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based on a binary decision that is asymptotically correct with probability one. The idea

is closely related to the well known technique of pre-whitening.
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1 Introduction

Consider estimation of the fractional differencing parameter d for a Gaussian process Xt with

spectral density

fX(λ) = |1− e−iλ|−2dfu(λ), (1.1)

where d ∈ [−0.5, 0.5), and fu(·) is a symmetric, positive, continuous function on [−π, π]. Note

that fu(·) is the spectral density of the short-memory process ut = (1 − B)dXt. Maximum

likelihood estimation of d (Fox and Taqqu 1986, Yajima 1985, Giraitis and Surgailis 1990,

Dahlhaus 1989, Beran 1994, 1995) requires knowledge of the model or, if combined with model

choice, of the model class (see e.g. Beran et al. 1999). In contrast, semiparametric procedures

do not require full specification of fu. A well known semiparametric method is, for instance,

the so-called GPH estimator, originally proposed by Geweke and Porter-Hudak (1993). It

essentially consists of least squares regression of the log-periodogram versus log λ, using small

frequencies. It is well known that the GPH estimator does not have ideal finite sample properties

due to the dependence of the periodogram ordinates at low frequencies (Künsch, 1986, Hurvich

and Beltrao 1993, Robinson, 1995) and a large bias caused by the relative curvature of fu at

the origin,

βu =: f ′′u (0)/fu(0)

(Hurvich et al. 1998). Numerous improvements of the GPH estimator are proposed in the

literature. Robinson (1994) proposes a semiparametric average periodogram estimator and

Robinson (1995) suggests to exclude a few periodogram ordinates at low frequencies. Giraitis

et al. (1997) discuss how to improve the rate of convergence of the GPH estimator. Other

versions of this estimator may be found e.g. in Hurvich and Beltrao (1994) and Velasco (1999,

2000). Recently, Shimotsu and Phillips (2002) proposed a pooled GPH estimator to allow the

use of a larger number of periodogram ordinates, thus reducing the variance without significant

changes of the bias.

In this paper, we propose to improve the performance of the GPH estimator from a new point

of view. It is shown that the performance of the GPH estimator can be improved significantly,

using a simple family of filters. The essential improvement is based on a binary decision

that is asymptotically correct with probability one. More specifically, note that βu does not

depend on d and measures, for the short-memory process ut, the strength of dependence at low

frequencies. If ut is white noise, then βu = 0. On the other hand, βu = 0 implies fu(0) 6= 0

and f ′u(0) = f ′′u (0) = 0. In view of Condition 2 given later, this means that fu(λ) is very flat at

2



λ = 0 and the behavior of ut at low frequencies is quite similar to white noise. The asymptotic

performance of the GPH estimator is mainly determined by βu (Hurvich et al. 1998). When |βu|
is large, only a very small number of periodogram ordinates can be used to achieve an optimal

trade-off between bias and variance, and the resulting mean squared error is quite large. The

intuitive reason is that, if βu assumes a large positive value, then ut ressembles a long-memory

process, whereas for extreme negative values of βu, ut is similar to an antipersistent process.

The question thus arises whether it is possible to reduce |βu| before estimating d, while avoiding

full estimation of fu or its derivatives. The key idea is to achieve a considerable reduction of

|βu|, without changing d, by applying a simple time invariant linear filter. This approach is

closely related to the well known pre-whitening technique introduced by Blackman and Tukey

(1959) (see also Priestley, 1981, p.556). Here only local pre-whitening is required, in order to

whiten the short-memory part at low frequencies. It is therefore not difficult to choose a simple

class of filters that improves the performance of the original GPH estimator. It is also worth

mentioning that nonparametric kernel and local polynomial regression estimation corresponds

to applying a special filter. Our results thus provide a tool for comparing the performance

of GPH estimators obtained from a stationary process with estimates based on residuals from

nonparametric regression. This was indeed the original motivation of this work.

The paper is organized as follows. In Section 2, the background is explained and the filtered

GPH estimator is defined. Asymptotic properties are derived in Section 3. Conditions under

which the new estimator performs better than GPH are given. It is shown that not only the

finite sample properties but also the rate of convergence can be improved. A one-parameter

class of filters is introduced and discussed in Section 4. Final remarks in Section 5 conclude

the paper. Proofs are given in the appendix.

