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Abstract

In this paper we develop a dynamic model for integer counts to capture the dis-
creteness of price changes for financial transaction prices. Our model rests on an
autoregressive multinomial component for the direction of the price change and a dy-
namic count data component for the size of the price changes. Since the model is
capable of capturing a wide range of discrete price movements it is particularly suited
for financial markets where the trading intensity is moderate or low as for most Euro-
pean exchanges.
We present the model at work by applying it to transaction data of the Henkel share
traded at the Frankfurt stock exchange over a period of 6 months. In particular, we use
the model to test some theoretical implications of the market microstructure theory
on the relationship between price movements and other marks of the trading process.
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1 Introduction

Financial transaction data, often called ultra high frequency data, are marked by two main
features: the irregularity of time intervals and the discreteness of price changes. Based on
the seminal work by Russell and Engle (1998) and Engle (2000), a large body of studies
has been centered around the further development of autoregressive conditional duration
(ACD) models in order to characterize the transaction intensities. This paper is concerned
with appropriately modelling the discreteness of the price process at the transaction level
within a count data framework. While previous approaches to model discrete transaction
price changes are more suitable for the case of only a few outcomes of the price change,
the model we propose is particularly designed for markets where price changes take on a
longer range of integer values. This is the case of most assets traded at European asset
markets because they have a considerably lower transaction intensity than, for instance,
the shares traded at the NYSE.

Since transaction price changes are quoted as multiples of a smallest divisor (called a
’tick’), the use of continuous distributions to characterize price changes is far from be-
ing appropriate in particular for markets with high transaction intensities. Accordingly,
Hausman, Lo, and MacKinlay (1992) proposed an ordered probit model with conditional
heteroscedasticity to analyze stock price movements at the NYSE. The same approach
is used by Bollerslev and Melvin (1994) to model the bid-ask spread at FX-markets and
by Gerhard, Hess, and Pohlmeier (1998) for price movements of the BUND future traded
at the LIFEE. Contrary to the older rounding approaches proposed by Ball (1988), Cho
and Frees (1988) and Harris (1990) conditioning information can be incorporated in the
ordered response models quite easily. A drawback of the ordered probit approach is that
the parameters result from a threshold crossing latent variable model, where the under-
lying continuous latent dependent variable has to be given some more or less arbitrary
economic interpretation (e.g., latent price pressure). Moreover, since the parameters are
only identified up to a factor of proportionality, the estimates of the moments of the latent
price variable are only identifiable using additional identifying restrictions.1

An alternative to the ordered response models is the autoregressive conditional multino-
mial (ACM) model proposed by ?. Similar to the ordered response models this approach
also rests on the assumption that the distribution of observed transaction price changes is
discrete with a finite number of outcomes. A drawback of the ACM model is the necessity
that all potential outcomes have to occur in the sample period to guarantee the identifica-
tion and estimation of the true dimension of the multinomial process. In the multinomial
approaches as well as in the ordered response models, the number of parameters increases

1See, for instance, Pohlmeier and Gerhard (2001).
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with the outcome space. As long as one is not willing to categorize the outcomes at the
expense of a loss of information, both approaches are more suited for the empirical analysis
of financial markets which are characterized by a limited number of discrete price changes.

Using examples from the Frankfurt stock market, Hautsch and Pohlmeier (2002) point out
that the transaction price process of assets traded at typical European exchanges reveals a
comparatively wide range of discrete price movements. We therefore propose in the sequel
a model that does not suffer from the drawbacks of the discrete response models sketched
above. We propose a dynamic model which is based on a probability density function
for an integer count variable and which can be interpreted as a count data hurdle model.
Our integer count hurdle (ICH) model is closely related to the components approach by
Rydberg and Shephard (2002) who suggests decomposing the process of transaction price
changes into three distinct processes: a binary process indicating whether a price change
occurs from one transaction to the next, a binary process indicating the direction of the
price change conditional on a price change having taken place and a count process for the
size of the price change conditional on the direction of the price change. By incorporating
the above mentioned two binary processes into a trinomial ACM model (no price change or
price movement downwards or upwards) and using a count process for the size of the price
change based on a dynamic count data specification, our approach is more parsimonious
than the one proposed by Rydberg and Shephard. The distribution of price changes used
is that of a count data hurdle model extended for the domain of negative integer counts.
For both components of the price process, the dynamics are modelled using a generalized
ARMA specification. This procedure is computationally less burdensome than the dy-
namic ordered probit model ?, which is based on an ARMA specification for the latent
price variable.

Our model can be extended in many respects. Inclusion of contemporaneous marks of the
transaction price process as conditioning information (e.g. transaction time and volume)
can generate insights into the validity of various hypotheses of market microstructure the-
ory. In our empirical application of the ICH model, we will analyze the distribution of
price changes conditional on transaction time and volume. Our model can also serve as
a building block for the joint process of transaction price and transaction times. In this
sense, our approach is more flexible than the competing risks ACD model by Bauwens
and Giot (2002), which focuses on the direction of the price process whereby neglecting
information on the size of the price changes.

