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Abstract

In this paper a modi�ed double smoothing bandwidth selector, ĥMDS,

based on a new criterion, which combines the plug-in and the double smooth-

ing ideas, is proposed. A self-complete iterative double smoothing rule (ĥIDS)

is introduced as a pilot method. The asymptotic properties of both ĥIDS and

ĥMDS are investigated. It is shown that ĥMDS performs asymptotically very

well. Moreover, it is asymptotically negatively correlated with hASE, the min-

imizer of the averaged squared error. The asymptotic performances of ĥMDS

and of the iterative plug-in method, ĥIPL (Gasser et al., 1991) are compared.

A comparative simulation study is carried out to show the practical perfor-

mance of ĥMDS and related methods. It is shown that ĥMDS seems to be the

best in the practice. Finite sample negative correlations between the chosen

bandwidth selectors and hASE are also studied.
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1 Introduction

Consider the equidistant �xed design nonparametric regression model

Yi = m(xi) + �i; (1.1)

where xi = (i� 0:5)=n, h is the bandwidth and �i are iid errors with mean zero and

variance �2. Our goal is to estimate the curve m(�) from these n observations. In

this paper we use the Nadaraja-Watson kernel estimator

m̂h(x) =

nP
i=1

K[(x� xi)=h]Yi

nP
i=1

K[(x� xi)=h]
=:

nX
i=1

wih(x)Yi; (1.2)

where K is a kernel of order r (see Gasser, M�uller and Mammitzsch, 1985) and h

is the bandwidth. For non-equidistant designs the Gasser-M�uller estimator (Gasser

and M�uller, 1994) is preferable.

The practical performance of m̂h depends strongly on the bandwidth h. Various

procedures of bandwidth selection have been proposed in the statistical literature.

All of the classical methods (see H�ardle, Hall and Marron, 1988 for a survey) are

known to be subjected to an unacceptably large amount of sample variation. In

recent years, some modern bandwidth selectors, which perform well both theoreti-

cally and in practice, were proposed. Two important ideas are the plug-in (PL) rule

(Gasser, Kneip and K�ohler, 1991 and Ruppert, Sheather and Want, 1995) and the

double smoothing (DS) procedure (M�uller, 1985, H�ardle, Hall and Marron, 1992,

Heiler and Feng, 1998, Feng, 1999 and Feng and Heiler, 1999). Other proposals may

be found e.g. in Chiu (1991) and Fan and Gibels (1995). This paper focuses on

improving the existing methods for selecting a global bandwidth h.

1.1 Criteria of assessing the performance

There are two widely used measures for assessing the performance of m̂h, namely

the averaged squared error (ASE)

�(h) = n�1
�X
i

[m̂h(xi)�m(x)]2 (1.3)

and its mean, the mean averaged squared error (MASE)

M(h) = E[�(h)] = n�1
�X
i

E[m̂h(xi)�m(x)]2; (1.4)
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where
P

�

i denotes summation over indices i such that c < xi < d, where 0 < c < d <

1 are introduced to reduce the boundary e�ects of a kernel estimate. Denoted by

hASE and hM the minimizers of ASE and MASE, respectively. Both, hASE and hM,

can be considered as \optimal bandwidth" in some sense. Note that hASE is itself a

random variable. To design a bandwidth selector that is less sensitive to the sample

variation, hM rather than hASE should be used as the target. The reason is that hM

can be estimated with the highest relative rate of convergence n�1=2 under standard

conditions. However, hASE cannot be estimated with a relative rate of convergence

higher than n�1=(2(2r+1)), which is n�1=10 for r = 2, no matter how many derivatives

are assumed to exist. Even the di�erence between hM and hASE is of size n�3=(2(2r+1))

(i.e. of the relative order n�1=(2(2r+1))). In fact we have

n3=(2(2r+1))(hASE � hM) �! N(0; �21) (1.5)

in distribution (see H�ardle et al., 1988), where �21 is the same as as the �22 de�ned

in H�ardle et al. (1988).

In principle, hASE (and not hM) should be called the \optimal bandwidth", since

it makes m̂h as close as possible to m for the data set at hand, instead of for the

average over all possible data sets. Observing however that, hM also performs quite

well (although it is not e�cient following Hall and Johnstone, 1992), each of the

modern bandwidth selectors attempts to come close to the good performance of hM

instead of estimating hASE. Fortunately, many simulation results show that all of

the recently proposed bandwidth selectors perform clearly better than the classical

ones, not only in terms of hM but also in terms of hASE. In this paper, hM will

be taken as the target and will be called the optimal bandwidth. However, the

practical performance of a bandwidth selector will be assessed following the ASE,

or equivalently following its distance to hASE.

1.2 Motivation

Obviously, in the commonly used case with r = 2, any bandwidth selector ĥ that

comes within op(n
�3=10) of hM will have the asymptotic property as given in (1.5),

i.e.

n3=10(hASE � ĥ) �! N(0; �21) (1.6)

in distribution. Observing that the di�erence between almost all of the recently

proposed bandwidth selectors and hM is of size op(n
�3=10), it is worthless to assess
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them w.r. to hASE asymptotically, since they are now all asymptotically equivalent.

However, these bandwidth selectors may perform quite di�erently when compared

asymptotically with hM. The goal of this paper is to propose a modi�ed DS band-

width selector, which has good asymptotic properties w.r. to hM and at the same

time performs well for �nite sample in term of hASE.

There are some reasons for choosing the DS rather than the plug-in rule: 1. This

method does not require the use of the asymptotic formula for the bias part in

MASE and hence does not involve the estimation of m00 (in case of r = 2); 2. The

DS idea is a very exible bandwidth selection rule. There are many variants of it

(see H�ardle et al. 1992 and Heiler and Feng, 1998). And it can also be easily used for

selecting bandwidth for estimation of derivatives (see M�uller, 1985); 3. Asymptotic

properties of it are often superior to those of a PL method under given conditions; 4.

If the bandwidth is selected on the whole support [0; 1], then the so-called boundary

e�ect will play a more serious role for a plug-in bandwidth selector than for a DS

bandwidth selector. Furthermore, in many cases when a plug-in method is not well

de�ned and hence is not asymptotically optimal (see e.g. Gasser et al., 1991 for

some examples), the DS bandwidth selector may still be optimal. Here a bandwidth

selector is said to be asymptotically optimal, if ĥ=hM ! 1 in probability as n!1.

