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Summary. Consider the estimation of g(�), the �-th derivation of the mean function

in a �xed design, nonparametric regression with a linear, invertible, stationary time

series error process �i. Assume that g 2 C
k and that the spectral density of �i has

the form f(�) � cf j�j
�� as � ! 0 with constants cf > 0 and � 2 (�1; 1). Let

r� = (1 � �)(k � �)=(2k + 1 � �). It is shown that the optimal convergence rate

for ĝ(�) is n�r� . This rate is achieved by local polynomial �tting. It is also shown

that the required regular conditions on the innovation distribution in the current

context are the same as those in nonparametric regression with iid errors.

Keywords: Nonparametric regression, optimal convergence rate, long memory, an-

tipersistence, inverse process.

1 Introduction

Consider the estimation of the �-th derivation of the mean function, g(�), in the equidistant

design nonparametric regression model

(1.1) Yi = g(xi) + �i;

where xi = i=n, g : [0; 1] ! < is a smooth function and �i is a linear, (second order and

strict) stationary process generated by an iid (identically independent distributed) innova-

tion series "i through a linear �lter. For the autocovariance function 
(k) = cov (�i; �i+k),

it is assumed that 
(k) ! 0 as jkj ! 1. Equation (1.1) represents a nonparametric

regression model with short memory (including iid �i as a special case), long memory

and antipersistence. Here, a stationary process �i is said to have long memory (or long-

range dependence), if
P

(k) =1. A more strict assumption is that the spectral density
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f(�) = (2�)�1
P

(k) exp(ik�) has a pole at the origin of the form

(1.2) f(�) � cf j�j��(as �! 0)

for some � 2 (0; 1), where cf > 0 is a constant and `�' means that the ratio of the left

and the right hand sides converges to one (see Beran, 1994, and references therein). Note

that, (1.2) implies that 
(k) � c
jkj��1 so that
P

(k) = 1. Hence now �i has long

memory. If (1.2) holds with � = 0, then we have 0 <
P

(k) <1 and �i is said to have

short memory. On the other hand, a stationary process is said to be antipersistent, if

(1.2) holds for � 2 (�1; 0) implying that
P

(k) = 0.

The aim of this paper is to investigate the minimax optimal convergence rate of a

nonparametric estimator of g(�) (see e.g. Farrell, 1972, Stone, 1980, 1982 and Hall and

Hart, 1990a for related works). For a summary of the nonparametric minimax theory

we refer the reader to Hall (1989). Hall and Hart (1990a) obtained optimal convergence

rate for estimating g in nonparametric regression with Gaussian stationary short- and

long-memory errors. In this paper a uni�ed formula for the optimal convergence rate

for estimating g
(�) in nonparametric regression with short-memory, long-memory and

antipersistent errors is given. It is shown that this rate is achieved by local polynomial

�tting (Beran and Feng, 2001a). Our �nding generalizes in various ways previous results

in Stone (1980) and Hall and Hart (1990a). A simple condition under which a sequence

n
�r� forms a lower bound to the convergence rate is given for nonparametric regression

with stationary time series errors at any dependence level. Results in this paper are given

for Gaussian and non-Gaussian error processes satisfying some regular conditions.

The estimator and the error process are de�ned in section 2. Section 3 describes the

conditions on the distribution and provides the main results. It turns out that the required

regular conditions on the marginal innovation distribution are the same for all � 2 (�1; 1)
and hence do not depend on the dependence structure. Some auxiliary results, which can

be thought of as a part of the proofs, are given in section 4. Detailed proofs are put in

the appendix.
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2 The estimator and the error process

2.1 The local polynomial �tting

Kernel estimator of g in nonparametric regression with short-memory and long-memory

errors was proposed by Hall and Hart (1990a). Beran (1999) extended the kernel estimator

to nonparametric regression with antipersistence. However, it is well known that the

kernel estimator is a�ected by the boundary problem. Another attractive nonparametric

approach is the local polynomial �tting introduced by Stone (1977) and Cleveland (1979).

Beran and Feng (2001a) proposed local polynomial �tting in nonparametric regression

with short-memory, long-memory and antipersistent errors. In this paper we will use the

proposal in Beran and Feng (2001a) to show the achievability of the optimal convergence

rate.