The paper is organized as follows. We first introduce the ICH model in its basic form as
a time series model. We then extend the model by introducing transaction volume and
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transaction time, which play a central role in the literature on market microstructure, and
finally, we test some popular hypotheses of market microstructure theory. Our empiri-
cal results are based on transactions data of the Henkel shares quoted on the electronic
XETRA platform at the Frankfurt stock exchange.2 Our sample period includes 28,165
transactions within a time period of 6 months from July 1 until December 30, 1999. The
smallest possible price change is 0.01 Euro. During this sample period, the trading hours
were changed. Until September 17th, XETRA trading took place between 8.30 and 17.00.
Starting on September 21st, trading time was changed to 9.00 to 17.30. Since the dynamics
of transaction prices at the beginning and the end of the trading day differ from the be-
havior of prices on the rest of the trading day, we exclude transactions occuring before 9.30
and after 16.00. This reduces the sample to 20,051 transactions. Figure 1 of the appendix
depicts the histogram of the transaction price changes. Rather typical for transaction data
is the large fraction of zero price changes (around 34%). The remaining observations are
equally distributed between positive and negative price changes (approximately 33% for
each), so that the empirical distribution is close to being symmetric.

2 The Hurdle Approach to Integer Counts

Consider a sequence of transaction prices {P (ti), i : 1 → n} observed at times {ti, i : 1 →
n} . Let {Yi, i : 1 → n} be a sequence of price changes, where Yi = P (ti) − P (ti−1) is
an integer multiple of a fixed divisor (tick), then Yi ∈ Z. Our interest lies in modeling
the conditional distribution of the discrete price changes Yi

∣∣Fi−1 , where Fi−1 denotes
the information set available at the time transaction i takes place. For this we generalize
the hurdle approach proposed by Mullahy (1986) and Pohlmeier and Ulrich (1995) for the
Poisson and the negative binomial distribution respective to negative counts. The basic
idea of this approach is to decompose the overall process of transaction price changes
into three distinct partial processes. The first process determines the sign of the process
(positive price change, negative price change, or no price change) and will be specified as
a dynamic multinomial response model. Given the direction of the price change, a count
data process determines the size of positive and negative price changes. This yields the
following structure for the p.d.f. of Yi

∣∣Fi−1:

Pr(Yi = yi

∣∣Fi−1) =





Pr(Yi < 0
∣∣Fi−1)Pr(Yi = yi

∣∣Yi < 0,Fi−1) if yi < 0
Pr(Yi = 0

∣∣Fi−1) if yi = 0
Pr(Yi > 0

∣∣Fi−1)Pr(Yi = yi

∣∣Yi > 0,Fi−1) if yi > 0

. (2.1)

The process driving the direction of the price changes is represented by Pr(Yi < 0
∣∣Fi−1),

Pr(Yi = 0
∣∣Fi−1) and Pr(Yi > 0

∣∣Fi−1) , while Pr(Yi = yi

∣∣Yi < 0,Fi−1) and Pr(Yi = yi

∣∣Yi >

2The same data have been used by Hautsch and Pohlmeier (2002).
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0,Fi−1) denote the two processes for the size of the price changes conditional on the price
direction. Note that Pr(Yi = yi

∣∣Yi > 0,Fi−1) is a process defined over the set of strictly
positive integers and Pr(Yi = yi

∣∣Yi < 0,Fi−1) is the corresponding p.d.f. for strictly
negative counts. This decomposition allows us to model the stochastic behavior of the
transaction price changes successively.

We follow Mullahy’s (1986) idea by modelling the size of positive price changes as a
truncated-at-zero count process.3 Let f+(·) be the p.d.f. of a standard count data distri-
bution, then the p.d.f. for the size of positive price changes conditional on the fact that
the prices are positive is a truncated-at-zero count data distribution:

Pr(Yi = yi

∣∣Yi > 0,Fi−1) = h+(yi

∣∣Fi−1) =
f+(yi

∣∣Fi−1)
1− f+(0

∣∣Fi−1)
. (2.2)

The process for the size of negative price jumps is treated in the same way:

Pr(Yi = yi

∣∣Yi < 0,Fi−1) = h−(yi

∣∣Fi−1) =
f−(−yi

∣∣Fi−1)
1− f−(0

∣∣Fi−1)
, (2.3)

where f−(·) denotes the p.d.f. of a standard count data model. Combining the single
components leads to the p.d.f. for the transaction price changes:

Pr(Yi = yi

∣∣Fi−1) =
[
Pr(Yi < 0

∣∣Fi−1)h−(yi

∣∣Fi−1)
]δ−i

[
Pr(Yi = 0

∣∣Fi−1)
]δ0

i
(2.4)

×
[
Pr(Yi > 0

∣∣Fi−1)h+(yi

∣∣Fi−1)
]δ+

i
,

where δ−i = 1l {Yi<0}, δ0
i = 1l {Yi=0} and δ+

i = 1l {Yi>0} are binary variables indicating posi-
tive, negative or no price change for transaction i.

