-called locally weighted regression (LWR), which became the most attractive

nonparametric approach in recent years (see the monograph of Fan and Gijbels, 1996).

This approach together with other new developments in the area of nonparametric statis-

tics and in the area of computer science since the eighties allows us to propose an improved

version of the BV. Heiler and Michels (1994) generalized the BV based on LWR by intro-

ducing a kernel as weight function. Like with other nonparametric approaches, e�ective

use of the generalized BV requires the choice of some smoothing parameters, such as the

order of the polynomial and the bandwidth. Hence, the development of some data-driven

procedures for carrying out the generalized BV automatically is a crucial theoretical and

practical problem. The �rst data-driven version of the BV was developed by Heiler and

Feng (1996, 1999). In this procedure techniques to deal with outliers in the data are not

considered yet.

However, the locally weighted regression estimator is susceptible to outliers among the

data due to the fact that at a point t only a part of the observations is used in the local

smoothing. The proposal of Cleveland (1979) is a robust approach, which works well for

common nonparametric regression. In this paper we adapt at �rst the idea of Cleveland

(1979) to the decomposition of seasonal time series with given smoothing parameters.

Then we develop a robust data-driven procedure for time series decomposition using the

simple double smoothing (DS) rule for the bandwidth selection (Feng and Heiler, 1999)

and the BIC (Bayesian information criterion) for the choice of the polynomial degree

(Feng, 1999). The proposed robust data-driven procedure is applied to the macroeco-

nomic time series used by the recent empirical studies carried out by the German Federal

Statistical O�ce to show its usefulness in practice.
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2 The estimators

2.1 Generalized Berlin Method

The BV is based on local least squares. In BV 4 locally weighted least squares are

introduced with a �xed weighting function (Nourney, 1983). This approach is generalized

by Heiler and Michels (1994) based on LWR. The basic idea is as follows. Let Yt, t =

1; :::; n, be an equidistant time series. Assume that (possibly after some transformation

of the original data) Yt follows an additive components model

Yt = G(t) + S(t) + �t; t = 1; 2; :::; n; (1)

where the �t are assumed to be i.i.d. random variables with E(�t) = 0 and var(�t) = �2.

G is the trend-cyclical component, S is the seasonal component with seasonal period s

and m := G + S is the mean function.

The trend-cyclical component is assumed to have some smoothness properties, precisely,

to be at least (p+1) times di�erentiable, so that it can be expanded in a Taylor series

around a point t0, yielding a local polynomial representation of order p

G(t)
:
=

pX
j=0

�1j(t0)(t� t0)
j:

In a similar way for the seasonal component it is assumed that it can be locally modeled

by a Fourier series

S(t)
:
=

qX
j=1

[�2j(t0) cos�j(t� t0) + �3j(t0) sin�j(t� t0)] ;

where q = [s=2] with [x] = largest integer � x, �1 = 2�=s is the seasonal frequency and

�j = j�1, for j = 2; :::; q.

Put

�1(t0) = (�10(t0); ::: ; �1p(t0))
T;
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�2(t0) = (�21(t0); �31(t0); :::; �2q(t0); [�3q(t0)])
T;

�(t0) = (�1(t0)
T; �2(t0)

T)T;

x1(t) = (1; (t� t0); ::: ; (t� t0)
p)T;

x2(t) = (cos�1(t� t0); sin�1(t� t0); :::;

cos�q(t� t0); [sin�q(t� t0)])
T;

x(t) = (x1(t)
T;x2(t)

T)T

and X = (X1

...X2) with the rows x(t)T, where X is the n� (p+ s)-regressor matrix. The

last terms of �2 and x2 in [ ], respectively, are only necessary for odd s, for even s they

have to be omitted.

Let K(u), the weighting function of LWR, be a second order kernel with compact support

[-1, 1], h 2 IN be a bandwidth of the observation time, y = (Y1; ::: ; Yn)
T denote the data

vector and K = diag(kt) be a weight matrix with

kt =

8<
: K( t�t0

h+0:5
); t 2 [t0 � h; t0 + h];

0; otherwise:

Let ej denote the jth (p+ 1)� 1 unit vector, �s denote an (s� 1)� 1 vector having 1 in

its odd entries and 0 elsewhere.