2 The filtered log-periodogram estimator

Let Yt be a filtered process obtained from Xt by

Yt =
∞∑

j=0

wjXt−j = W (B)Xt, (2.2)

where B is the backshift operator and W (B) =
∞∑

j=0

wjB
j is a time-invariant linear filter with

w0 = 1. Given observations y1, ..., yn, the filtered GPH estimator d̂ is defined as follows. For
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Fourier frequencies λj = 2πj/n (j = 1, ..., k), k = [n/2], let

Ij =
1

2nπ

∣∣∣∣∣
n∑

t=1

yte
itλj

∣∣∣∣∣
2

, j = 1, ..., k, (2.3)

be the periodogram and Zj = log |1− e−iλj | = log |2 sin(λj/2)|. Then

log Ij = (log fv(0)− C)− 2d · Zj + log(fv(λj)/fv(0)) + εj, (2.4)

where εj = log(Ij/fv(λj)), C = 0.577216... is Euler’s constant, fv(λ) = fu(λ)fW (λ) and

fW (λ) =

∣∣∣∣∣
∞∑

j=0

wje
−ijλ

∣∣∣∣∣
2

. (2.5)

is the transfer function of W (Priestley, 1981). Equation (2.4) is an approximate linear regres-

sion relation between log Ij and Zj. For a given integer m ≤ k, we define

d̂ = −1

2

∑m
j=1(Zj − Z̄) log Ij∑m

j=1(Zj − Z̄)2
, (2.6)

where

Z̄ =
1

m

m∑
j=1

Zj. (2.7)

Denote I the identity filter with wo = 1 and wj = 0 (j > 0). Then we obtain the original GPH

estimator d̂GPH , if W = I is used.

3 Properties of the filtered GPH estimator

The main objective is to study the effect of the filter W on d̂, and to see how to choose W in

order to achieve a considerable improvement compared to d̂GPH . The asymptotic properties of

d̂ are obtained by extending Theorem 1 of Hurvich et al. (1998). The following assumptions

will be needed.

Condition 1 m→∞ and (m logm)/n→ 0 as n,m→∞.

Condition 2 0 < Co ≤ fu(λ) ≤ C1 <∞, f ′u(0) = 0, |f ′′u (λ)| < C2 <∞ and |f ′′′u (λ)| < C3 <∞
for all λ in some neighborhood of zero, and suitable finite constants Cj (j = 0, 1, 2, 3).

Condition 3 W is a causal, time-invariant filter with w0 = 1,
∞∑

j=0

wje
−ijλ 6= 0 for all λ ∈ [−π, π]

and
∞∑

j=1

j3|wj| <∞.
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Remark 1 The asssumption f ′u(0) = 0 is natural since it follows from symmetry of fu(λ) and

the existence of f ′′u (λ) in a neighborhood of λ = 0.

Remark 2 The relative curvature of the transfer function fW (or the filter W ) is

βW = f ′′W (0)/fW (0). (3.1)

Under Condition 3, Theorem 1 shows that Condition 2 carries over to fW .

Remark 3 The relative curvature is invariant under linear transformation in the sense that

βau+b = βu for any a 6= 0, b ∈ R.

Remark 4 The fact that d can be estimated from Yt instead of Xt is based on the well known

result (see e.g. Theorem 4.3.1 in Fuller, 1996) that under Condition 3, the spectral density of

Yt exists and is given by

fY (λ) = f(λ)fW (λ)

= |1− e−iλ|−2dfu(λ)fW (λ) (3.2)

=: |1− e−iλ|−2dfv(λ),

where

fv(λ) = fu(λ)fW (λ) (3.3)

is the spectral density of the (short-memory) process vt = (1−B)dYt.

Let βv denote the relative curvature of fv. The performance of the original GPH estimator

will be improved, if W is such that |βv| < |βu|. Therefore, in a first step, a formula for βv is

needed. The value of βv depends in turn on the relative curvature βW . The following theorem

provides a connection between simple sufficient conditions on the weights wj and regularity

conditions for fW , as well as a formula for the relative curvature of a convolution of filters.

Theorem 1 i) Under Condition 3, fW (λ) satisfies Condition 2.

ii) Let W be the convolution of k filters, W1, ..., Wk, all of which satisfy Condition 3. Denote

by βW , βW1 , .., βWk
the relative curvatures of W , W1, ..., Wk. Then

βW =
k∑

j=1

βWj
. (3.4)
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An equally simple formula can be obtained for the inverse filter. Under Condition 3, the

inverse filter W I , defined by W I ⊗W = W ⊗W I = I, exists. Here, ⊗ denotes the convolution

and I is the identity filter defined before. The relative curvature of W I is given by

Lemma 1 Let W be a filter with relative curvature βW . Then, under Condition 3, the transfer

function of its inverse filter W I satisfies Condition 2 and has relative curvature βI
W = −βW .