Let k � 2 be a positive integer. The function class considered in this paper is Ck(B),

the collection of all k times di�erentiable functions g on [0; 1] which satisfy

sup
0�x�1

max
�=0;1;:::;k

jg(�)(x)j � B:

Let p = k � 1. Then g can be locally approximated by a polynomial of order p for x in

the neighbourhood of a point x0:

(2.1) g(x) = g(x0) + g
0(x0)(x� x0) + :::+ g

(p)(x0)(x� x0)
p
=p! +Rp;

where Rp is a remainder term. Let K be a second order kernel (a symmetric density)

having compact support [�1; 1]. Given n observations Y1, ..., Yn, we can obtain an

estimator of g(�) (� � p) by solving the locally weighted least squares problem

(2.2) Q =

nX
i=1

(
Yi �

pX
j=0

�j(xi � x0)
j

)2

K

�
xi � x0

h

�
) min;

where h is the bandwidth. Let �̂ = (�̂0; �̂1; :::; �̂p)
0 be the solution of (2.2). Then it is

clear from (2.1) that ĝ(�)(x0) := �!�̂� estimates g(�)(x0), � = 0; 1; :::; p, which is the local

polynomial �tting of g(�). Note in particular that ĝ(�) is the same for nonparametric

regression with stationary time series errors at any dependence level.

3



2.2 The error process

In this paper it is assumed that the spectral density of �i has the form (1.2). Hence �i

will be called a fractional time series error process. �i is also assumed to be causal, linear

and invertible. That is, �i can be expressed in two ways:

(2.3) �i =  (B)"i;

and

(2.4) "i = '(B)�i;

where the innovations "i are iid mean zero random variables with var ("i) = �
2
"
< 1,

B is the backshift operator, and  (B) =
P

1

j=0 ajB
j and '(B) =

P
1

j=0 bjB
j are the

characteristic polynomials of the MA and AR representations of �i, respectively, with

a0 = b0 = 1,
P
a
2
j
<1 and

P
b
2
j
<1. The causality of �i is made here for convenience.

Some properties of �i can be understood more easily by means of its inverse process.

Following Chat�eld (1979), the inverse process of �i, denote by �
I
i
, is the process with the

same innovations "i and '(B) rep.  (B) as its characteristic polynomials for the MA rep.

AR representations, which is given by

(2.5) �
I
i
= '(B)"i;

and

(2.6) "i =  (B)�I
i
:

Following Shaman (1975), the spectral density of �I
i
, f I(�) say, is

(2.7) f
I(�) = �

4
"
(2�)�2(f(�))�1 � c

I
f
j�j��I

(as �! 0);

where cI
f
= �

4
"
(2�)�2(cf)

�1 and �I = ��. Equation (2.7) implies that: 1. If �i is a short-

memory process, so is �I
i
(in particular, the inverse process of an iid process is the process

itself); 2. If �i is a long-memory process with 0 < � < 1, then �
I is an antipersistent

process with �I = ��, and vice versa.

From (2.3) we see that the autocovariances of �i are 
(k) = �
2
"

P
ajaj+jkj. The inverse

autocovariances of �i (Cleveland, 1972 and Chat�eld, 1979), i.e. the autocovariances
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of �I
i
, are given by 


I(k) = �
2
"

P
1

j=0 bjbj+jkj. Hence we have
P

(k) = �

2
"
(
P
aj)

2 andP


I(k) = �

2
"
(
P
bj)

2. This results in
P
aj = 1,

P
bj = 0 for � > 0 and

P
aj = 0,P

bj =1 for � < 0. For � = 0 we have both, 0 <
P
aj <1 and 0 <

P
bj <1.

A class of processes having the property (1.2) is the class of the FARIMA(p; Æ; q)

(fractional ARIMA) processes (Granger and Joyeux, 1980 and Hosking, 1981), where

Æ 2 (�0:5; 0:5) is the fractional di�erencing parameter. It is well known that the spectral

density of a FARIMA process has the form (1.2) with � = 2Æ.