The locally weighted least squares criterion

nX
t=1

[Yt � x1(t)
T�1(t0)� x2(t)

T�2(t0)]
2kt ) min;

leads to the solutions

�̂(t0) = (X(t0)
T
K(t0)X(t0))

�1
X(t0)

T
K(t0)y (2)

and

m̂(t0) = (eT1 ;�
T
s )(X

T
KX)�1

X
T
Ky =: wT

y; (3)

Ĝ(t0) = (eT1 ; 0
T)(XT

KX)�1
X

T
Ky =: wT

1 y; (4)

and

Ŝ(t0) = (0T;�T
s )(X

T
KX)�1

X
T
Ky =: wT

2 y; (5)
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where 0 denotes a vector of zeros of appropriate dimension.

m̂, Ĝ and Ŝ are all linear smoothers and only observations with t 2 [t0 � h; t0 + h]

obtain non-zero weights. The non-zero parts of w, w1 and w2 will be called the weighting

systems. It can be shown that w in (3) satis�es:

1: wi(t) = 0; if ji� tj > b;

2:
nP

i=1

wi(t)((i� t)=n)j =

8<
: 1;

0;

j = 0;

1 � j < k;

20:

8>><
>>:

nP
i=1

wi(t) cos(�j(i� t)) = 1;

nP
i=1

wi(t) sin(�j(i� t)) = 0;
j = 1; ::: ; �;

3: ~w0 ~K�1 ~w = min! with respect to ~w;

(6)

where ~K is the non-zero part of K and ~w is the non-zero part of w. On the other hand,

weighting system satis�es (6) is the solution of (3). Properties 2 and 2' in (6) ensure that

the proposed estimators are unbiased for a polynomial trend-cyclical component and for

an exactly periodic seasonal component. For estimations at another instant in the central

part of the time series (t0 2 [h+1; n�h]) we obtain the same weighting systems (i.e. the

procedure works like a moving average in the central part of the time series).

As in local polynomial �tting the �th derivative of the trend-cyclical component, 0 < � �

p, can be estimated by

Ĝ(�)(t0) = �!(eT�+1; 0
T)(XT

KX)�1
X

T
Ky

=: (w�)Ty: (7)

Finite sample and asymptotic properties of these estimators may be found in Feng (1999).

2.2 Approach at the boundary

A point t 2 [1; h][[n�h+1; n] is called a boundary point. At such a point the observations

introduced in the estimate are not symmetric around t. The quality of the estimation at

a boundary point is hence usually worse than that at a point in the central part of the
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time series. This is the so-called boundary problem. In order to cope with this problem

we distinguish a left bandwidth hl and a right bandwidth hr and put h = max(hl; hr). It

is assumed that hl < t, hr � n � t and hT > p + s, where hT = hl + hr + 1 is called the

total bandwidth. If hl and hr are �xed and t 2 [hl + 1; n � hr], then the estimators m̂,

Ĝ, Ĝ(�) and Ŝ work as moving averages with symmetric weighting systems for hl = hr

or asymmetric weighting systems for hl 6= hr. In the proposal of Heiler and Feng (1996,

1999) both, hT and p are allowed to change from point to point at the boundary in

order to obtain optimal decomposition results. However, the estimations obtained by

this procedure are sometimes not stable at the boundary. This problem is solved here

by putting hT and p �xed, i.e. just one optimal total bandwidth ĥT together with one

optimal order of polynomial p̂ will be selected for the whole time series. In this case the

proposed estimators are like k-NN estimators. The use of k-NN estimators to solve the

boundary problem was proposed by Gasser et al. (1985).

A k-NN estimator is an estimator with a �xed total bandwidth hT = hl+ hr+1, which is

kept constant at the boundary as well as in the central part. The left bandwidth hl and

the right bandwidth hr depend on t. Here only odd integers hT 2 [p + s + 1; n] will be

considered as possible total bandwidth such that the weighting system in the central part

is symmetric. Let hm = (hT � 1)=2. Then the left and right bandwidths at each point t

are determined by

hl = t� 1; hr = hT � t; if t � hm;

hl = hm; hr = hm; if hm < t � n� hm;

hl = hT � (n� t)� 1; hr = n� t; otherwise:

(8)

A nonrobust data-driven procedure for choosing hm and p for the k-NN estimator will be

introduced in the next section.