The DS bandwidth selectors proposed so far use the exact formula for estimating

the variance. This makes the method unnecessarily complex. Another problem is

that, like for the PL method, we need a method to select the bandwidth at the

pilot stage. In the proposal by Feng and Heiler (1999), denoted by ĥODS, the R-

criterion (Rice, 1984) is used as the pilot method. Such a simple DS rule works

well but is not yet satisfactory (see the simulation in section 4). In this paper, the

bandwidth selector ĥODS is modi�ed in two ways. At �rst, the estimate is simpli�ed

by introducing the use of the asymptotic formula for the variance part of MASE (like

for a PL method). Then an iterative double smoothing (IDS) bandwidth selector,

ĥIDS, which is related to the iterative plug-in (IPL) method, ĥIPL (Gasser et al.,

1991), is proposed and used as the pilot method. This makes the DS method self-

complete. The �nite sample performance is also improved by using the DS based

pilot procedure. These two improvements together make it possible to extend the

DS idea to nonparametric regression with short- or long-range dependent data. This

is indeed the original motivation of this study, which will however not be discussed

in this paper.
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1.3 Summary and organization

The modi�ed double smoothing (MDS) criterion, the pilot method ĥIDS and the

main proposal, ĥMDS, are de�ned in section 2 after a brief description of the DS

and the PL ideas. The asymptotic properties of ĥIDS and of ĥMDS are investigated

in section 3. It is shown that, although ĥMDS performs asymptotically very well,

it is still asymptotically negatively correlated with hASE. Note that the latter is

also the case for ĥIPL (see Herrmann, 1994). The results in Theorem 2 allow us

to compare the asymptotic performances of ĥMDS and ĥIPL. It is also explained

why ĥMDS would perform better in practice than ĥODS. Section 4 summarizes the

results of a comparative simulation study. It is shown that, ĥMDS and ĥODS perform

quite di�erently in practice, especially when n is small, although their asymptotic

properties are almost the same. It is also shown that ĥMDS performs clearly better

than ĥIPL in some cases. Furthermore, it is shown that all of the selected bandwidth

selectors are clearly negatively correlated with hASE. The simulation study con�rms

the theoretical results. Some concluding remarks are put in section 5. Proofs of

results are given in the appendix.

2 The proposals

In the following basic ideas for the proposals in this paper will be described.

2.1 The double smoothing idea

The DS idea was �rst introduced in the statistical literature by Gasser, M�uller,

K�ohler, Molinari and Prader (1984) and its properties were then discussed in M�uller

(1985). This approach focuses on minimizing a direct estimate of M(h). Note that

M(h) splits into a variance and a bias part, i.e. M(h) = V (h) +B(h) with

V (h) = n�1
�X
i

var [m̂(xi)]

= n�1�2
�X
i

nX
j=1

wjh(xi)
2

and

B(h) = n�1
�X
i

b(xi)
2
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= n�1
�X
i

fE[m̂(xi)]�m(xi)g
2:

Let �̂2 be the variance estimator proposed by Gasser, Sroka, and Jennen-Steinmetz

(1986) de�ned by

�̂2 =
2

3(n� 2)

n�2X
i=1

(Yi �
1

2
Yi�1 �

1

2
Yi+1)

2: (2.1)

The variance part of M(h) can be estimated by

V̂ (h) = n�1�̂2
�X
i

nX
j=1

wjh(xi)
2: (2.2)

Following the DS idea, the bias is estimated by means of a pilot estimate with a

kernel L of order s and another bandwidth g:

m̂g(x) =

nP
i=1

L[(x� xi)=g]Yi

nP
i=1

L[(x� xi)=g]
=:

nX
i=1

wig(x)Yi; (2.3)

where wig (i = 1; 2; :::; n) denote the weights for the pilot estimate and L is allowed

to be di�erent from K. The bias part of M is now estimated by

B̂(h; g) = n�1
�X
i

b̂(xi)
2

= n�1
�X
i

8<
:

nX
j=1

whj(xi)m̂g(xj)� m̂g(xi)

9=
;
2

: (2.4)

Note that, B̂(h; g) is obtained from B(h) by replacing m(h) by its estimate. Follow-

ing Feng and Heiler (1999), B̂(h; g) may be interpreted as a bootstrap bias estimator.

The �nal (ordinary) DS estimator of M(h) is de�ned by

M̂(h; g) = V̂ (h) + B̂(h; g): (2.5)

An ordinary DS bandwidth selector is de�ned as the minimizer of M̂(h; g). De�nition

(2.5) directly follows the proposal in M�uller (1985). H�ardle et al. (1992) introduced

a slightly di�erent DS criterion. Heiler and Feng (1998) proposed to combine these

two de�nitions in a uni�ed approach and introduced the use of a factorized pilot

bandwidth. In this paper only a �xed pilot bandwidth will be considered. In order

that a DS procedure is data-driven, we need to have a proper data-driven procedure

for selecting g. This will be investigated in subsection 2.4. In this paper it is assumed

that r and s are both even and s � r.
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2.2 The plug-in method

For a kernel function of order r de�ne

R(K) =

Z 1

�1
K(u)2du and �r =

1

r!

Z 1

�1
urK(u)du;

where �r is called the kernel constant of K. And for the regression function m,

which is assumed to be at least r time continuously di�erentiable, de�ne

I(m(r)) =

Z d

c
fm(x)(r)g2dx:

Then we have an approximation of M(h)

MA(h) = VA(h) +BA(h)

=
�2

nh
R(K)(d� c) + h2r�2rI(m

(r)): (2.6)

The asymptotically optimal bandwidth, which minimizes the AMASE, is

hA = c0n
�1=(2r+1) (2.7)

with

c0 =

 
(d� c)�2R(K)

2r �2r I(m
(r))

!1=(2r+1)
: (2.8)

A PL bandwidth selector is obtained by replacing the unknowns, �2 and I(m(r)),

in (2.8) by consistent estimates.

It is well known that �̂2 de�ned in (2.1) is a root n consistent estimator of �2.

Hence the key problem here is to estimate I(m(r)). A natural estimate of I(m(r)) is

Î(m(r)) = n�1
�X
i

fm̂(r)(xi; b)g
2; (2.9)

where m̂(r)(xi; b) is a kernel estimate of m(r) based on a kernel for estimating the

r-th derivative (see Gasser et al., 1985) and a bandwidth b. Again, we need to select

the pilot bandwidth b for estimating m(r).

The IPL procedure (for r = 2) proposed by Gasser et al. (1991) is motivated by

�xpoint search. Their proposal, ĥIPL, proceeds as follows

1. Begin with the smallest bandwidth h0 = 1=n;
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2. Estimate ĥi(m
00) in the i-th iteration with the bandwidth bi = hi�1 � n

1=10;

3. Calculate ĥi following (2.7);

4. Stop at the 11-th iteration and put ĥIPL = ĥ11.

For details see Gasser et al. (1991) and Herrmann (1994). Some improvements of

the original proposal in Gasser et al. (1991) may be found in Herrmann and Gasser

(1994). Beran (1999) proposed the use of an exponential ination method in the IPL

procedure, which is discussed in detail in Beran and Feng (1999, 2000). Advantages

of the IPL idea are its stability and simple generalization to bandwidth selection in

nonparametric regression with dependent data. See Herrmann, Gasser and Kneip

(1992) for an IPL bandwidth selector for data with short-range dependence and

Ray and Tsay (1997) and Beran and Feng(1999, 2000) for data with long-range

dependence. Another data-driven PL procedure may be found in Ruppert et al.

(1995).