Sufficient assumptions that imply Condition 2 for fu are given by

Corollary 1 Let ut be a stationary process with Wold representation

ut = Ψ(B)εt =
∞∑

j=1

ψjεt−j + εt (3.5)

where
∞∑

j=1

j3|ψj| <∞ and εt are identically distributed uncorrelated zero mean random variables

with finite variance. Then Condition 2 holds for the spectral density fu(λ) of ut.

The relative curvature of fv(λ) now follows from Theorem 1:

Corollary 2 Let fv(λ) = fu(λ)fW (λ) be as defined in (3.3). Assume that fu(λ) satisfies Con-

dition 2 and the filter W satisfies Conditions 3. Then fv(λ) satisfies Condition 2 and its relative

curvature

βv =
f ′′v (0)

fv(0)

is given by

βv = βu + βW , (3.6)

where βu, βW are the relative curvatures of fu(λ) and fW (λ), respectively.

The proof of Corollary 2 is straightforward and is omitted. Note that vt can be obtained by

applying the convoluted filter W ⊗Ψ to εt. Therefore (3.6) follows immediately from (3.4).

The implication of (3.6) is that the filter W leads to an improved estimator of d, if

|βu + βW | < |βu|.

This is quite a weak condition, particularly when |βu| is large, where, i.e. where the GPH

estimator performs poorly. The ideal filter would be, of course, the unknown inverse filter
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ΨI . However, full pre-whitening for all frequencies is not necessary. It is sufficient to achieve

fW (λ) ≈ const · f−1
u (λ) in a neighborhood of the origin so that f ′′v (0) ≈ 0 and βv ≈ 0. We will

see below that this can be achieved for a wide range of filters, and detailed knowledge of fu is

not required. A related idea is the use of a taper as proposed e.g. by Velasco (2000). However,

the filtered GPH estimator is different, because a taper is not a time-invariant filter.

Using Corollary 2 of Theorem 1 in Hurvich et al. (1998) may easily be extended to the

filtered estimate d̂:

Theorem 2 Under Conditions 1 to 3 we have

E(d̂− d) =
−2π2βv

9

m2

n2
[1 + o(1)] +O

(
m3 logm

n3

)
+O

(
log3m

m

)
, (3.7)

var(d̂) =
π2

24m
[1 + o(1)] , (3.8)

MSE(d̂) =
4π4β2

v

81

m4

n4
[1 + o(1)] +

π2

24m
[1 + o(1)] (3.9)

+O

(
m6(logm)2

n6

)
.

Remark 5 Both, the bias and the MSE of d̂, depend on βv. For a given filter, the formula for

the MSE of d̂ is analgous to the one for d̂GPH , with βu in the dominating term of the bias being

replaced by βv.

Remark 6 If βv 6= 0, then the bias of d̂ is dominated by the term of order O((m/n)2). On

the other hand, if W is such that βW = −βu, then βv = 0 and the dominating term is of the

smaller order O (logm · (m/n)3).

The following proposition shows when d̂ performs better than d̂GPH . Note that, the case

βu = 0 is excluded, since there the original GPH estimator performs well and filtering does not

lead to any improvements.

Corollary 3 Let βu 6= 0, and W such that

−2 <
βW

βu

< 0 (3.10)

or equivalently

−1 <
βv

βu

< 1. (3.11)

Then the dominating term in the bias of d̂ is smaller than the corresponding term for d̂GPH .
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The proof of Corollary 3 is straightforward and is therefore omitted. The result leads to the

following rule for choosing a filter:

• If βu > 0, then d̂GPH can be improved by applying a filter with −2βu < βW < 0.

• If βu < 0, then W should be such that 0 < βW < −2βu.

Remark 7 The effect of filtering can be explained in detail as follows. All filters satisfying

Condition 3 may be grouped according to the value of βW . Consider the case βu < 0, i.e.

f ′′u (0) < 0 and fu is convex at zero. Then the dominating term in the bias of d̂GPH is positive.

Applying a filter with βW < 0 increases the positive bias term so that d̂GPH is corrected in the

wrong direction. On the other hand, if W is such that 0 < βW < −βu, then the dominating

bias term of d̂ is still positive but smaller than for d̂GPH . In the optimal case with βW = −βu,

the first term in (3.7) vanishes and the bias of d̂ is even of a smaller order of magnitude. If

−βu < βW < −2βu, then the dominating bias term of d̂ is negative but with a smaller absolute

value. If βW > −2βu, then the dominating bias term of d̂ is negative and its absolute value is

larger. Thus, d̂GPH is over-corrected.