A more parsimonious distribution results if one assumes that h−(·) and h+(·) arise from
the same parametric family of probability density functions. Based on this assumption,
the stochastic behavior of positive and negative price movements can be summarized in
a conditional p.d.f. for the absolute price changes Si =

∣∣Yi

∣∣ conditional on the price
direction. I.e.:

Pr(Si = si

∣∣Si > 0, Di,Fi−1) = h(si

∣∣Di,Fi−1) with Di =





−1 if Yi < 0,

0 if Yi = 0,

1 if Yi > 0

(2.5)

3Alternatively, one could specify the p.d.f. of the transformed count Yi − 1 conditional on Yi > 0 using
a standard count data approach. This approach was adopted by Rydberg and Shephard (2002) in their
decomposition model.
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where h(·) is the p.d.f. of a truncated-at-zero count data model. For the parsimonious
specification, the p.d.f. for a transaction price change is:

Pr(Yi = yi

∣∣Fi−1) = Pr(Yi < 0
∣∣Fi−1)δ−i Pr(Yi = 0

∣∣Fi−1)δ0
i Pr(Yi > 0

∣∣Fi−1)δ+
i (2.6)

×
[
h(|yi|

∣∣Di,Fi−1)
](1−δ0

i )
.

In this case, the resulting sample log-likelihood function of the ICH-model consists of two
additive components:

L =
n∑

i=1

ln Pr(Yi = yi

∣∣Fi−1) =
n∑

i=1

L1,i +
n∑

i=1

L2,i , (2.7)

where:

L1,i = δ−i ln Pr(Yi < 0
∣∣Fi−1) + δ0

i ln Pr(Yi = 0
∣∣Fi−1) + δ+

i ln Pr(Yi > 0
∣∣Fi−1) (2.8)

L2,i = (1− δ0
i ) lnh(|yi|

∣∣Di,Fi−1) . (2.9)

The component
∑

L1,i is the log-likelihood of the multinomial process determining the
direction of prices, while

∑
L2,i is the log-likelihood of the truncated-at-zero count process

for the absolute size of the price change. If there are no parametric restrictions across
the two likelihoods, which does not lead to substantial reduction of generality, we can
maximize equation (2.7) by separately maximizing equations (2.8) and (2.9). This reduces
the computational burden considerably. In the following section, we consider specific
functional forms for the p.d.f. for the price direction and the absolute size of the price
changes. In a second step, we then extend the model by introducing the trading volume
at times between transactions (duration) as conditioning information.

2.1 The Price Direction

The parametric model for the direction of the transaction price change Di = j, (j =
−1, 0, 1) is taken from the class of logistic ACM (autoregressive conditional multinomial)
models suggested by ?. In order to formulate the probability πji = Pr(Di = j

∣∣Fi−1) for the
occurrence of price direction j, we use a logistic link function. This leads to a multinomial
logit model of the form:

πji =
exp{αji}∑1

j=−1 exp{αji}
, j = −1, 0, 1 , (2.10)

where the variable αji captures the explanatory variables affecting the price direction prob-
abilities. As a normalizing constraint, we use α0i = 0.
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A well known property of transaction price changes is the serial dependence resulting from
the bid-ask-bounce. This has to be taken into account when modeling the conditional
distribution of price directions. An indicator of the strength of serial correlation in the
direction of the price process is given by the sample autocorrelation matrix of the state
vector:

xi = (x−1i, x1i)′ =





(1, 0)′ if Yi < 0
(0, 0)′ if Yi = 0
(0, 1)′ if Yi > 0,

(2.11)

which contains the corresponding auto- and cross-autocorrelation of the states x−1i = δ−1
i

and x1i = δ+
i . For a lag length l, the sample autocorrelation matrix is:

Υ(`) = D−1Γ(`)D−1 , l = 1, 2, ... , (2.12)

with

Γ(`) =
1

n− `− 1

n∑

i=`+1

(xi − x̄)(xi−` − x̄)′ .

D denotes a diagonal matrix containing the standard deviations of x−1i and x1i. Figure 2
depicts the cross-correlation function up to order 15. The significant, but not very large,
first order cross-correlations provide the first empirical evidence for the existence of a
bid-ask bounce. The probability of a price reduction is significantly positively correlated
with the price increase in the previous period (upper right panel), and, also significantly, a
price increase is more likely if a negative price change were to be observed for the previous
transaction (lower left panel). Moreover, the autocorrelation-functions for positive price
changes and negative price changes reveal that the probability of the price changing in the
same direction in successive trades is negligible. However, the positive autocorrelations
at longer lags indicate that the bounce effect will be compensated over a longer time
horizon, so that the negative serial correlation caused by the bid-ask bounce is a short run
phenomenon. In order to capture dynamic behavior for the direction of the prices, the
vector of log-odds ratios αi = (α−1i, α1i)′ = (ln[π−1i/π0i], ln[π1i/π0i])′ will be formulated
as a multivariate ARMA process:

αi = µ +
p∑

l=1

Clαi−l +
q∑

l=1

Alξi−l , (2.13)

with {Cl, l : 1 → p} and {Al, l : 1 → q} being matrices of dimension (2 × 2) with the
elements {c(l)

hk}, {a(l)
hk} and µ = (µ1, µ2)′. The vector of log-odds ratios is driven by the

martingale differences:

ξi = (ξ−1i, ξ1i)′ , with ξji =
xji − πji√
πji(1− πji)

, j = −1, 1 , (2.14)
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which is the standardized state vector xi. In this ACM-ARMA(p,q) specification, the
conditional distribution of the direction of price changes depends on lagged conditional
distributions of the process and the lagged values of the standardized state vector. The
process is stationary, if all values of z that satisfy

∣∣I−C1z−C2z
2−· · ·−Cpz

p
∣∣, lie outside

the unit circle.4

According to the classification of Cox (1981), our model belongs to the class of obser-
vationally driven models where time dependence arises from a recursion on the lagged
endogenous variable. Alternatively, our model could be based on a parameter driven spec-
ification, in which the log-odds ratios αi are determined by a dynamic latent process.
However, the estimation and the diagnostics of the latter approach results in a substan-
tially higher computational burden for the ACM model. On the other hand, models driven
by latent processes are usually more parsimonious than comparable dynamic models based
on lagged dependent variables. A comparison of the two alternatives should be the subject
of future research.

The log likelihood of the logistic ACM model, the first component of the likelihood of the
overall model, takes on the familiar form presented below:

L1 =
n∑

i=1

[δ−i ln π−1i + δ0
i ln π0i + δ+

i lnπ1i] . (2.15)

In order to guarantee that a scant number of parameters are estimated, ? suggest imposing
symmetry restrictions on the autoregressive structure. This approach can be justified
by the observed symmetry of the cross-autocorrelation functions of the state variable
presented above. In the sequel, we assume that the marginal effect of a negative price
change on the conditional probability of a future positive price change is of the same
size as the marginal effect of a positive change on the probability of a future negative
change. Moreover, we impose the restriction that the impact of a negative change on the
probability of a future negative change is the same as the corresponding effect for positive
price changes. The symmetry of impacts on the conditional price direction probabilities
will also be imposed for all lagged values of the probabilities and normalized state variables.
This simplifies the ARMA-specification (2.13) to:

µ =

(
µ1

µ1

)
, Cl =

(
c
(l)
1 c

(l)
2

c
(l)
2 c

(l)
1

)
, Al =

(
a

(l)
1 a

(l)
2

a
(l)
2 a

(l)
1

)
. (2.16)

Following ?, we also set c
(l)
2 = 0, which implies that stocks in the log-odds ratios vanish

at an exponential rate determined by the diagonal element c
(l)
1 . Although the reasoning

4See ? for a more detailed discussion of the stochastic properties of the ACM-ARMA(p,q) model.
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behind these restrictions seems appropriate due to the explorative evidence of the state
variable xi, the validity of these restrictions can, of course, be easily tested by standard
ML based tests.
In search of the best specification, we use the Schwarz information criterion to determine
the order of the ARMA process. For the selected specification, its standardized residuals
will then be subject to diagnostic checks. For the estimates of the conditional expectations
and the variances Ê(xi

∣∣Fi−1) = π̂i and V̂ar(xi

∣∣Fi−1) = diag(π̂i) − π̂iπ̂
′
i, respectively, the

standardized residuals can be computed as:

υi = (υ−1i, υ1i)′ = V̂ar(xi

∣∣Fi−1)−1/2
[
xi − Ê(xi

∣∣Fi−1)
]

, (2.17)

where V̂ar(xi

∣∣Fi−1)−1/2 is the inverse of the Cholesky factor of the conditional variance.
For a correctly specified model, the standardized residuals should be serially uncorrelated
in the first two moments with the following unconditional moments: E(υi)=0 and E(υiυ

′
i)=

I. The null hypothesis of absence of serial (cross-) correlation in υi can be tested by the
multivariate version of the Portmanteau statistic presented by Hosking (1980):

Q(L) = n

L∑

`=1

tr
[
Γυ(`)′Γυ(0)−1Γυ(`)Γυ(0)−1

]
, (2.18)

where Γυ(`) =
∑n

i=`+1 υiυ
′
i−`/(n − ` − 1). Under the null hypothesis, Q(L) is asymptot-

ically χ2-distributed with degrees of freedom equal to the difference between 4L and the
number of parameters to be estimated.