2.3 The MDS criterion

Note that, the key point of the DS rule is the bootstrap estimate of B(h) not the

estimate of V (h). V̂ (h) in (2.2) does not involve the pilot estimate m̂g. It does even

not depend on the unknown function m anymore. However, (2.2) depends strongly

on the iid assumption. It is rather di�cult to extend (2.2) and hence this idea to

the context of nonparametric regression with dependent errors. Hence we propose

to estimate the variance part of M(h) using the much simpler asymptotic formula

VA(h) rather than V (h). By doing this we obtain a MDS estimator of M(h)

M̂M(h; g) = V̂A(h) + B̂(h; g): (2.10)

Now, a MDS bandwidth selector is de�ned as the minimizer of M̂M in (2.10). Al-

though M̂M is obtained by combining the PL and the DS ideas, a MDS bandwidth

selector does not share the disadvantages of the PL method.

Indeed, the use of M̂M instead of M̂ does not cause any clear loss in accu-

racy of the selected bandwidth. The basis for this conclusion is that, asymp-

totically, the di�erence between M(hM) and MA(hM) is dominated by the ap-

proximation in B(hM), i.e. M(hM) � MA(hM)
:
= B(hM) � BA(hM), while e�ect

on the selected bandwidth due to the di�erence between V (hM) and VA(hM) is
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asymptotically negligible. In fact, under suitable regularity conditions, we have

B(hM) � BA(hM) = O(h
(2r+2)
M ), which determines that the relative di�erence be-

tween hM and hA is of order O(h2M) = O(n�2=(2r+1)). However, it can be easily

shown that V (hM) � VA(hM) = O[(nhM)
�2] = O(h4rM). The change in the selected

bandwidth caused by using VA(h) as an approximation of V (h) is of the relative

order Op(h
2r
M) = Op(n

�2r=(2r+1)) = op(n
�1=2) and is hence asymptotically negligible

for any bandwidth selection rule.

Hence, for the ordinary and modi�ed DS bandwidth selectors we have

Proposition 1. Under the same conditions, the MDS bandwidth selector has the

same asymptotic properties as the ordinary one up to an op(n
�1=2) term.

The practical performance of the ordinary and modi�ed DS bandwidth selectors

will be compared in section 4 through simulation.

2.4 An iterative double smoothing procedure

Like the PL method, a DS bandwidth selector is data-driven, only then if the pilot

bandwidth g is also selected based on the data. This seems to be a paradoxical. In

the proposal in Feng and Heiler (1999), denoted by ĥODS, the bandwidth ĝRC selected

following the R-criterion (Rice, 1984) is used in the pilot estimate. However, the

use of ĝRC has two disadvantages: 1. ĥODS shares in part the disadvantage of ĝRC

and hence has large �nite sample variation; 2. Like V (h), the R-criterion depends

strongly on the iid assumption, and it is di�cult to extend it to nonparametric

regression with dependent data.

In the following an IDS procedure will be proposed without using other methods

for bandwidth selection. The name IDS shows that this proposal follows the IPL

idea of Gasser et al. (1991) and is also based on �xpoint search. Let an r-th order

kernel K and an s-th order kernel L be used in the main and the pilot stages,

respectively. And let 1=(2r + 1) << � << 1 and 0 < � < 1=(2r + 1). Denote the

selected bandwidth by ĥIDS. Then the IDS algorithm is de�ned as follows

1. Set g0 = n�� and set j = 1;

2. In the j-th iteration set gj = ĥj�1n
�;

3. Select ĥj by minimizing M̂(h; gj) or M̂M(h; gj), respectively;
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4. Stop the procedure, when ĥj converges or until a given maximal number (N)

of iterations and set ĥIDS = ĥj, otherwise increase j by 1 and go back to step

2.

Here g0 = n�� is called the starting pilot bandwidth and � > 0 the ination

factor. It will be shown that, for any 0 < � < 1 and 0 < � < 1=(2r + 1), ĥIDS

is a bandwidth selector with given rate of convergence, which only depends on �.

Following Heiler and Feng (1998), the optimal choice of � is

� =
1

2r + 1
�

1

2r + s+ 1
=

s

(2r + 1)(2r + s+ 1)
: (2.11)

However, there is no objective method for choosing g0. A large g0 will reduce the

required number of iterations. Asymptotically, if g0 is chosen such that g1=hM !1,

then ĥ1 will be asymptotically optimal. However, g0 should not be too large and

at the same time it should also not be too small, since a too large g0 may cause

oversmoothing, whereas a too small g0 may introduce the danger of undersmoothing.

In this paper the use of � ' 1=2 is proposed.

2.5 The main proposal

Although the iterative idea can be directly used for selecting the bandwidth h, in

this paper we would like to use it only as a pilot method of another DS bandwidth

selector in order to reduce the e�ect of the subjectively chosen parameter � on the

�nal selected bandwidth. The possibility of using the IDS procedure directly will

be investigated elsewhere. For simplicity, the following bandwidth selector will be

proposed for r = 2 and s = 4 only. At the pilot stage of the IDS procedure, a 4-th

order kernel Lp with a bandwidth gp will be used, as well, so that the highest kernel

order required is equal to 4.

For the pilot IDS procedure we have r = rp = 4, s = sp = 4 and � = 4=117,

where � = 61=117 and N = 15 are used. Our main proposal, ĥMDS, is as follows

1. Select the pilot bandwidth ĝIDS:

a) Set gp0 = n�61=117 and set j = 1;

b) In the j-th iteration set gpj = ĝj�1n
4=117;

c) Select ĝj by minimizing M̂M(g; gpj);
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d) Stop the procedure, when ĝj converges or at the 15-th iteration and set

ĝIDS = ĝj, otherwise increasing j by 1 and go back to step b).

2. Select ĥ by minimizing M̂M(h; ĝIDS);

Remark 1. Here � = 61=117 ' 0:5 is chosen so that ��+12�� = 13=117 = 1=9.

Now, ĝIDS is of order n
�1=9 after at most 12 iterations and it is optimal after at most

13 iterations (see Corollary 1 in the next section). As in Gasser et al. (1991),

we propose further two iterations to improve the �nite sample property of ĝIDS.

Note, however, that N is just the maximal number of required iterations. And the

procedure will often converge before N iterations have been done.

3 Asymptotic results

In this section the asymptotic properties of a general IDS bandwidth selector ĥIDS

will be discussed at �rst. Then the asymptotic properties of ĥMDS are investigated

and compared with those of ĥODS and ĥIPL.

3.1 Results on ĥIDS

It is assumed that the bandwidth h satis�es h ! 0, nh ! 1 as n ! 1. Similar

conditions on the pilot bandwidths g and gp are also assumed. Further assumptions

are

A1. K and L are compactly supported, K(s+1) and L(r+1) are bounded.

A2. Assume that m(r+s) is continuous on (0, 1).

A3. Assume that E(�4) <1 and that �̂2 as de�ned in (2.1) is used.