Theorem 2 implies an optimal choice of the number m of Fourier frequencies used in the

regression estimate. Assume that f ′′v (0) 6= 0. Then, in analogy to Hurvich et al. (1998), the

optimal m that minimizes the dominating part of MSE(d̂) is given by

mopt =

(
27β−2

v

128π2

)1/5

n4/5. (3.12)

The value of mopt strongly depends on βv and hence on βW . If βW satisfies (3.10) resp. (3.11),

then β2
v < β2

u, m
opt > mopt

GPH and MSEopt(d̂) < MSEopt(d̂GPH) asymptotically. The latter follows

since both, the squared bias and the variance, are reduced by filtering. If a filter with βW = −βu

could be chosen, then mopt would even be of a larger order than O(n4/5) so that the rate of

convergence of d̂ would be faster than the one of d̂GPH .

4 A simple class of filters

To make the results in the previous section applicable, we consider a specific class of filters.

Let

F(α,k)(B) = 1− α

∞∑
j=1

j−k

ζ(k)
Bj =

∞∑
j=0

ψjB
j, (4.1)
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where −1 < α < 1, k > 4, ψ0 = 1,

ψj = −αj
−k

ζ(k)
, j = 1, ... (4.2)

and

ζ(k) =
∞∑

j=1

j−k (4.3)

is Riemann’s ζ-function. Note that ζ decreases monotonically in k and lim
k→∞

ζ(k) = 1. The

factor ζ−1(k) is introduced in oder that
∞∑

j=1

ψj = α.

Lemma 2 The filter F(α,k) defined above satisfies Condition 3.

Denote by fα(λ) the transfer function of F(α,k) and by β(α, k) the relative curvature of fα(λ).

We have

Theorem 3 i) The relative curvature of fα(λ) is equal to

β(α, k) =
2α

(1− α)2

ζ(k − 2)

ζ(k)
=

2α

(1− α)2
q(k) (4.4)

and increases monotonically in α, where q(k) = ζ(k− 2)/ζ(k). Moreover, β(0, k) = 0 for

any k > 4.

ii) For any βu < 0 there exit two unique 0 < α0 < α1 such that β(α0, k) = −βu and

β(α1, k) = −2βu.

Theorem 3 shows that, for βu < 0, the range of α where filtering improves the GPH-

estimate of d is 0 < α < α1. The larger |βu| the larger is this range, due to the monotonicity

of β(α, k). A similar result can be obtained for positive values of βu, however only if βu is not

too large. If βu >> 0.5, then an α0 such that β(α0, k) = −βu does not exit. The reason is that

lim
α→−1

β(α, k) ≥ −0.5 infk q(k) > −∞ so that β(α, k) cannot reach −βu for any α ∈ (−1, 1). As

a result, the correction by F(α,k) will always be suboptimal, independently of the choice of α.

For the case βu > 0, we therefore propose to use instead the inverse filter of F(α,k), denoted by

F I
(α,k)(B) =

∞∑
j=0

ϕjB
j. (4.5)

Lemma 2 implies the existence of F I
(α,k). Exact and approximate formulas for the coefficients

ϕj are given by
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Theorem 4 i) The coefficients of F I
(α,k)(B) are given by ϕ0 = 1, ϕ1 = −ψ1 and, for j ≥ 1,

ϕj = −
j∑

l=1

ψlϕj−l. (4.6)

ii) For any j = 0, 1, ...

ϕj =
αj

ζj(k)
+O(2−k). (4.7)

Denote the relative curvature of F I
(α,k) by βI(α, k). Lemma 1 and Theorem 3 imply

Corollary 4 i) The relative curvature of F I
(α,k) is given by

βI(α, k) = − 2α

(1− α)2
q(k) (4.8)

and decreases monotonically in α, where q(k) is as defined in Theorem 3. Moreover,

βI(0, k) = 0 for any k > 4.

ii) For any βu > 0 there exit two unique 0 < α0 < α1 such that βI(α0, k) = −βu and

βI(α1, k) = −2βu.

These results lead to the following rule:

• If βu > 0, then apply F I
(α,k).

• If βu < 0, then apply F(α,k).

Two tuning parameters are not specified in this rule, namely k and α. The first parameter

k is not critical, in the sense that for any given k > 4, there always exist two unique |α0| < |α1|
such that the results ii) in Theorem 3 and Corollary 4 hold. We may therefore prefer a simplified

filter where k does not occur. The simplest solution is to consider the limits of F(α,k) and F I
(α,k)

as k tends to infinity. We first define the limit of a sequence of filters.