According to the Schwarz criterion, the ACM-ARMA(1,2) specification turns out to have
the best goodness of fit. The estimation results and the results of the diagnostic checks
are summarized in Table 1. With the exception of the intercept term µ1 all coefficient
estimates are significantly different from zero at the 1% level. The estimated value of c

(1)
1

at 0.945 indicates that the process of log-odds ratios αi reveals a high degree of persis-
tence. Regardless of the sign of the price direction, the probability of a price change is
comparatively high if the probability of a price change for the previous transaction was
high. Note that the probability of a price change can be interpreted as a specific measure
of price volatility. In this sense, our finding reflects the typical phenomenon of volatility
clustering. Since a

(1)
2 = 0.212 is significantly larger than a

(1)
1 = 0.143, the probability of a

negative price change occurring after a positive price change for the previous transaction
is larger than the probability of a negative price change following another negative price
change. Correspondingly, this also holds for the probability of a positive price change.
This finding can be explained by the existence of a bid-ask bounce. Finally, the negative
signs for a

(2)
1 and a

(2)
2 and the size relation |a(2)

1 | < |a(2)
2 | indicate that an initial price

change will be partially compensated by the next transaction.
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With a value of 56.50 for the generalized Portmanteau statistic Q(15), we are not able to
reject the null hypothesis of no cross-correlations at the usual significance levels. Compar-
atively, for the raw data xi, the corresponding value of the Q(15) statistic was found to be
611.79. This indicates that the ACM-ARMA specification is well suited in explaining the
dynamics of the direction of price changes. This is supported by Figure 3, which depicts the
cross-correlation functions of the standardized residuals υ−1i and υ1i. With one exception,
all correlations lie within the 99% confidence band. The means of standardized residuals
reported in Table 1 are close to zero, which should be expected from a well specified model.
However, the estimated variance-covariance matrix of the standardized residuals deviates
slightly from the identity matrix. This may hint to a distibutional misspecification or a
misspecification of log-odds ratios αi, which is not fully compatible with the variation in
the observed variation of price change direction.

2.2 The Size of Price Changes

In order to analyze the size of the non-zero price changes, we use a GLARMA (generalized
linear autoregressive moving average) model based on a truncated-at-zero Negbin distri-
bution. Similar to the ACM, model the dynamic structure of this count data model rests
on a recursion on lagged observable variables. A comprehensive description of this class of
models can, for instance, be found in Davis, Dunsmuir, and Streett (2001). Note, that the
time scale for absolute price changes is different from the one of the ACM model for the
direction of the price changes, which is defined on the ticktime scale. Let u be a random
variable following a Negbin distribution with the p.d.f. 5

f(u) =
Γ(κ + u)

Γ(κ)Γ(u + 1)

(
κ

κ + ω

)κ(
ω

ω + κ

)u

, u = 0, 1, 2, ... , (2.19)

with E(u) = ω > 0 and Var(u) = ω +ω2/κ. The overdispersion of the Negbin distribution
depends on parameter κ > 0, where as κ → ∞, the Negbin converges to a Poisson
distribution. For the truncated-at-zero Negbin distribution, we obtain h(u) = f(u)/[1 −
f(0)], (u = 1, 2, 3, ...), with f(0) = [κ/(κ + ω)]κ. This flexible class of distribution will
be used to model the size of the non-zero price changes conditional on filtration Fi−1 and
price direction Di. Thus for Si|Si > 0, Di,Fi−1, we assume the following p.d.f.:

h(si

∣∣Di,Fi−1) =
Γ(κ + si)

Γ(κ)Γ(si + 1)

([κ + ωi

κ

]κ
− 1

)−1(
ωi

ωi + κ

)si

, si = 1, 2, ... , (2.20)

5See, for example, Cameron and Trivedi (1998) (Ch. 4.2.2.)
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with the conditional moments:

E(Si|Si > 0, Di,Fi−1) = µSi =
ωi

1− ϑi
(2.21)

Var(Si|Si > 0, Di,Fi−1) = σ2
Si

=
ωi

1− ϑi
− ω2

i

(1− ϑi)2
(
ϑi − 1− ϑi

κ

)
, (2.22)

where ϑi = [κ/(κ + ωi)]κ. In this specification, both mean and variance are monotonic
increasing functions of the parameter ωi that is assumed to capture the variation of the
conditional distribution depending on Di and Fi−1.

Volatility clustering of asset returns is a well-known property, particularly for high fre-
quency data. Figure 4, (left panel), shows the autocorrelation function of the absolute
price changes Si|Si > 0. As for the case of equidistant return rates, we observe volatility
clustering for the absolute price changes at the transaction level. In order to take into ac-
count the dynamics of Si we follow Rydberg and Shephard (2002) and impose a GLARMA
structure on lnωi as follows:6

lnωi = β1Di + β2Di−1 + λi, with λi = γ0 +
p∑

l=1

γlλi−l +
q∑

l=1

δlεi−l . (2.23)

Here, the standardized absolute price change, εi = Si−µSi
σSi

, drives the ARMA process in
λi. The inclusion of Di is to capture potential differences in the behavior of the absolute
price changes depending on the direction of the price process. Thus, a negative β1 implies
that with negative price changes (Di = −1) large absolute price changes are more likely
to occur than with positive price changes (Di = 1). If one interprets the absolute price
changes as an alternative volatility measure, this asymmetry reflects a kind of leverage ef-
fect, where downward price movements imply a higher volatility than upward movements.7

The additional term Di−1 allows for a dynamic variant of the leverage effect.