For our main results only K 0 (not K(s+1)) in A1 has to be bounded (see H�ardle

et al., 1992 and Heiler and Feng, 1998). Denote by ĥDS the bandwidth selected by

a general DS procedure. In order that ĥDS is optimal, the relationship hM=g ! 0

as n ! 1 has to be ful�lled (see M�uller, 1985 and Heiler and Feng, 1998). The

following proposition gives details on the behaviour of ĥDS corresponding to the

relationship between g and hM.
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Proposition 2. Under the assumptions A1. to A3., the following holds for ĥDS:

i) If g = o(hM), then ĥDS is at least of the order Op(g);

ii) If g = O(hM), then ĥDS = Op(hM), but is not yet asymptotically optimal;

iii) If hM = o(g), then ĥDS = hM(1+op(1)), i.e. ĥDS is now asymptotically optimal.

The proof of proposition 2 is given in the appendix.

Remark 2. Proposition 2 gives some insights on the DS idea and is the basis

for the development of the IDS method. For given r, s and �, the required maximal

number of iterations for ĥIDS can be calculated following this proposition. In Case 1

of Proposition 2, just a lower bound for the selected bandwidth is given, since here

the exact order is random (not �xed).

Remark 3. Proposition 2 shows that, if � > 0, then ĥIDS will be optimal after

some iterations and is always optimal afterwards.

The asymptotic properties of an IDS bandwidth selector are the same as those

of a common DS bandwidth selector with a pilot bandwidth g = hMn
�, which are

quanti�ed by Theorem 1 in Heiler and Feng (1998). Let �s denote the kernel constant

of L and c0 the constant de�ned in (2.8). Let c1 and c2 be the two constants such

that

M 00(hM)
:
= c1(nh

3
M)

�1 :
= c2h

2r�2
M : (3.1)

Let � is as de�ned in (2.11) and denote by N0 the maximal number of iterations,

so that ĥIDS is of order Op(n
�1=(2r+1)). Then, following Heiler and Feng (1998), we

have

Theorem 1: Under the assumptions A1. to A3. We have, after at most N0 + 3

iterations,

(ĥIDS � hM)=hM = 1(�̂
2
� �2) + (2c

�(4r+1)
0 n�(2s+1)=(2r+s+1) + 3n

�1)1=2Zn

+ [4c
s
0 + 5c

�(2r+1)
0 ]n�s=(2r+s+1)(1 + o(1)) ;

(3.2)
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where Zn is asymptotically normal N(0; 1), the 1, ..., 5 are constants given by

1 = c�11 (d� c)
R
K2(y)dy;

2 = 4c�22 r2(d� c)�4r�
4
R hR

L(r)(y)L(r)(y + z)dy
i2
dz;

3 = 16c�22 r2�4r�
2
R d
c (m

(2r)(x))2f(x)dx;

4 = �4c�12 r�2r�s
R d
c m

(r)(x)m(r+s)(x)f(x)dx; and

5 = �2c�12 r(d� c)�2�2r
R
(L(r))2:

The proof of Theorem 1 is omitted. The rate of convergence of ĥIDS with � as

de�ned in (2.11) is n�
s

2r+s+1 if s � 2r or n�
1

2 if s � 2r + 2. It is n�4=9 e.g. for r = 2

and s = 4.

Let gM denote the optimal bandwidth and cs the constant in (2.8) for a kernel

estimate with the s-th order kernel L. Then the rate of convergence of ĝIDS is n
�4=13

after at most N0 + 3 = 15 iterations, where N0 = 12.

Corollary 1: Under similar assumptions as A1. to A3. We have, after at most

15 iterations,

(ĝIDS � gM)=gM = 1(�̂
2
� �2) + (2c

�17
s n�9=13 + 3n

�1)1=2Zn

+ [4c
4
s + 5c

�9
s ]n�4=13(1 + o(1)) ;

(3.3)

where Zn is as before, cs denotes the constant in (2.8) de�ned for L, and 1, ... ,5

are as de�ned in Theorem 1 with r = 4, s = 4 and corresponding adaptation to the

kernel functions.

Note that the assumptions for Corollary 1 have also to adapted to the kernel

function used in the pilot and main stages. The proof of this corollary is omitted.

3.2 Results on ĥMDS

Note that, the use of ĝIDS as a pilot bandwidth for selecting h is the optimal choice

up to a constant (see Heiler and Feng, 1998). Hence, ĥMDS has the highest rate of

convergence in the case with r = 2 and s = 4. De�ne m3 = E(�3) and m4 = E(�4).

The following theorem gives more detailed results on ĥMDS. In order to compare

these results with those on ĥIPL, results in ii) and iii) of this theorem are represented

in a similar way as in Herrmann (1994).
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Theorem 2. Under the assumptions A1. to A3. We have, for ĥMDS,

i)

(ĥMDS � hM)=hM = 1(�̂
2
� �2) + (2c

�9
0 + 3)

1=2n�1=2Zn

+ [4c
4
0 + 5c

�5
0 ]n�4=9(1 + o(1)) ;

(3.4)

where Zn is asymptotically normal N(0; 1), 1, ... ,5 are as de�ned in Theo-

rem 1 with r = 2, s = 4.

ii)

n7=10(ĥMDS � hM � O(n�29=45)) �! N(0; �22); (3.5)

in distribution, where

�22 =
c20
25

"
35

9
+ (

m4

�4
� 3) + 2

m3

�2

R d
c m

(4)

I(m00)
+ 4�2

R d
c fm

(4)
g
2

I(m00)2

#
+ c�70 2: (3.6)

iii)

cov (n7=10(ĥMDS � hM � O(n�29=45)); n3=10hASE) = �12; (3.7)

where

�12 = �

2

25�2

"
m3

R d
c m

00

�2I(m00)
+ 2

�2
R d
c fm

(4)
g
2

I(m00)2

#
: (3.8)

If m3 = 0, then �12 < 0, i.e., like most existing bandwidth selectors, ĥMDS is

asymptotically negatively correlated with hASE for symmetrically distributed errors.

Theorem 2 allows us to compare the asymptotic properties of ĥMDS with those of

ĥIPL. Some di�erences between the asymptotic properties of ĥMDS and ĥIPL are:

1. The dominating bias term of ĥMDS is caused by the bias in the pilot smoothing

and is of the relative order n�4=9, while the bias term of ĥIPL is due to the

approximation in hA and is of the relative order n�1=5.

2. The asymptotic variances of both bandwidth selectors are of the same, highest

relative order n�1=2. By comparing �22 in (3.6) with those given in (6) in Her-

rmann (1994) we can see that the constant of the asymptotic variance of ĥMDS

is larger than that of ĥIPL with the additional term c�70 2 > 0. Hence, ĥIPL is

more stable than ĥMDS but with a larger bias and slower rate of convergence.
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3. For symmetrically distributed errors, i.e. withm3 = 0, both ĥMDS and ĥIPL are

asymptotically negatively correlated with hASE. Note that the asymptotic co-

variance between these two bandwidth selectors and hASE is the same. Hence,

the asymptotic correlation coe�cient between ĥMDS and hASE is smaller than

the one between ĥIPL and hASE.

What is the di�erence between the asymptotic performances of ĥMDS and ĥODS?