3 Optimal convergence rates

3.1 Assumptions on the innovation distribution

An important �nding of this paper is that the derivation of that a given sequence is a

lower bound to the convergence rate in nonparametric regression with error process �i

is similar to that for nonparametric regression with the iid errors "i. Furthermore, it

turns out that the required conditions on the marginal distribution of "i under model

(1.1) with any � 2 (�1; 1) are the same, i.e. which do not depend on the dependence

level. In the following we will adapt the regular conditions in Stone (1980, 1982) to �xed

design nonparametric regression. Assume that Z(g) is a real random variable depending

on g 2 <. It is assumed that the density function f(z; g) is strictly positive and that

f(z; g) = f(z � g; 0), where g is the mean function of Z(g), i.e.Z
zf(z; g)dz = g

for all g 2 <. It is further assumed that the equationZ
f(z; g)dz = 1

can be twice continuously di�erentiated with respect to g to yieldZ
f
0(z; g)dz = 0

and Z
f
00(z; g)dz = 0:
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The iid innovations "i are generated by the marginal distribution with density f(z; 0),

which will be simply denoted by f(z) in the following. Using this notation the density

of Z(g) may be represented as f(z; g) = f(z � g). Set l(z; g) = log f(z; g). There are

positive constants �0 and C and there is a function M(z; g) such that for g 2 <

jl00(z; g + �)j �M(z; g) for j� j � �0

and Z
M(z; g)f(z; g)dz � C:

Note that the last condition is ful�lled, if l00(z; g) is bounded.

Remark 1. It is easy to show that all of these conditions are ful�lled, if Z(g) is

Gaussian with

f(z; g) =
1p
2��"

e
�

1
2

(z�g)2

�
2
" ; �1 < z; g <1:

And it is also not hard to show that these conditions are ful�lled, if the marginal distri-

bution of "i is the student tm distribution with m � 3, i.e. if f(z; g) is given by

fm(z; g) =
�[(m+ 1)=2]

�(m=2)
p
m�

�
1 +

(z � g)2

m

�
�(m+1)=2

; �1 < z; g <1:

Remark 2. Observe that however other distributions considered by Stone (1980), e.g.

the exponential distribution, do not satisfy the regular conditions given above. If "i are

iid exponential distributed with E("i) = 0 and var ("i) = �, then density function of Z(g)

is given by

f(z; g) =
1

�
e
�(z+��g)=�

; �1 < g <1 and g � � � z <1

and zero otherwise. The support of f > 0 for this distribution depends on g.

3.2 Lower bounds to convergence rates

For the minimax optimal convergence rate we will use the following de�nition (see e.g.

Farrell, 1972, Stone, 1980 and Hall and Hart, 1990a). Let � < k be a nonnegative integer

and ~g
(�)
n denote a generic nonparametric estimator of g(�) based on (Y1; :::; Yn). Let r� be
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a positive number. The sequence n�r� is called a lower bound to the convergence rate at

x0 if

(3.1) lim inf
n

sup
g2Ck

P (j~g(�)
n
(x0)� g

(�)(x0)j > c�n
�r� ) > 0

for c� suÆciently small. n�r� is called an achievable convergence rate if there is a sequence

of estimators ĝ
(�)
n such that

(3.2) lim
c�!1

lim sup
n

sup
g2Ck

P (jĝ(�)
n
(x0)� g

(�)(x0)j > c�n
�r� ) = 0:

Also, the sequence n�r� is called the optimal convergence rate if it is an achievable lower

bound to the convergence rate. The optimal convergence rate for a nonparametric regres-

sion estimator of g(�) with iid errors is n�(k��)=(2k+1) (Stone, 1980). In fact, n�(k��)=(2k+1)

is also the optimal convergence rate for estimating g(�) in nonparametric regression with

short-memory errors (results for � = 0 may be found in Hall and Hart, 1990a). In

the case with 0 < � < 1, Hall and Hart (1990a) shown that the optimal convergence

rate is n�(1��)k=(2k+1��) for estimating g. In this paper we will show that n�r� with

r� = (1� �)(k� �)=(2k+ 1� �) is the optimal convergence rate for estimating g(�), uni-

formly for � 2 (�1; 1). The following theorem shows at �rst that n�r� is a lower bound

to the convergence rate, i.e. n�r� satis�es (3.1).

Theorem 1 Let model (1.1) hold with g 2 Ck. Let x0 2 (0; 1) be an interior point of the

support of g. Let � < k and r� = (1 � �)(k � �)=(2k + 1� �). Assume that the regular

conditions on the marginal innovation distribution as described in Section 3.1 hold. Then

n
�r� is a lower bound to the convergence rate for estimating g(�)(x0).