For the estimation of parameters of the GLARMA(p,q) model, equations (2.20) to (2.23),
we maximize the log-likelihood L2 =

∑n
i=1(1− δ0

i ) ln h(si

∣∣Di,Fi−1) using the BHHH algo-
rithm. For the ACM specification, we use the Schwarz information criterion to determine
the optimal order of p and q. The diagnostic checks are based on the standardized residuals

ei =
Si − µ̂Si

σ̂Si

. (2.24)

For a correctly specified model the residuals evaluated at the true parameter values should
be uncorrelated in the first two moments with E(ei) = 0 and E(e2

i ) = 1.

6Similar to the alternative specification discussed in the context of the ACM model one could also
specify a dynamic latent process for ωi. See Zeger (1988) and Jung and Liesenfeld (2001) for examples.

7See, for instance, Nelson (1991).
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The estimation results for the model of the absolute price changes are reported in Table
2. The GLARMA(2,3) specification shows the best goodness of fit in terms of the Schwarz
criterion. The two left columns contain the results of the specification of an asymmetric
price effect model allowing for a leverage effect. For reasons of comparison we present
the estimates for a specification excluding asymmetric price effects in the columns on the
right. The parameters for the ARMA components and the dispersion parameter κ−1/2 are
statistically different from zero, while Di and Di−1 have no significant impact on the size
of the price changes. This finding is in contrast to previous results provided by Rydberg
and Shephard (2002). They find a leverage effect for transaction prices of the IBM share
traded at the NYSE. The dispersion parameter κ−1/2 being significantly different from
zero implies that we have to reject the null of a truncated-at-zero Poisson distribution in
favor of a Negbin distribution. The implicit estimates for the two roots of the AR com-
ponents are for both, the symmetric and asymmetric model, 0.9982 and 0.8795, so that
stationarity is guaranteed. However, the larger of the two roots is close to 1 implying that
the GLARMA model reveals a strong persistence in the non-zero absolute price changes.

The value of Box-Pierce statistics B(τ) for the standardized residuals ei reported in Table
2 for lag length τ = 20, 50, 100 indicates that the GLARMA(2,3) specification is able to
explain the observed autocorrelation in the absolute price changes almost completely. The
corresponding values of B(τ) for the observed transaction data Si|Si > 0 are 3176, 3861
and 4339 for τ = 20, 50, 100. Figure 4, (right panel), depicts the autocorrelations for ei

which lie well within the confidence band. Finally, the means for ei and e2
i reported in

Table 2 do not provide any evidence of a potential misspecification due to the Negbin
assumption or the GLARMA specification.

3 Transaction Price Dynamics and Market Microstructure

One of the fundamental questions of the market microstructure theory of financial markets
is concerned with the determinants of the price process and the specific role of the insti-
tutional set-up.8 Generally, the goal is to figure out how new price relevant information
affects the price process. Approaches based on the rational expectation hypothesis typ-
ically assume some kind of heterogeneity of information among the market participants,
where information about the transaction process generally leads to successive revelations
of price information. This leads to empirically testable hypotheses about the process of
transaction price changes and other marks of the trading process, such as transaction in-
tensities and transaction volume.

8See O’Hara (1995) for a comprehensive survey on the theoretical literature on market microstructure.
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Provided that short-selling is infeasible, Diamond and Verrecchia (1987) infer that longer
times between transactions can be taken as a signal that the existence of bad news im-
plies negative price reactions. The absence of a short selling mechanism prevents market
participants from profiting by exploiting the negative information through corresponding
transactions. Therefore, one can expect that low transaction rates (longer times between
transactions) are associated with higher volatility in the transaction price process and vice
versa.

Easley and O’Hara (1992) provide an alternative explanation of the relationship between
transaction intensities and transaction price changes. In their model, higher transaction
rates occur when a larger share of informed traders is active, which is anticipated by
less informed traders. Consequently, the price reacts more sensitively when the market is
marked by high transaction intensities than at times when the transaction intensity is low.
Contrary to Diamond and Verrechia, Easley and O’Hara predict a negative relationship
between transaction times and volatility.

Similar predictions about the link between price dynamics and transaction volume result
from the model proposed by Easley and O’Hara (1997). In their model, informed market
participants try to trade comparatively large volumes per transaction in order to profit
from their current informational advantage. It is assumed that this advantage exists only
temporarily. The occurrence of those large transactions are seen by uninformed traders as
evidence for new information. Hence, one can expect that the price reacts to larger orders
more sensitively than to smaller ones. In general, price volatility should be larger when
larger trading volumes are observed.

A further theoretical explanation for the positive association between trading volume and
volatility goes back to the mixture of distribution model of Clark (1973) and Tauchen and
Pitts (1983). In a standard set-up of the model, the positive association results from a
joint dependence on the news arrival rate.9

A suitable framework for quantifying the relationship between transaction price changes
and other marks of the trading process, such as trading volumes and transaction rates, is
their joint distribution. Let Zi be the vector representing the marks of the trading process
with the joint p.d.f. Pr(Yi = yi, Zi|F (y,z)

i−1 ) for transaction price changes and the marks
conditional on partial filtration.