Both have the same asymptotic properties w.r. to the �rst term. They di�er only

in a second term, which is asymptotically negligible. However, ĥMDS and ĥODS

perform quite di�erently for �nite samples, since the rates of convergence of their

pilot bandwidths are quite di�erent, namely O(n�4=13) for ĝIDS and Op(n
�1=18) for

ĝRC respectively. The variance term of ĝIDS converges slightly a little faster. Note

that the variance of the �nal selected bandwidth depends strongly on the variance of

the pilot bandwidth. It is expected that the �nite sample variation in ĥMDS should

be much smaller than that in ĥODS.

Furthermore, all bandwidth selectors, ĥMDS, ĥODS and ĥIPL, have the property

(1.6), since they come all within op(n
�3) to hM. Hence they are all asymptotically

equivalent w.r. to hASE.

4 Practical performance

A comparative simulation study was carried out to show the practical performances

of the bandwidth selectors ĥIPL, ĥODS and ĥMDS. Another bandwidth selector, ĥNDS,

de�ned similarly as ĥMDS but with M̂M in the procedure being replaced by M̂ , is

included in the simulation in order to show the practical di�erence of DS bandwidth

selectors based on M̂ and M̂M, respectively. The asymptotic di�erence between

ĥNDS and ĥMDS is very minor. Also included in the simulation is ĥRC following the

R-criterion, which is used as a comparison. The following six regression functions

are chosen:

m0(x) = 4x; m1(x) = 2 tanh(4(x� 0:5));

m2(x) = 5:8(sin(2(x� 0:5))2); m3(x) = 2 sin(2(x� 0:5)�);

m4(x) = 2x+ 3 exp(�100(x� 0:5)2); m5(x) = 2 sin(6(x� 0:5)�);

where x 2 [0; 1]. The range of all of these functions is about 4. Standard iid normally

distributed errors are used for all regression functions. These regression functions
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are chosen, because they are quite di�erent with respect to \complicity", and hence

have quite di�erent optimal bandwidths for errors with the same distribution (see

Figure 1). Note that ĥIPL is not asymptotically optimal for m0 but the others are.

The simulation was carried out for n =50, 100, 200 and 400. 400 replications have

been carried out for each case. The Epanechnikov kernel (the optimal second order

kernel) was used for calculating m̂. The second derivativem00 for ĥIPL is estimated by

the corresponding optimal kernel (see M�uller, 1988). In the pilot smoothing of a DS

bandwidth selector an optimal kernel of order 4 was used. In the pilot stage of the

pilot smoothing for ĥNDS and ĥMDS a fourth order kernel with degrees of smoothness

3 (M�uller, 1988) were used. In this simulation only bandwidths h or g, respectively,

such that nh or ng is an integer are considered. All of the selected bandwidths,

except for ĥIPL, are obtained by a search based on an optimizing procedure on the

range from r=n or s=n, respectively, to 0:5� 1=n (the largest allowed bandwidth).

Box-plots of the 400 replications for the �ve bandwidth selectors as well for hASE

are shown in Figures 2 through 5. Some detailed statistics on the simulation results

are given in Tables 1 to 4, where the �rst two rows are the true values of hM and

M(hhM). Other statistics are the mean, the standard deviation (SD) for each band-

width selector and for hASE. Also given in these tables are standard deviation from

hASE (SDO) for each bandwidth selector and for hM, as well as the means of ASE

of the estimated regression function in 400 replications (ASE) for each bandwidth

selector, hASE and hM.

In the following, the bandwidth selectors will be assessed at �rst following ASE.

Note that this is asymptotically equivalent to the assessment following SDO, i.e.

by taking hASE to be the optimal bandwidth (see Hall and Johnstone, 1992). To

this end the ratio (%) between the mean of ASE(hASE) and that for a bandwidth

selector will be used (see Table 5), which will be called the empirical e�ciency of a

bandwidth selector. Note however that, here 100% is not achievable, no matter how

large n is. From Table 5 we see that, while the three double smoothing bandwidth

selectors have the same asymptotic properties, ĥNDS and ĥMDS perform in general

much better than ĥODS. The practical performances of ĥNDS and ĥMDS are quite

similar. This means that the �nite sample performance will not be clearly changed

by using M̂M instead of M̂ (for this reason, discussion on the performance of ĥNDS

will be ignored in the following). For the three regression functions m3, m4 and m5,

ĥIPL performs sometimes slightly better than ĥMDS. But the di�erence between their

practical performance is not clear, especially when n is large. For the three regression

functions m0, m1 and m2, ĥMDS performs clearly better than ĥIPL. Although ĥIPL
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and ĥODS perform quite di�erently, their practical performances are comparable

on average.As expected, ĥRC performs in all cases the worst, except for m1 with

n = 400, where it performs slightly better than ĥIPL. The assessment following ASE

gives evidence for choosing ĥMDS.

The practical performance of a bandwidth selector can also be assessed following

the distance to hM. Some changes in this case are: Firstly, the di�erences between

the selected methods following this criterion are much larger than those following

ASE; Secondly, following this criterion, ĥODS performs on the average better than

ĥIPL for large n; Thirdly, following this criterion, even ĥRC performs better than

ĥIPL in the case of m0 with all n's, since ĥIPL is now not asymptotically optimal but

ĥRC is. Furthermore, we can �nd that, the improvement in ĥMDS in comparison with

ĥODS is mainly due to the reduction in variance. Moreover, ĥIPL has the smallest

variances in almost all cases. This means that ĥIPL is the most stable method. Its

bad performance in some cases is due to the unacceptably large bias. All of the

simulation results con�rm the theoretical �ndings. Note in particular that, in most

of the cases ĥMDS, and in some of the cases also ĥODS and ĥIPL perform even better

than hASE, since they all have a higher rate of convergence to hM than hASE. Now,

the evidence for choosing ĥMDS is stronger. In the extreme case of m2 with n = 400,

we �nd that ĥMDS is nearer to hM than ĥIPL in all of the 400 replications (see Figure

6). But this is not true following the distance to hASE.

By comparing the accuracy of the selected bandwidth and of m̂ over all regression

functions we can �nd that, if m is easy to estimate, i.e. when the structure of the

regression function is relatively simple, then the bandwidth is di�cult to select, and

vice versa. This seems to be a paradoxical. However, it can be reasonably explained,

e.g. for the �rst case. On one hand, hM is large in this case. A simple representation

of (3.2) or of (3.4) shows that, in general, the larger hM, the larger the (asymptotic)

variance of a bandwidth selector. On the other hand, m̂ is now not so sensitive

to the change in the selected bandwidth. The accuracy of m̂ is quite similar for

a wide range of bandwidths. And hence, in this case, bandwidth selection plays a

relatively unimportant role. A similar phenomenon was reported by H�ardle et al.

(1988), where the accuracy of the selected bandwidth and of the kernel estimators

with kernels of di�erent orders are considered.