The proof of Theorem 1 is given in the appendix.

Theorem 1 extends previous results as obtained by Stone (1980) and Hall and Hart

(1990a) in di�erent ways. The results in Stone (1980) are extended to nonparametric

regression with fractional time series errors. Main di�erences between results of Theorem 1

and those given in Hall and Hart (1990a) are: 1. These results are given for all � 2 (�1; 1)
including the antipersistent case and 2. These results are available for non-Gaussian error

processes satisfying regular conditions on the marginal innovation distribution. 3. The

estimation of derivatives is also considered.
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Remark 3. The sequence n�r� as de�ned in Theorem 1 is of cause also a lower bound

to the convergence rate for the estimation at the two boundary points x0 = 0 or x0 = 1,

since the set of all measurable functions of the observations at x0 = 0 (rep. x0 = 1) under

the restriction that there are no observations on the left (rep. right) hand side is a subset

of all measurable functions.

Remark 4. In the proof of Theorem 1 a two-point discrimination argument is used. It

will be shown that the probability on the right hand side of (3.1) can be made arbitrarily

close to 1
2
. If a more sophisticated multi-point discrimination argument is used as in Stone

(1980), then it can be shown that

(3.3) lim
c�!0

lim inf
n

sup
g2Ck

P (j~g(�)
n
(x0)� g

(�)(x0)j > c�n
�r� ) = 1:

Remark 5. Results of Theorem 1 are in general not available for random design

nonparametric regression or density estimation with dependent observations, since the

e�ect of dependence in such cases tends to be less profound than in the model to be

discussed here (see Hall and Hart, 1990b).

3.3 Achievability

Beran and Feng (2001a) shown that for g 2 Ck with k� � even, the uniform convergence

rate of the local polynomial �tting ĝ(�) is of order n�r� for all x 2 [0; 1], if a bandwidth

of the optimal order n�(1��)=(2k+1��) is used, where r is as de�ned in Theorem 1 (see

Theorem 2 in Beran and Feng, 2001a). Similar results hold for function class Ck with

k � � > 0 odd. This result can be used to show the achievability of the lower bound to

the convergence rate as de�ned in Theorem 1, i.e. (3.2) holds for the local polynomial

�tting ĝ(�) with n�r� , also at the two boundary points x0 = 0 and x0 = 1. This results in

Theorem 2 Let x0 2 [0; 1]. Under the conditions of Theorem 1 it can be shown that,

n
�r� is the optimal convergence rate for estimating g(�)(x0).

The additional proof of Theorem 2 is straightforward and is omitted to save place.

Remark 6. Indeed, the convergence rate n�r� as de�ned in Theorem 1 may be achieved

under much weaker conditions. It is clear that, (3.2) will hold, if ĝ(�) is asymptotically

normal. Some suÆcient conditions under which ĝ(�) is asymptotically normal are given

in Beran and Feng (2001b), which are much weaker than those described in Section 3.1.
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4 Auxiliary results

4.1 Notations

Note that r� < 1 for all � 2 (�1; 1) and that the interpolation error is of order n�1, which

is hence negligible. Therefore we may assume without loss of generality that x0 is of the

form i0=n. It is notationally convenient to take x0 = i0=n = 0, so we will consider the

shifted model

Yi = g(i=n) + �i; i = �n; :::;�1; 0; 1; :::; n;

and estimate g(�) at the origin. Moreover, we shall assume that both, the in�nite past

and the in�nite future, are given, i.e. we observe

(4.1) Yi = g(i=n) + �i;�1 < i <1:

Model (4.1) is assumed only for notational convenience, which helps us to save symbols

for distinguishing �nite and in�nite sample paths. It turns out that the extra information

is of negligible bene�t for the derivation of a lower bound to the convergence rate.

The main idea to prove Theorem 1 is to construct two sequences of functions. If

these two sequences are \hard to distinguish", then the di�erence of them will form a

lower bound to the convergence rate. If they are \far apart" at the same time, then

the di�erence of them will form an achievable convergence rate, hence we will obtain the

optimal convergence rate. Following Stone (1980) and Hall and Hart (1990a), let 	 � 0

be a k + 1-di�erentiable function on (�1;1), vanishing outside (�1; 1) and satisfying

	(�)(0) > 0 for � = 0; 1; :::; k. Put

B
0 = sup

0�x�1
max

�=0;1;:::;k
j (�)(x)j:

Choose a > 0 so small that aB0
< B. Let 0 < s < 1 and set h = n

�s. De�ne

(4.2) g�(x) = �ah
k	(x=h):

Then g�(x) for � 2 f0; 1g are two sequences of functions in Ck.