Without any loss of generality, the joint p.d.f. can be decomposed into the p.d.f. of the
price changes conditional on the marks and the marginal density of the marks f(Zi|F (y,z)

i−1 ):

9See Andersen (1996) and Liesenfeld (1998, 2001) for extensions of the mixture models.
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Pr(Yi = yi, Zi|F (y,z)
i−1 ) = Pr(Yi = yi|Zi,F (y,z)

i−1 )f(Zi|F (y,z)
i−1 ) , (3.1)

Obviously, the p.d.f. of the ICH model can be used to specify the conditional p.d.f. of the
price changes. In the following we extend the ICH model by introducing the transaction
rate and trading volume as conditioning information.

Let Ti be the time between transaction i − 1 and i (measured in seconds) and Vi the
transaction volume (measured as the number of shares). For the ACM component we
extend the ARMA specification of the log-odds ratios (2.13) as follows:

αi = µ +
p∑

l=1

Clαi−l +
q∑

l=1

Alξi−l + gt1 lnTi + gv1 lnVi + gt2 ln Ti−1 + gv2 lnVi−1, (3.2)

where symmetry restrictions, similar to those imposed on matrices A and C in equation
(2.16), are imposed on the parameter vectors gt1, gv1, gt2 and gv2. Imposing these restric-
tions means, for example, that an increase in the transaction intensity Ti has the same
impact on the probability of a positive price response as on a negative one.

This restriction contradicts the implication of the theoretical hypothesis of Diamond and
Verrecchia (1987) who predict a negative correlation between price changes and the time
between transactions. Hence, one would expect asymmetric effects on the probabilities of
a certain price reaction. However, tests for an asymmetric price response could not reject
the null hypothesis of symmetric price reactions.
In a similar way, the transaction rate and the transaction volume can be introduced as
conditioning information into the model for the size of the price changes:

ln ωi = βt1 ln Ti + βv1 lnVi + βt2 ln Ti−1 + βv2 ln Vi−1 + λi (3.3)

with λi = γ0 +
p∑

l=1

γlλi−l +
q∑

l=1

δlεi−l.

Since the direction of the price changes had no significant impact in the specification (2.23),
we refrain from considering this covariate as an additional covariate in our GLARMA
model (3.3). Note that our interpretation of the parameter estimates does not explic-
itly rest on a structural theoretical model for the joint process of price changes, volume
and transaction rates. Equations (3.2) and (3.3) rather reflect ad-hoc assumptions with
respect to the probability function of the price changes conditional on volume and trans-
action rate. Correspondingly, the estimated relations cannot be interpreted as structural
economic relations. The dynamic ICH model, rather should serve as an instrument for
capturing and quantifying the relationship between important marks of the trading pro-
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cess. Consequently, this allows us to shed light on the empirical relevance of the theoretical
implication sketched above.

Tables 3 and 4 contain the estimation results for the ICH model that has been extended
to include transaction rates and trading volume as additional covariates. For the two
sub-models, we have chosen the same order of the process that was found to be optimal
for the pure time series specification. For the direction of the price process (Table 3)
both log trading volume Vi and the log time between transactions Ti have a significantly
positive impact on the log-odds ratios αi (i.e., the probability that the transaction price
changes increases with the size of the transaction volume and the time between transac-
tions). Since the probability of a non-zero price change can be interpreted as a specific
measure of price volatility, it implies that low transaction rates go along with higher price
volatility. This provides empirical support for the implications of the model proposed by
Diamond and Verrecchia (1987), where no transactions indicate bad news, which contra-
dicts the theoretical implications of by Easley and O’Hara (1992), where no transactions
indicate lack of news in the market. Our finding, that high transaction volumes are posi-
tively corrected with volatility, is consistent with the implication of the model proposed by
Easley and O’Hara (1997), where large volumes correspond to the existence of additional
news in the market. Moreover, signs of the estimated coefficients gv2 and gt2 reveal that
the impact of volume and transaction rate on the vector of log-odds ratios will be partly
compensated for by the subsequent transaction. Finally, the value of the Schwarz criterion
greatly improves the fit when volume and transaction rate are included. However, both
the Portmanteau statistics Q(15) and the sample moments of the standardized residuals
indicate that neither the dynamic properties nor the distributional characteristics of the
model are captured completely. Our empirical results for the direction of the price changes
are in accordance with those put forth Rydberg and Shephard (2002). In particular, they
also find a positive impact of transaction volume and time between transactions on the
activity of transaction prices.

Table 4 reports the estimation results for the size of the non-zero price changes for the
GLARMA model. Adding volume and transaction rate, the specification for the ACM
component leads to a substantial improvement of the first, in terms of the Schwarz crite-
rion. To a large extent, the reported diagnostics on the residuals confirm that the dynamic
properties and the distributional properties can be explained by the model. Again, volume
and transaction rate have a positive impact on the size of the price changes. Since the size
of the price changes as well as the probability of a non-zero price change are volatility mea-
sures, our previous conclusions based upon the ACM component regarding the empirical
confirmation of various implications from market microstructure theory are confirmed.
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4 Conclusions

In this paper, we introduce a new approach to analyzing transaction price movements in
financial markets. It relies on a hurdle count data approach that has been extended to
include negative counts. The parsimonious form of our model consists of two processes: a
process for the price direction and one for the size of the price movement. Our approach
is particularly suited for financial markets with fairly low transaction intensities.