The practical performance of a bandwidth selector can also be investigated by

considering the correlation coe�cient with hASE. At �rst sight, the larger hASE

is, the larger the selected bandwidth should be. When this is so, then the band-

width selector will have a positive correlation with hASE. Unfortunately, most of the
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proposed bandwidth selectors have a negative correlation with hASE as mentioned

e.g. in H�ardle et al. (1988) and Herrmann (1994) (see however Hall and John-

stone, 1992 for an exception). Correlation coe�cients for all of these bandwidth

selectors calculated from each of 400 replications are reported in Table 6. We see

that, they are always clearly negative. Moreover, we �nd another seeming paradox-

ical phenomenon, which is also reported by H�ardle et al. (1988), namely a better

bandwidth selector seems to have a stronger negative correlation! By looking at

the simulation results more exactly, we can see that this is simply due to the fact

that a better bandwidth selector has in general a smaller variance. The negative

correlation between the bandwidth selectors and hASE is shown in Figures 6 and 7,

where the bandwidths selected in the 400 replications are shown against hASE for

the case of m2 and m3 with n = 400. Figures 6 and 7 also give us some insight

about the practical performance of the selected methods, for instance, how the bad

performance of ĥRC is improved by ĥODS and then by ĥMDS, and what the advantages

and disadvantages of ĥIPL are compared with ĥMDS.

5 Concluding remarks

In this paper, a modi�ed DS bandwidth selector ĥMDS is proposed with an IDS

procedure at the pilot stage. It is shown, theoretically and by simulations, that

the DS idea should be used as the standard approach for bandwidth selection in

nonparametric regression. Some further arguments that support this conclusion

are: 1. The DS rule can easily be adapted to bandwidth selection in nonparametric

decomposition of seasonal time series (see Heiler and Feng, 2000), whereas the plug-

in method is not suitable; 2. The DS idea makes it possible to select the bandwidth

for each component separately in a model with unknown components, such as the

time series decomposition model mentioned above.

To our knowledge, this is the �rst comparative study between the DS and the

plug-in ideas. Our study also shows that ĥIPL (Gasser et al., 1991) has some advan-

tages. Firstly, the procedure of ĥIPL is much simpler than the one for ĥMDS and the

computing time for ĥIPL is practically negligible in comparison with that for ĥMDS.

Secondly, the order of existing continuous derivatives required for the asymptotic

results is 4 for ĥIPL, while it is 8 for ĥMDS. Finally, in many cases, e.g. the cases of

m3, m4 and m5, the practical performance of ĥIPL is not worse than that of ĥMDS

for small or moderate n. Hence, ĥIPL is still one of the best methods for bandwidth

selection in nonparametric regression.
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Figure 2: Box-plots for selected bandwidths in all cases with n = 50.
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Figure 3: Box-plots for selected bandwidths in all cases with n = 100.
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Figure 4: Box-plots for selected bandwidths in all cases with n = 200.
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Figure 5: Box-plots for selected bandwidths in all cases with n = 400.
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Figure 6: Selected bandwidths against hASE in 400 replications for the case of m2

with n = 400. Figures 6a trough 6e show the results for ĥRC, ĥODS, ĥNDS, ĥMDS and

ĥIPL, respectively.
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Figure 7: Results as given in Figure 6 but for the case of m3 with n = 400.
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Table 1: hM, M(hM) and statistics from 400 simulation (n = 50).

m0 m1 m2 m3 m4 m5

hM True 0.3000 0.2400 0.1800 0.1400 0.1000 0.0600

M(hM) 0.0399 0.0497 0.0639 0.0778 0.1207 0.1785

ASE 0.0388 0.0501 0.0670 0.0766 0.1226 0.1763

hASE Mean 0.2902 0.2291 0.1701 0.1481 0.0934 0.0556

SD 0.0784 0.0561 0.0371 0.0341 0.0178 0.0112

ASE 0.0325 0.0447 0.0613 0.0698 0.1177 0.1720

ĥRC Mean 0.2794 0.2186 0.1624 0.1422 0.0908 0.0570

SD 0.1122 0.0832 0.0607 0.0515 0.0383 0.0146

SDO 0.1568 0.1141 0.0780 0.0703 0.0468 0.0213

ASE 0.0667 0.0777 0.0993 0.1045 0.1546 0.1956

ĥODS Mean 0.2341 0.2092 0.1524 0.1465 0.1003 0.0578

SD 0.0713 0.0552 0.0394 0.0411 0.0323 0.0104

SDO 0.1319 0.0906 0.0631 0.0604 0.0423 0.0175

ASE 0.0583 0.0662 0.0865 0.0951 0.1441 0.1876

ĥNDS Mean 0.2483 0.2237 0.1532 0.1483 0.1055 0.0591

SD 0.0612 0.0434 0.0317 0.0337 0.0301 0.0084

SDO 0.1222 0.0810 0.0576 0.0557 0.0423 0.0162

ASE 0.0518 0.0591 0.0801 0.0887 0.1412 0.1844

ĥMDS Mean 0.2636 0.2351 0.1627 0.1581 0.1132 0.0633

SD 0.0578 0.0414 0.0297 0.0335 0.0304 0.0082

SDO 0.1155 0.0789 0.0552 0.0565 0.0456 0.0173

ASE 0.0491 0.0576 0.0773 0.0878 0.1428 0.1860

ĥIPL Mean 0.1556 0.1616 0.1217 0.1353 0.0974 0.0590

SD 0.0365 0.0347 0.0238 0.0283 0.0291 0.0072

SDO 0.1634 0.1004 0.0680 0.0533 0.0393 0.0152

ASE 0.0656 0.0677 0.0872 0.0885 0.1398 0.1819
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Table 2: hM, M(hM) and statistics from 400 simulation (n = 100).

m0 m1 m2 m3 m4 m5

hM True 0.2600 0.2100 0.1600 0.1300 0.0800 0.0500

M(hM) 0.0219 0.0282 0.0360 0.0448 0.0703 0.1035

ASE 0.0216 0.0260 0.0357 0.0482 0.0692 0.1037

hASE Mean 0.2658 0.2071 0.1553 0.1296 0.0821 0.0538

SD 0.0610 0.0433 0.0309 0.0302 0.0136 0.0078

ASE 0.0186 0.0237 0.0328 0.0439 0.0665 0.1004

ĥRC Mean 0.2451 0.1994 0.1502 0.1254 0.0801 0.0497

SD 0.0948 0.0648 0.0496 0.0397 0.0261 0.0133

SDO 0.1271 0.0870 0.0657 0.0570 0.0340 0.0172

ASE 0.0385 0.0370 0.0530 0.0638 0.0886 0.1200

ĥODS Mean 0.2124 0.1928 0.1413 0.1302 0.0864 0.0517

SD 0.0593 0.0419 0.0278 0.0244 0.0193 0.0078

SDO 0.1081 0.0675 0.0492 0.0452 0.0290 0.0126

ASE 0.0335 0.0319 0.0435 0.0548 0.0798 0.1096

ĥNDS Mean 0.2319 0.2093 0.1425 0.1319 0.0919 0.0527

SD 0.0407 0.0230 0.0185 0.0177 0.0164 0.0050

SDO 0.0888 0.0545 0.0427 0.0415 0.0281 0.0108

ASE 0.0268 0.0280 0.0403 0.0524 0.0771 0.1060

ĥMDS Mean 0.2396 0.2155 0.1462 0.1359 0.0950 0.0557

SD 0.0411 0.0226 0.0184 0.0179 0.0164 0.0051

SDO 0.0868 0.0548 0.0418 0.0420 0.0294 0.0109

ASE 0.0263 0.0279 0.0398 0.0525 0.0775 0.1061

ĥIPL Mean 0.1431 0.1526 0.1156 0.1270 0.0906 0.0534

SD 0.0216 0.0177 0.0118 0.0146 0.0160 0.0056

SDO 0.1403 0.0748 0.0535 0.0396 0.0274 0.0111

ASE 0.0358 0.0316 0.0432 0.0517 0.0766 0.1065
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Table 3: hM, M(hM) and statistics from 400 simulation (n = 200).