3 Nonrobust data-driven procedure

From here on only estimation of m, G and S will be considered. The optimal choice of

the parameters hT and p is the one, which minimizes a given error criterion as a distance
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measure between the estimate and the (unknown) underlying function. In this paper m

is considered as the target function, i.e. m̂ will be optimized with respect to m. As error

criterion for selecting the bandwidth we use the mean averaged squared error (MASE)

M = n�1
nX

t=1

E[m̂t �mt]
2: (9)

It is well known that the MASE splits up into a variance part V and a bias part B, i.e.

M = V +B. Under the assumption that �t are iid random variables the variance part of

a k-NN estimator is

V̂ = �̂2n�1
nX

t=1

nX
i=1

(wi(t))
2 ;

where �̂2 is an estimator of �2. In this paper the bootstrap variance estimator �̂2 := �̂2
B

as proposed by Heiler and Feng (1999) will be used. �̂2
B is de�ned by

�̂2
B = n�1

nX
i=1

r2i ;

where the ri's are the residuals of a data-driven pilot smoothing. This estimator is just

the averaged residual sum of squares of a pilot estimate. A simple estimate of M was

proposed by Rice (1984):

~R = n�1
nX

t=1

(m̂t � yt)
2 + (n�1

nX
t=1

2wt(t)� 1)�̂2 : (10)

This idea will be used as a pilot method for selecting the parameters. However, the pilot

estimate of M in our program is actually R̂ := max( ~R; V̂ ), called the R-statistic, due to

the fact that M � V . R̂ depends on the couple fhT; pg. The optimal bandwidth selected

by the R-statistic for a given p, denoted by ĥT;p, is the one among all possible hT's, which

minimizes R̂(p).

In Heiler and Feng (1996) p is also selected with the error criterion itself. In this paper we

propose selecting p by means of the information criteria BIC (Schwarz, 1978 and Akaike,

1979). However, the optimal polynomial order will only be chosen from p = 0; 1; :::; 4,

because it should not be too high. Theoretically, an odd p is more preferable (see Fan and

Gijbels, 1995, 1996). But m̂ with p even performs sometimes the best for �nite sample.

The original BIC was proposed for model selection in a parametric case, where BIC is
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a consistent criterion for model choice. In the current case we will use the following

de�nition of BIC:

BIC(p) = ln(R̂(p)) + ln(n)(p + 1)=n: (11)

The term ln(n)(p + 1)=n is a penalty for increasing the polynomial order. The BIC

depends on the couple fhT; pg, too. The optimal choice is the couple fĥT;R; p̂g, which

minimizes the BIC. For a given p the optimal bandwidth selected by BIC is the same as

that selected by R̂(p) itself. But the �nal selected optimal couple fĥT;R; p̂g by BIC may

be di�erent from that directly selected by the R-statistic.

The procedure to search fĥT;R; p̂g for a k-NN estimator with �xed p is much simpler than

that proposed in Heiler and Feng (1996). Let hmax = n, if n is odd, or hmax = n � 1, if

n is even. For p = 0; 1; :::; 4, let hmin = p + s + 2, if p + s is odd, or hmin = p + s + 3,

if p + s is even. Search ĥT;p which minimizes BIC(p). Select the couple fĥT;R; p̂g with

the smallest value of BIC from all fĥT;p; pg. fĥT;R; p̂g are then the optimal parameters

selection by BIC.

The polynomial order p will only be selected once by BIC means the R-criterion. In the

following we will discuss how to select a more e�ective bandwidth by the double smoothing

rule. From now on it is assumed that we have selected a p̂. For the DS rule one also needs

a pilot estimate. As shown in Heiler and Feng (1996), the polynomial order in the pilot

smoothing should be higher than that in the main smoothing. Hence, p̂p = p̂+ 2 will be

used in the pilot smoothing. The DS estimate of MASE is then de�ned by

M̂D = V̂ + B̂D; (12)

where

B̂D = n�1
nX

t=1

f

nX
i=1

wi(t)m̂p;i � m̂p;tg
2;

and where m̂p is the pilot estimate of m obtained with pp = p + 2 and bandwidth ĥT;g

selected by the R-statistic. The optimal bandwidth ĥT;D is the one among all possible

total bandwidths, which minimizes M̂D. A simple nonrobust data-driven procedure is as

follows:

1. Estimate the variance with �̂2
B following the proposal in Heiler and Feng (1999).
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2. Select an optimal order of polynomial p̂ following the BIC with �̂2
B.