For the XETRA-trading of Henkel shares, we show that our model is suited for testing
various implications of market microstructure theory without claiming that it is superior
to alternative approaches. In order to assess the potential of our approach, the model
has to be subjected to intensive diagnostic checks. Comparative studies with respect to
the forecasting properties of various approaches and applications to other financial assets
and to exchanges with different trading platforms should provide more insights into the
potential applicability of our approach. Alternatively, the quality of the model could be
assessed by using it as the basis for a trading strategy. Finally, the ICH model should be
embedded into a joint model of the transaction price movements and trading times.
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A Tables

Table 1: ML estimates of the logistic ACM-ARMA(1,2)-model for the direction of price
changes

parameter estimate std. dev. parameter estimate std. dev.

µ1 .001 .001 c
(1)
1 .945 .011

a
(1)
1 .143 .015 a

(1)
2 .212 .015

a
(2)
1 −.055 .017 a

(2)
2 −.146 .016

log-likelihood −1.08742
Schwarz criterion 1.08890
Q(15) (p-value) 56.504 (.382)∑

i υi/n (.002,−.005)′∑
i υiυ

′
i/n

[
(.754, .099)′, (.099, 1.354)′

]

Table 2: ML estimate of the GLARMA(2,3)-model for the absolute values of the
non-zero price changes

unrestricted restricted: β1 = β2 = 0

parameter estimate std. dev. estimate std. dev.

γ0 2.1357 .0633 2.1356 .0633
γ1 1.8775 .0150 1.8777 .0150
γ2 −.8777 .0150 −.8779 .0149
δ1 .2050 .0091 .2051 .0091
δ2 −.2805 .0173 −.2807 .0172
δ3 .0770 .0099 .0771 .0099

κ−1/2 .9232 .0083 .9233 .0083
β1 .0061 .0078
β2 .0055 .0083

log-likelihood −3.16886 −3.16888
Schwarz criterion 3.17205 3.17136
B(20) (p-value) 18.086 (.080) 18.175 (.151)
B(50) (p-value) 42.330 (.413) 42.435 (.496)
B(100) (p-value) 92.201 (.445) 92.048 (.508)∑

i ei/n .002 .002∑
i e

2
i /n 1.025 1.024
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Table 3: ML estimates of the logistic ACM-ARMA(1,2)-model for the direction of price
changes with transaction rate and -volume

parameter estimate std. dev. parameter estimate std. dev.

µ1 −.308 .132 c
(1)
1 .914 .031

a
(1)
1 .140 .016 a

(1)
2 .210 .016

a
(2)
1 −.040 .022 a

(2)
2 −.134 .021

gt1 .245 .010 gv1 .182 .017
gt2 −.230 .011 gv2 −.142 .023

log-likelihood −1.06773
Schwarz criterion 1.07020
Q(15) (p-value) 74.146 (.012)∑

i υi/n (.003,−.004)′∑
i υiυ

′
i/n

[
(.747, .136)′, (.136, 1.419)′

]

Table 4: ML estimates of the GLARMA(2,3)-model for the absolut values of the
non-zero price changes with transaction rate and -volume

parameter estimate std. dev. parameter estimate std. dev.

γ0 1.409 .099 γ1 1.884 .014
γ2 −.884 .013 δ1 .199 .009
δ2 −.271 .016 δ3 .074 .009

κ−1/2 .890 .008
βt1 .122 .005 βv1 .034 .007
βt2 −.014 .005 βv2 .007 .008

log-likelihood −3.14854
Schwarz criterion 3.15244
B(20) (p-value) 17.037 (.048)
B(50) (p-value) 38.376 (.498)
B(100) (p-value) 84.132 (.626)∑

i ei/n .002∑
i e

2
i /n 1.088
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B Figures

Figure 1: Frequency distribution of the transaction price changes, Henkel shares
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Figure 2: Cross correlation functions of the binary variables x−1i = δ−i and x1i = δ+
i , indicating

the direction of price changes. The dashed lines mark off the approximative 99% confidence interval

±2.58/
√

n.
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Figure 3: Cross correlation functions of the standardized residuals υ−1i and υ1i of the ACM-

ARMA(1,2)-model. The dashed lines mark off the approximative 99% confidence interval ±2.58/
√

n.
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Figure 4: Auto correlation function of the non-zero absolute transaction price changes

Si|Si > 0 (left) and the standardized residuals ei of the asymmetric GLARMA(2,3)-model

(right). The dashed lines mark off the approximative 99% confidence interval ±2.58/
√

ñ, where ñ the

number of non-zero price changes.
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