m0 m1 m2 m3 m4 m5

hM True 0.2350 0.1850 0.1400 0.1150 0.0700 0.0500

M(hM) 0.0120 0.0160 0.0204 0.0258 0.0409 0.0595

ASE 0.0116 0.0167 0.0205 0.0258 0.0406 0.0574

hASE Mean 0.2327 0.1848 0.1408 0.1141 0.0716 0.0481

SD 0.0479 0.0420 0.0255 0.0232 0.0102 0.0064

ASE 0.0104 0.0151 0.0190 0.0238 0.0392 0.0556

ĥRC Mean 0.2278 0.1782 0.1353 0.1080 0.0705 0.0464

SD 0.0772 0.0533 0.0358 0.0304 0.0178 0.0106

SDO 0.0976 0.0787 0.0490 0.0432 0.0235 0.0138

ASE 0.0179 0.0226 0.0263 0.0329 0.0480 0.0663

ĥODS Mean 0.2029 0.1736 0.1266 0.1115 0.0744 0.0475

SD 0.0425 0.0331 0.0188 0.0180 0.0113 0.0047

SDO 0.0742 0.0624 0.0376 0.0339 0.0187 0.0093

ASE 0.0149 0.0199 0.0233 0.0291 0.0443 0.0596

ĥNDS Mean 0.2172 0.1874 0.1296 0.1142 0.0778 0.0482

SD 0.0213 0.0142 0.0079 0.0103 0.0078 0.0027

SDO 0.0602 0.0509 0.0318 0.0291 0.0173 0.0081

ASE 0.0126 0.0176 0.0215 0.0272 0.0429 0.0583

ĥMDS Mean 0.2220 0.1912 0.1312 0.1158 0.0790 0.0494

SD 0.0216 0.0141 0.0080 0.0103 0.0076 0.0027

SDO 0.0594 0.0510 0.0315 0.0292 0.0176 0.0081

ASE 0.0126 0.0176 0.0215 0.0271 0.0429 0.0583

ĥIPL Mean 0.1309 0.1374 0.1052 0.1139 0.0802 0.0493

SD 0.0097 0.0101 0.0052 0.0076 0.0075 0.0033

SDO 0.1137 0.0673 0.0451 0.0280 0.0181 0.0087

ASE 0.0173 0.0196 0.0239 0.0268 0.0431 0.0588
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Table 4: hM, M(hM) and statistics from 400 simulation (n = 400).

m0 m1 m2 m3 m4 m5

hM True 0.2150 0.1625 0.1275 0.1000 0.0625 0.0425

M(hM) 0.0065 0.0092 0.0116 0.0149 0.0237 0.0342

ASE 0.0066 0.0085 0.0116 0.0143 0.0234 0.0336

hASE Mean 0.2142 0.1642 0.1260 0.1012 0.0623 0.0427

SD 0.0409 0.0338 0.0252 0.0186 0.0088 0.0053

ASE 0.0060 0.0077 0.0105 0.0133 0.0226 0.0327

ĥRC Mean 0.2027 0.1506 0.1196 0.0934 0.0611 0.0418

SD 0.0653 0.0455 0.0355 0.0238 0.0142 0.0087

SDO 0.0834 0.0646 0.0477 0.0344 0.0196 0.0112

ASE 0.0100 0.0125 0.0158 0.0179 0.0274 0.0381

ĥODS Mean 0.1818 0.1530 0.1123 0.0954 0.0641 0.0421

SD 0.0350 0.0289 0.0133 0.0135 0.0068 0.0030

SDO 0.0665 0.0518 0.0335 0.0264 0.0139 0.0071

ASE 0.0084 0.0108 0.0128 0.0159 0.0248 0.0346

ĥNDS Mean 0.1933 0.1635 0.1147 0.0993 0.0663 0.0425

SD 0.0163 0.0104 0.0051 0.0054 0.0046 0.0015

SDO 0.0529 0.0391 0.0298 0.0216 0.0130 0.0061

ASE 0.0072 0.0089 0.0121 0.0147 0.0243 0.0339

ĥMDS Mean 0.1964 0.1655 0.1154 0.0998 0.0669 0.0431

SD 0.0166 0.0110 0.0052 0.0054 0.0045 0.0015

SDO 0.0521 0.0394 0.0295 0.0216 0.0131 0.0062

ASE 0.0072 0.0089 0.0121 0.0147 0.0244 0.0339

ĥIPL Mean 0.1147 0.1204 0.0941 0.1008 0.0698 0.0437

SD 0.0059 0.0055 0.0032 0.0040 0.0046 0.0018

SDO 0.1084 0.0571 0.0412 0.0210 0.0146 0.0065

ASE 0.0106 0.0101 0.0133 0.0146 0.0247 0.0341
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Table 5. Empirical e�ciencies (%) of hM and of all bandwidth selectors.

n = 50 n = 100

m0 m1 m2 m3 m4 m5 Mean m0 m1 m2 m3 m4 m5 Mean

hM 84 89 92 91 96 98 92 86 91 92 91 96 97 92

ĥRC 49 58 62 67 76 88 67 48 64 62 69 75 84 67

ĥODS 56 68 71 73 82 92 74 55 74 75 80 83 92 77

ĥNDS 63 76 76 79 83 93 78 69 85 81 84 86 95 83

ĥMDS 66 78 79 80 82 93 80 71 85 82 84 86 95 84

ĥIPL 50 66 70 79 84 95 74 52 75 76 85 87 94 78

n = 200 n = 400

m0 m1 m2 m3 m4 m5 Mean m0 m1 m2 m3 m4 m5 Mean

hM 90 90 92 92 97 97 93 90 91 91 93 97 97 93

ĥRC 58 67 72 72 82 84 73 60 62 67 74 83 86 72

ĥODS 70 76 81 82 89 93 82 71 71 82 83 91 95 82

ĥNDS 83 86 88 88 91 95 89 83 87 87 90 93 96 89

ĥMDS 83 86 88 88 91 95 89 83 87 87 90 93 96 89

ĥIPL 60 77 79 89 91 95 82 56 77 79 91 92 96 82

Table 6. Empirical correlation coe�cients of each bandwidth selector and hASE.