3. Select an optimal total bandwidth ĥp following the R-statistic with �̂
2
B and pp = p̂+2.

Calculate the pilot estimate m̂p.

4. Select an optimal total bandwidth ĥT following the DS criterion with �̂2
B, p̂ and m̂p.

Calculate all estimators one needs with ĥT.

This is a simpli�ed procedure of the proposal of Heiler and Feng (1996, 1999) due to the

use of the k-NN approach and a �xed order of polynomial for all observation points of

the time series.

4 Robust procedure with given parameters

It is shown that LOWESS works well in common nonparametric regression (see the ex-

amples given in Cleveland, 1979 and in Fan and Gijbels, 1996). Cleveland et al. (1990)

adapted the LOWESS to time series decomposition, where seasonal 
uctuations are

treated in a di�erent way. In this section we will propose a robust procedure for time

series decomposition based on another adaptation of the LOWESS. Our proposal di�ers

from the original LOWESS in two points: 1. The so-called season-dependent medians are

introduced, so that the LOWESS may be easily adapted to our model. 2. A stability

criterion is used, which allows the number of the robust iterations (NRI) to be decided

by the data. In this section the parameters hT and p are assumed to be chosen by hand.

The robust data-driven version of the BV will be introduced in the next section. Detailed

discussion on the properties of such a robust procedure is omitted.

The basic idea of the LOWESS is as follows. Fit m̂0 in the 0-th (nonrobust) iteration with

weights k0;i(t) = ki(t) as de�ned in section 2.1. Calculate the residuals rj;t = yt� m̂j�1(t)

in the j-th (1 � j � J) iteration from the estimate obtained in the j � 1-th iteration,

where J is the number of robust iterations (NRI) given beforehand. Assign the robustness

weight to each observation as �j;t = B(rj;t=(6�j)), t = 1; 2; ::: ; n, where �j denotes the
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median of jrj;tj and B(u) = (1 � u2)21I[�1;1] is the bisquare weighting function. Fit m̂j

with the weights k0;i(t) being replaced by kj;i(t) = �j;ik0;i(t). However, in the case of time

series decomposition the residuals often depend on the seasonal component. Hence, a

uniform median may not be suitable in this context. Therefore it will be natural to treat

the residuals within each seasonal period di�erently. For this purpose we will use the

season-dependent medians, �j;t, rather than a uniform median �j, where �j;t is the median

of jrj;ij for all i such that (i� t)=s is an integer. This means that the residuals are at �rst

divided into s groups. The robustness weights are then calculated in each group following

the idea of Cleveland (1979). We will see that the use of season-dependent medians works

well for decomposing seasonal time series.

As in Cleveland (1979) the function B(u) = (1� u2)21I[�1;1] will be used to calculate the

robustness weights, which can, of cause, be replaced by another symmetric nonnegative

kernel function. Assume that �xed p and hT are used in all iterations. Then the adaptation

of the LOWESS into the time series decomposition context works as follows:

1. In the 0-th iteration of this procedure decompose the time series by locally weighted

regression using the weights k0;i(t) = ki(t) and obtain m̂0.

2. In the jth iteration, let rj;t = yt � m̂j�1(t), t = 1; 2; ::: ; n, denote the residuals

obtained from the (j-1)th iteration. De�ne the robustness weights by

�j;t = B

 
rj;t

6�j;t

!
; t = 1; 2; ::: ; n;

where �j;t is the season-dependent median as described above.

3. Decompose the time series with ki(t) replaced by the modi�ed weights kj;i(t) =

�j;ik0;i(t).

4. Repeatedly carry out steps 2 and 3 until a stability criterion is ful�lled or up to a

given number of iterations.