In the following we will denote the limits lim
n!1

nQ
i=�n

and lim
n!1

nP
i=�n

by
Q

and
P

for

simplicity. For �1 < i < 1, de�ne the doubly in�nitive column vectors � = (�i),

" = ("i) and g = (g1(i=n)). De�ne the doubly in�nite matrices � = (
(i � j)) and
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� = (
I(i� j)). Let � = (bi�j) as given in (A.6) in the appendix, where bi = 0 for i < 0.

Let 
 = (ai�j) be the as � but with bi�j being replaced by ai�j. Then we have � = 
"

and " = ��. Let Y = (Yi). We have Y� = �g + �. De�ne X� = �Y� = �� + ", where

� = �g. Note that X0 = " and Y0 = �. Furthermore, we see that X1 is a sequence of

independent random variables.

4.2 The likelihood functions and the error probabilities

Let L0 and L0 denote the likelihood functions of X0 = " and Y0 = �, respectively.

Observe that L0(x) =
Q
f(xi), where x = (:::; x�1; x0; x1; :::)

0 is a doubly in�nite vector

and f is the marginal density function of "i. The following lemma gives the relationship

between these two likelihood functions.

Lemma 1 For the fractional time series process de�ned by (2.3) and (2.4), and a doubly

in�nite real vector y we have

(4.3) L0(y) = L0(x) =

1Y
i=�1

f(xi);

where x = �y with xi =
P

1

j=�1 bjyi�j, �1 < i < 1, and f is the marginal density

function of "i.

The proof of Lemma 1 is given in the appendix. Lemma 1 shows that L is uniquely

determined by L. Note that, inversely, L is also uniquely determined by L. Following

Lemma 1 the estimation of the likelihood function of an invertible stationary time series is

equivalent to that of the corresponding iid innovations. The idea behind this lemma plays

a very important role for the derivation of asymptotic results in nonparametric regression

with dependent errors, which shows that discussions on asymptotic results in this case

may often be reduced to those for models with iid errors after a suitable transformation.

Note that Lemma 1 only holds for causal processes.

Let L1 and L1 denote the likelihood functions of X1 = " + � and Y1 = � + g,

respectively. To prove Theorem 1 we need to estimate P (L0 < L1j� = 0) and P (L0 >

L1j� = 1). The following corollary of lemma 1 reduces the estimation of these error

probabilities to that of the independent sequences X�.
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Corollary 1 Let X� and Y� are de�ned above. Let y is a doubly in�nite real vector.

Then, under the assumptions of Lemma 1, we have

P (L0(y) < L1(y)j� = 0) = P (L0(x) < L1(x)j� = 0)

and

P (L0(y) > L1(y)j� = 1) = P (L0(x) > L1(x)j� = 1);

where x = �y.

The proof of Corollary 1 is given in the appendix. Following Corollary 1, a method for

estimating the error probability developed for nonparametric regression with iid errors

could be adapted to the current case. In this paper we will use the methodology proposed

by Stone (1980). Note that �, the deterministic part of X1, does not necessarily have the

same smooth properties as g, the deterministic part of Y1. However, this does not a�ect

the estimation of the error probability.

4.3 A suÆcient condition

Let �n = 1
2
g1(0) = 1

2
a	(0)hk = c0h

k, where c0 = 1
2
a	(0). Let ��

n
= c�h

(k��), where

c� =
�!
2
a	(�)(0) for � < k. If �i in model (1.1) are iid, then, following Stone (1980), it can

be shown that a suÆcient condition, under which ��

n
is a lower rate of convergence for

estimating g(�), is that there is an M > 0 such that
P
g
2(i=n) < M (see equation (2.1)

in Stone, 1980). The following lemma gives a simple extension of this result to the case

when �i are fractional stationary time series errors de�ned by (2.3) and (2.4).