n = 50 n = 100

m0 m1 m2 m3 m4 m5 m0 m1 m2 m3 m4 m5

ĥRC -.33 -.30 -.21 -.31 -.29 -.34 -.26 -.25 -.28 -.31 -.40 -.20

ĥODS -.27 -.26 -.25 -.29 -.33 -.30 -.22 -.20 -.28 -.37 -.50 -.27

ĥNDS -.34 -.31 -.28 -.35 -.39 -.29 -.27 -.28 -.32 -.46 -.55 -.39

ĥMDS -.34 -.28 -.33 -.35 -.41 -.24 -.29 -.27 -.32 -.45 -.55 -.36

ĥIPL -.19 -.30 -.20 -.37 -.35 -.25 -.16 -.29 -.26 -.49 -.55 -.35

n = 200 n = 400

m0 m1 m2 m3 m4 m5 m0 m1 m2 m3 m4 m5

ĥRC -.17 -.34 -.24 -.26 -.37 -.24 -.17 -.25 -.19 -.24 -.41 -.23

ĥODS -.13 -.33 -.22 -.33 -.47 -.37 -.16 -.29 -.18 -.27 -.57 -.40

ĥNDS -.31 -.52 -.42 -.42 -.59 -.47 -.32 -.39 -.37 -.45 -.67 -.47

ĥMDS -.32 -.50 -.45 -.43 -.58 -.44 -.32 -.39 -.37 -.45 -.67 -.49

ĥIPL -.19 -.49 -.34 -.52 -.61 -.54 -.26 -.45 -.22 -.53 -.71 -.51
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Appendix: Proofs of theorems

Proof of Proposition 2. In the following only a sketched proof for the use of

M̂M will be carried out. This proof follows H�ardle et al. (1992) and Feng (1999).

Some details will be omitted to save space.

i). Observe that b̂(xi) in (2.4) can be written as a linear combination of the

observations

b̂(xi) =
nX

j=1

Aj(xi)Yj (A.1)

with the notation

Aj(x) =
nX

k=1

wkh(x)wjg(xk)� wjg(x):

M̂M may be now decomposed into several components

M̂M(h; g) = V̂A(h) +B(h) + T1 + T2 + T3 + 2T4 + T5; (A.2)

where

T1 = n�1
�X
i

f[
nX

j=1

m(xj)Aj(xi)]
2
� b(xi)

2
g;

T2 = n�1
�X
i

nX
j=1

(�2j � �2)Aj(xi)
2;

T3 = n�1
�X
i

X
j 6=k

X
�j�kAj(xi)Ak(xi);

T4 = n�1
�X
i

nX
j=1

nX
k=1

�jm(xk)Aj(xi)Ak(xi) and

T5 = n�1�2
�X
i

nX
j=1

Aj(xi)
2:

T2, T3 and T4 are all random variables with zero means. Consider bandwidths

h such that h=g ! 0 as n ! 1. Under this condition we obtain, following

H"ardle et al. (1992) and Feng (1999),

Aj(xi) =
nP

k=1
wkh(xi)[wjg(xk)� wjg(xi)]

:
= n�2(hg)�1

nP
k=1

K[(xi � xk)=h]f
�1(xk)fL[(xk � xj)=g]

� L[(xi � xj)=g]gf
�1(xj)

:
= (ng)�1f�1(xj)

R
K(y)fL[(xi � xj)=g � hg�1y]� L[(xi � xj)=g]gdy

:
= �r(ng)

�1(h=g)rf�1(xj)L
(r)[g�1(xi � xj)]

:
= �r(ng)

�1(h=g)rf�1(xi)L
(r)[g�1(xi � xj)]:
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Based on this approximation it can be shown that

T1 = O(h2rgs);

T5 = O(
1

nh
)(
h

g
)(2r+1):

Furthermore it can be shown that T4 is asymptotically negligible and

T2 = op(T3) = op(T5):

Note that V̂A = Op(n
�1h�1) and that, in this case, B(h) = op(V̂A(h)) and

T1 = o(T5), we have �nally

M̂M(h; g)
:
= Op(n

�1h�1) +Op(
1

nh
)(
h

g
)(2r+1): (A.3)

This means that, for h = o(g), M̂M(h) decreases monotonously in h in proba-

bility and so that the minimizer of M̂M is at least of order O(g). i) is proved.

ii). Note that now g = Op(hM) = Op(n
�1=(2r+1)). At �rst, it can be shown,

similarly to the analysis for case i), that, for h = o(hM), M̂M(h) decreases

monotonously in h in probability. For a bandwidth h = O(hM) it is easily

to show that, in this case, M̂M(h) = Op(n
�2r=(2r+1)). Furthermore, if h is a

bandwidth such that hM = o(h), then M̂M will be dominated by the bias term

B(h) = O(h2r), which is of larger order than Op(n
�2r=(2r+1)) and increases

monotonously in h. This implies ĥ = Op(hM).

iii). In this case Theorem 1 in Heiler and Feng (1998) holds due to the as-

sumption hM = op(g). The result hence holds following that theorem. The

exact rate of convergence depends however on the order of g.

Proof of Theorem 1: Note that the IDS procedure is just a special DS method

with a �xed pilot bandwidth g = n�hM, when convergence is reached. Hence we

obtain the results of Theorem 1 by inserting this �xed pilot bandwidth into Theorem

1 in Heiler and Feng (1998).

Proof of Theorem 2:

1. The proof of 1 is straightforward and is omitted.
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2. Now we just need to calculate the variance �22 . The proof follows H�ardle et al.

(1988, 1992), Herrmann (1994) and Feng (1999).

Following H�ardle et al. (1988) we have

ĥMDS = hM � (M̂ 0

M(hM)�M(hM))=M
00(h�); (A.4)

where h� is between hASE and hM. Using (A.2) it can be shown that the

stochastic part of M̂ 0

M(hM) � M(hM) is dominated by V̂ 0

A, T
0

3 and 2T 0

4. For

ĥIPL, Herrmann (1994) showed that the stochastic part of M̂ 0

A(hM)�M(hM)

is dominated by V̂ 0

A and another term, say 2T 0

6, which, in the current context,

has the form

T 0

6 =
1

n
hAI(K)2

nX
j=1

m(4)(xj)1I[c;d](xj)�j: (A.5)

Following H�ardle et al. (1992) and Feng (1999), we have

T 0

4
:
=

1

n
hAI(K)2�

nX
j=1

m(4)(xj)1I[c;d](xj)�j: (A.6)

This means that T 0

4 = T 0

6(1 + o(1)). Furthermore, it can be shown that both,

V̂ 0

A and T 0

4, are asymptotically independent of T 0

3. Hence we have

Var[n7=10(ĥMDS � hM � O(n�29=45))] = Var[n7=10(ĥIPL � hM �O(n�2=5))] + 2:

(A.7)

Using the results on ĥIPL in Herrmann (1994) we obtain the formula for �22 .

3. Using (A.13) in H�ardle et al. (1988), it can be shown that hASE � hM is

asymptotically independent of T 0

3 too, due to the fact that hM=g ! 1. This

means that the covariance between ĥMDS and hASE is the same as the one

between ĥIPL and hASE given in Herrmann (1994). Hence Theorem 2 is proved.
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