An important question is how many robust iterations should be carried out in oder to

obtain satisfactory results. It is clear that at least two robust iterations are needed, since
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in the �rst step the robustness weights are calculated from of residuals obtained by a

nonrobust procedure. In the following we will propose a stability criterion such that the

number NRI can be determined by the data. To simplify the description we put �0;i � 1

for all i in the 0-th iteration.

For given p and bandwidth hT the weights kj;i(t) in the jth iteration depend only on �j;i.

Hence the estimates in the jth iteration will be close to those in the (j-1)th iteration, if

�j;i ' �(j�1);i for all i. Observing that 0 � �j;i � 1 for all j and i, we can use the averaged

absolute di�erence (AAD) between �j;i and �(j�1);i:

AADj = n�1
nX

i=1

j�j;i � �(j�1);ij; j = 1; 2; :::;

as a measure of stability of the robust estimates in the jth iteration. For given p and hT

AADj will converge to zero, as j ! 1, if the robust procedure is stable. Hence we can

choose a small positive constant c0 and stop the iterative procedure when AADj < c0.

Such an estimator will be called a stable robust estimate, or simply a robust estimate, if

no confusion is to be expected. The robust estimate depends strongly on c0. If c0 is too

large, the results will not be satisfactory. If c0 is too small, the computer time will be

unnecessarily large. In this paper c0 = 0:0125 will be used.

5 Data-driven robust procedure

The error criteria given in section 3 are proposed for a linear smoother under the assump-

tion that the �t are iid. It is clear that the robust locally weighted regression estimators

are nonlinear, since the robustness weights �j;t for j > 0 depend on the data. In this case

the weighting system w also depends on the data. From the robust procedure described

in the last section we can see that the dependence of the weighting system on the data

is very complex. In this paper, however, we will simply use the R-statistic and DS cri-

terion as approximate methods to select the order of polynomial and the bandwidth in

a robust iteration. This is just an attempt to develop a robust data-driven time series

decomposition procedure. There are still many open questions in this area (see the �nal

remarks).
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The extension of the bandwidth selection procedure to a robust iteration, when the nonlin-

earity is ignored, is straightforward. Both, the pilot bandwidth and the main bandwidth

have to be reselected in each iterative step, since the optimal bandwidth in the next ro-

bust iteration may be di�erent from that in the last one. Hence the data-driven robust

procedure needs large computing time. The local regression estimates depend strongly on

the bandwidth hT. Besides the stability condition AADj < c0 an additional stability con-

dition on the bandwidth will also be used. Denote the bandwidth for the main smoothing

in the jth iteration as ĥT;j. Assume that j � 2. Then the data-driven procedure will be

stopped when AADj < c0 and ĥT;j = ĥT;(j�1). When the procedure is not stable, it will

be stopped after J iterations. In this case the best NRI has to be chosen subjectively by

analyzing the detailed results at each iteration.

The proposed data-driven robust time series decomposition procedure reads as

1. For j = 0 obtain p̂, the pilot bandwidth ĥp;0, ĥT;0 and compute m̂0 following the

nonrobust data-driven procedure as given in section 3.

2. In the j-th, j > 0, iteration compute the robustness weights from m̂(j�1) obtained

in the (j-1)-th iteration.

3. Select the optimal pilot bandwidth ĥp;j following the R-statistic with the robust

procedure. Calculate the robust pilot estimate m̂pj.

4. Select the optimal bandwidth ĥT;j following the DS criterion with the robust proce-

dure. Calculate the robust estimate m̂j.

5. For j � 2 put j0 := j and go to step 6, if the stability conditions are satis�ed or

j0 = J . Otherwise, put j := j + 1 and go back to step 2.

6. Calculate other estimates with the selected parameters and the robust procedure.

The selected parameters of such a procedure is the polynomial order p̂ and a sequence of

bandwidths fĥT;0; ĥT;1; :::; ĥT;j0g. The estimates at the end of this procedure depend not

only on ĥT;j0 but on the whole sequence fĥT;0; ĥT;1; :::; ĥT;j0g. If we let the robust procedure
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proposed in the last section, run j0 + 1 times with p̂ and corresponding bandwidth, ĥT;j,

in each iteration, we will obtained the same estimates.