Lemma 2 Let �i be de�ned by (2.3) and (2.4). Consider the estimation of g(�). Then

��

n
is a lower rate of convergence, if there is an M > 0 such that

(4.4)

1X
i=�1

�
2
i
= g0�0�g < M;

where �i are the elements of � = �g.

The proof of Lemma 2 is given in the appendix. Note that g0 � 0 and hence g is

the di�erence sequence between the two functions g0 and g1. Lemma 2 shows that this
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sequence will form a lower rate of convergence for estimating g, if the transferred di�erence

sequence � is squared summable. From Lemma 2 we can also see that, if �n is a lower

rate of convergence for estimating g, then ��

n
, the sequence of the �-th derivative �n, is

a lower rate of convergence for estimating g(�) providing 	(�)(0) > 0.

It is easy to show that condition (4.4) is equivalent to

(4.5) g0�g < �
2
"
M

and further equivalent to

(4.6) g0��1g < �
�2
"
M:

Proofs of (4.5) and (4.6) are given in the appendix. These two representations are easy to

understand. Equation (4.6) directly shows the change in this suÆcient condition caused

by the dependence structure. The following remarks clarify the above results.

Remark 7. For iid errors �i = "i we have � = I, � = �
2
"
I and ��1 = �

�2
"
I, where I

denote the doubly in�nite identity matrix. In this case we have simply
P
g
2(i=n) < M .

Note that D =
pP

g2(i=n) is the L2-norm of g. Lemma 2 implies that any method of

deciding between � = 0 and � = 1, i.e. of deciding between the vector g and the zero

vector must have overall positive error probability, if the norm of g is bounded.

Remark 8. Assume that "i are normal. Following Hall and Hart (1990a) it can be

shown that, the overall error probability of any estimator of � based on Y is at least

(4.7) Pa = 1� �
��
g0��1g

�1=2�
;

where � is the standard normal distribution function. The error probability Pa will be

positive, if g0��1g is �nite. Pa in (4.7) can be made arbitrarily close to 1
2
by choosing the

constant a in (4.2) so that a! 0 and hence g0��1g! 0.
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Appendix: Proofs

Proof of Lemma 1. It is well known that, under common conditions, the likelihood

functions of two random vectors forming a reciprocal one-to-one mapping are uniquely

determined by each other (see e.g. Theorem 2 of Section 4.4 in Rohatgi and Saleh, 2001,

pp. 127�). Note that this result can be extended to doubly in�nite random vectors. The

proof of Lemma 1 remains to check that all of the conditions of this theorem hold. At �rst,

" = �� form a doubly in�nite dimensional reciprocal one-to-one-mapping with the inverse

transformation � = 
", where both, the original function and the inverse transformation

are linear. Hence, conditions (a) to (c) of Theorem 2 of Section 4.4 in Rohatgi and Saleh

(2001) hold. Furthermore, � is also the matrix of the partial derivatives of " with respect

to �. And the Jacobian J of the inverse transformation is the determinant j�j = 1, since

� is a (doubly in�nite) lower triangle matrix, whose diagonal elements are identically one.

The relationship between L0 and L0 as given in Lemma 1 holds. 3

Proof of Corollary 1. Observe that X1 = X0+� and Y1 = Y0+g. Hence we have,

L1(x) = L0(x � �) and L1(y) = L0(y � g). It follows from Lemma 1, for any doubly

in�nite dimensional real vectors y and g,

L1(y) = L0(y � g)

= L0(x� �)

= L1(x) =

1Y
i=�1

f(xi � �i);(A.1)

where x = �y, � = �g and f is the marginal density function of "i. Equations (4.3) and

(A.1) together show that L0(y) < L1(y) (or L0(y) > L1(y), or L0(y) = L1(y)), if and

only if L0(x) < L1(x) (or L0(x) > L1(x), or L0(x) = L1(x)), where x = �y. Corollary 1

follows from this fact. 3

The proofs given in the following are related to those in Stone (1980) and Hall and

Hart (1990a). Hence some details will be omitted to save place. To this end we refer the

reader to the proofs in these works. We also refer the reader to read Theorem 1 in Hall

(1989) and its proof. Note that the symbol � in this paper is di�erently de�ned as that

used in Hall and Hart (1990a).