6 Applications

In this section the proposed procedure will be applied to the seven examples used by the

recent empirical studies carried out by the German Federal Statistical O�ce (Speth, 1994

and H�opfner, 1998). These are observations in the old States in Germany from January

1976 to June 1987 for the following time series:

1. Unemployment (UNEMP),

2. Production index of production industries (PIPIN),

3. Production index of automobile industry (PIAUT),

4. Production index of manufacture of tobacco (PITOB),

5. Production index of chemical industry (PICHE),

6. Index of orders received in engineering industry (OIENG),

7. Index of orders received in building construction (OIBUI).

Here c0 = 0:0125 and J = 20 are used for decomposing these time series. The estimated

parameters �̂2
B, p̂, j0 and ĥT = ĥT;j0 are listed in Table 1. The bandwidths selected in

other iterations are omitted. From Table 1 we see that the selected parameters for these

time series are quite di�erent. This shows that a model with given parameters can not

be suitable for all data sets in practice. Hence a data-driven procedure is required. The

selected p̂ and ĥT depend on the variance �2 of a time series and also on the structure of the

trend-cyclical component. The larger �2 (relatively), the larger ĥT. On the other hand,

the more complex G is, the smaller is ĥT. Furthermore, p̂ and ĥT depend also mutually on

13



each other. The higher p̂, the larger ĥT, and vice versa. For all of the examples we have

obtained stables robust decomposition results, except for the time series OIBIU, for which

we have j0 = J . For this time series the optimal bandwidth switches between ĥT = 49

and ĥ�T = 37. If J = 19 or J = 21 were used, we would have obtained ĥ�T as the �nal

result.

Table 1: �̂2
B, p̂, j0 and ĥT selected for all examples

Time Series �̂2
B p̂ j0 ĥT

UNEMP 470.79 4 10 55

PIPIN 3.767 2 7 55

PIAUT 57.20 0 4 63

PITOB 15.55 0 8 43

PICHE 2.734 2 7 37

OIENG 28.01 1 4 41

OIBUI 5.709 2 20 49

Decomposition results for the three time series PIAUT, PITOB and OIENG, which seem

to be a�ected by outliers at some points, are shown in �gures 1 through 3. Each of the

�gure gives the original data together with the nonrobust as well as the stable robust

estimates of G (upper), the nonrobust estimate of S (middle) as well the stable robust

estimate of S (lower), respectively. We see, in all of these examples both, the estimates

of G and S are improved by the robust procedure at instants, where there seem to be

some outliers. Figure 2 shows that (see the observations around t = 80) the e�ect of

outliers, which are di�cult to make out at the �rst glance, can be corrected by means of

the season-dependent medians. And the corrected seasonal component looks much better

than the nonrobust one. For more examples see Feng (1999).
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7 Final remarks

In this paper a robust data-driven version of the BV is proposed. Examples from the

practice show that the proposed procedure works well. However, there are some open

questions to be resolved in future. For instance, some error criteria, which are more suit-

able for selecting optimal parameters by the robust time series decomposition procedure

as those proposed in section 4, should be developed. The variance estimator �̂2
B used in

this paper is nonrobust. A robust variance estimator for seasonal time series should be

developed. If the variance of �t depends strongly on the seasonal component, then both,

the error criterion and the variance estimator should be adapted to this fact. The �nite

sample properties and asymptotic properties of the parameters selected by the robust

data-driven procedure should be investigated. Moreover, the error process variables �t are

generally not independent. In this case it is more di�cult to solve the above mentioned

questions. Finally, note that the selected parameters are just optimal for the estimate of

m. They are neither optimal for Ĝ nor for Ŝ. The development of procedures which yield

optimal parameters for Ĝ or Ŝ alone, are also very important.
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Figure 1: Nonrobust and stable robust decomposition results for the time series PIAUT.

The �gures show the original data together with the nonrobust (solid line) as well as the

stable robust (dashes) estimates of G (upper), the nonrobust estimate of S (middle) as

well the stable robust estimate of S (lower), respectively.
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Figure 2: The same results as given in �gure 1 but for the time series PITOB.
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Figure 3: The same results as given in �gure 1 but for the time series OIENG.

20