Proof of Lemma 2. Let ��

n
is as de�ned in Lemma 2. Note that

sup
g2Ck

Pgfj~g(�)n
(0)� g

(�)(0)j � ��

n
g � max

�=0;1
P�fj~g(�)(0)� g

(�)
�
(0)j � ��

n
g:
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Let ~�n = 0 or 1 minimizes j~g(�)n (0)� g(�)~�
(0)j. Then ~�n 6= � implies j~g(�)n (0)� g(�)

�
(0)j � ��

n
,

and hence

max
�=0;1

P�fj~g(�)(0)� g
(�)
�
(0)j � ��

n
g � max

�=0;1
P�(~� 6= �)

� 1

2
fP0(~� = 1) + P1(~� = 0)g

� 1

2
fP0(�̂ = 1) + P1(�̂ = 0)g;(A.2)

where �̂ is the maximum likelihood estimator of � (or the likelihood ratio discriminator) in

the two-parameter problem. The last inequality follows from the Neyman-Pearson lemma.

From Corollary 1 we have

max
�=0;1

P�fj~g(�)(0)� g
(�)
�
(0)j � ��

n
g � 1

2
(P0(L0 < L1) + P1(L1 < L0))

=
1

2
(P0(L0 < L1) + P1(L1 < L0)):(A.3)

Let LR denote the likelihood ratio L1=L0. By calculations similar to those given on

pages 1352 - 1353 of Stone (1980), it can be shown under the regular conditions on the

marginal distribution of "i as given in Section 3.1, that there is a positive constant M1

such that

(A.4) E0j log(LR)j < M1

and

(A.5) lim
a!0

E0j log(LR)j = 0:

Similar formulas as given in (A.4) and (A.5) hold for the expectation under � = 1 with

another positive constant M2. Let M0 = max(M1;M2). Then we can �nd an integer K �
2 and 0 < � <

1
2
such that if LR > (1� �)=� or LR < �=(1� �), then j log(LR)j � KM0.

Following the Markov inequality

P0

�
�

1� �
� LR �

1� �

�

�
>
K � 1

K

P1

�
�

1� �
� LR �

1� �

�

�
>
K � 1

K
:

Put priori probabilities 1/2 each on � = 0 and � = 1. Then

P (� = 1jY) =
1
2
L1

1
2
L1 +

1
2
L0

=
LR

LR + 1

14



and

P (� � P (� = 1jY) � 1� �) = P

�
� � LR

LR + 1
� 1� �

�

= P

�
�

1� �
� LR �

1� �

�

�

=
1

2
P0

�
�

1� �
� LR �

1� �

�

�

+
1

2
P1

�
�

1� �
� LR �

1� �

�

�

� K � 1

K
:

That is, the error probability of �̂ is at least K�1
K
� .

Note that K�1
K
� can be made arbitrarily close to 1

2
as Æ ! 0 by choosing K suÆciently

large and � suÆciently close to 1
2
at the same time. 3

Proof of equations (4.5) and (4.6). The matrix � is given by

(A.6) � =

0
BBBBBBBBBBBBBBBB@

� � � ...
...

...
...

...
... � � �

� � � 1 0 0 � � � 0 0 � � �
� � � b1 1 0 � � � 0 0 � � �
� � � b2 b1 1 � � � 0 0 � � �
� � � ...

...
...

. . .
...

... � � �
� � � bn�1 bn�2 bn�3 � � � 1 0 � � �
� � � bn bn�1 bn�2 � � � b1 1 � � �
� � � ...

...
...

...
...

... � � �

1
CCCCCCCCCCCCCCCCA

:

Following the de�nition of 
I(i � j) we have � = �
2
"
��0. Furthermore, it can be shown

that ��0 = �0�. The equivalence between (4.4) and (4.5) follows from this fact. The

equivalence between the two conditions (4.5) and (4.6) is due to the fact that ��1 = �
�4
"
�

in the sense that ��=�4
"
= I (see e.g. Shaman (1975)and Beran 1994, pp. 109 �.). 3

Proof of Theorem 1. Without loss of generality we will assume that �2
"
= 1 for

convenience. For � = 0 let �n = c0h
k equal to the rate c0n

�r0 , where r0 = (1��)k=(2k+
1� �) is as de�ned in Theorem 1. Then we have h = n

�s with s = (1� �)=(2k+ 1� �).

Following Lemma 2, we have to show that the sequence g under this choice of h satis�es

e.g. the condition
P
�
2
i
= g0�0�g <1, in order that c�n

�r� is a lower rate of convergence

for estimating g(�).
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Let m = [nh] be the integer part of nh. Let �i = 	(i=m), �1 < i < 1, and let

� = (�i) denote the corresponding doubly in�nite vector. Then we have

g0�0�g =
1

4
h
2k	2(0)�0�0��:

Observe that �i = 0 for i < �m or i > m. We have

�0�0�� =

1X
j=�1

 
mX

i=�m

�ibi+j

!2

= (2m+ 1)

2mX
k=�2m



I(k)

1

2m+ 1

mX
j=�m

	(j=m)	f(j + k)=m)g:(A.7)

Equation (A.7) can also be obtained by directly analyzing �0��.

Based on (A.7) we can obtained results for the cases with � = 0, 0 < � < 1 and

�1 < � < 0, separately. Note that the methodology used in the proof of Theorem 3.1 in

Hall and Hart (1990a) for the case with 0 < � < 1 is based on the assumption b�i = bi for

i = 1; 2; :::, and is hence not suitable for the causal error process in this paper, since now

we have bi = 0 for i < 0. The methodology used in the following is developed based on

the property (1.2) of a fractional time series, which does not involve the exact structure

of bi.

Assume that � = 0. Note that in this case
P

(k)I > 0 and

P
j
(k)Ij < 1. From

(A.7) we have

�0�0��
:
= (2m+ 1)

�X


I(k)

�Z 1

�1

	2(u)du:

Note that h = n
�1=(2k+1) and m = nh = n

2k=(2k+1) = h
�2k for � = 0, whence

1

4
h
2k	2(0)�0�0�� <1:

In the case with 0 < � < 1 the inverse process �I is an antipersistent process with

the parameter �1 < �
I = �� < 0 in (2.7) and hence for jkj suÆciently large we have



I(k) � c

I


jkj���1, where c
 = 2cI

f
�(1��I) sin(��I

=2) < 0 (see Beran, 1994 and Beran and

Feng, 2001a), which implies that 
I(k) are ultimately negative for jkj suÆciently large.

Furthermore, we have
P


I(k) = 0 and hence

P
m

k=�m 

I(k) = �2

P
k>m



I(k) = O(m��).
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It follows from (A.7)

�0�0�� = (2m+ 1)

2mX
k=�2m



I(k)

1

2m+ 1

mX
j=�m

	(j=m)	f(j + k)=m)g

� (2m+ 1)

mX
k=�m



I(k)

1

2m+ 1

mX
j=�m

	(j=m)	f(j + k)=m)g

= (2m+ 1)O

 
mX

k=�m



I(k)

!
= O(m1��):

Now we have h = n
�(1��)=(2k+1��) and m = nh = n

2k=(2k+1��). This results in m1�� =

h
�2k, so that

1

4
h
2k	2(0)�0�0�� = h

2k
O(h�2k) <1:

If �1 < � < 0, the inverse process �I is a long-memory process with the parameter

0 < �
I = �� < 1 in (2.7) and hence, for jkj suÆciently large, 
I(k) � c

I


jkj���1, where

c
 = 2cI
f
�(1��I) sin(��I

=2) > 0, so that 
I(k) > 0 for jkj suÆciently large. Furthermore,

we have
P


I(k) = 1 with

P2m
�2m 


I(k) = O(m��). Note that 	 can be chosen so that,

for large k,
P

m

j=�m	(j=m)	f(j + k)=m)g <
P

m

j=�m	2(j=m). Hence we have

�0�0�� = (2m+ 1)

2mX
k=�2m



I(k)

1

2m+ 1

mX
j=�m

	(j=m)	f(j + k)=m)g

� (2m+ 1)

2mX
k=�2m



I(k)

1

2m+ 1

mX
j=�m

	2(j=m)

:
= (2m+ 1)

2mX
k=�2m



I(k)

Z 1

�1

	2(u)du

= O(m1��):

In fact, we have

�0�0�� = O(m1��)

uniformly for � 2 (�1; 1). However, the derivation for this result is a little di�erent in

the three cases. Now, note that h = n
�(1��)=(2k+1��), whence, as before, m1�� = h

�2k, so

that
1

4
h
2k	2(0)�0�0�� = h

2k
O(h�2k) <1:

Theorem 1 is proved. 3
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