Definition 1 Let Wk, k = 1, 2, ..., with weights wjk (j = 0, 1, 2, ...), w0k ≡ 1, denote a

sequence of filters. Then a given filter W with weights wj, j = 0, 1, ... is called the limit of Wk,

as k →∞, if lim
k→∞

wjk exist for all 1 ≤ j <∞ and

sup
j
| lim

k→∞
wjk − wj| = 0. (4.9)
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Following Definition 1 it is clear that if the limit of a sequence of filters exists, then it

is unique. Furthermore, it can also be shown that, if the relative curvatures of Wk are βWk

(k = 1, 2, ...), and that of W is βW , then

lim
k→∞

βWk
= βW .

The following lemma shows that the limits of F(α,k) and F I
(α,k) exist and are two well known

classes of filters.

Lemma 3 For any −1 < α < 1 and the sequences of filters F(α,k+4) and F I
(α,k+4), k = 1, 2, ...,

we have

i) limk→∞ F(α,k)(B) = (1− αB) =: F(α,MA)(B),

ii) limk→∞ F
I
(α,k)(B) = (1− αB)−1 =: F(α,AR)(B),

iii) FAR(α) = F I
MA(α).

Thus, F(α,MA)(B) and F(α,AR)(B) are the first order moving average (MA) and the first order

autoregressive (AR) filters. By taking limits, we obtain

Lemma 4 Denote the relative curvature of F(α,MA) and F(α,AR) by βMA(α) and βAR(α) respec-

tively. Then

βMA(α) =
2α

(1− α)2
(4.10)

and

βAR(α) =
−2α

(1− α)2
. (4.11)

The proof of this lemma is omitted. Note that βMA(α) increases monotonically in α, with

lim
α→1

βMA(α) = ∞ and lim
α→−1

βMA(α) = −0.5. Thus, for any βu < 0 there exists a unique α0

such that βMA(α) = −βu, whereas this is not the case if βu > 0.5. On the other hand, βAR(α)

decreases monotonically in α with lim
α→1

βAR(α) = −∞ and lim
α→−1

βAR(α) = 0.5. Therefore, for

any βu > 0 there exists a unique α0 such that βAR(α) = −βu, whereas no such α exists if

βu < −0.5. This motivates the following definitions

Definition 2 For α ∈ (0, 1), τ ∈ {−1, 1}, define

Fα,τ (B) =

{
F(α,MA)(B) , for τ = 1,

F(α,AR)(B) , for τ = −1.
(4.12)
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Definition 3 Let α ∈ (0, 1), τ =-signβu, and Yt = Fα,τ (B)Xt. Then d̂ = d̂(α) based on

y1, ..., yn is called the α−filtered GPH estimator.

Remark 8 Note that d̂(0) = d̂GPH .

For fixed α, the calculation of d̂(α) requires the knowledge or estimation of the sign of

βu. Estimating a sign corresponds to a 0-1-decision, and is therefore easier than estimating

βu itself. Asymptotically, signβu can be estimated correctly with probability one, and the

asymptotic mean squared error of d̂ is not affected. The only remaining problem is therefore

the choice of α. Theoretically, the range of α−values that improve estimation of d follows from

the results above:

Theorem 5 i) The relative curvature of the filter Fα,τ (B) is given by

βF (α, τ) = βF (α · τ) =
2ατ

(1− α)2
(4.13)

As a function of α ·τ , βF (α ·τ) is antisymmetric and monotonically increasing, with βF (0) = 0,

lim
ατ→−1

βF (ατ) = −∞ and lim
ατ→1

βF (ατ) = ∞.

ii) For any −∞ < βu < ∞ there exist two unique 0 ≤ α0 ≤ α1 such that βv(α0τ) = 0 and

βv(α1τ) = −βu where τ =-signβu. For any α ≤ α1 we have

lim
n→∞

MSEopt(d̂(α))

MSEopt(d̂GPH)
≤ 1.

More explicitely, α0 = α1 = 0 for βu = 0 and, for βu 6= 0,

α0 =
1 + |βu| −

√
1 + 2|βu|

|βu|
, (4.14)

α1 =
1 + 2|βu| −

√
1 + 4|βu|

2|βu|
. (4.15)

Remark 9 The solutions α0 and α1 do not depend on n and m. In the special case where ut

itself is an AR(1) process with coefficient ϕ > 0, we have α0 = ϕ. Similarily, if ut is an MA(1)

process with coefficient ψ < 0, then α0 = −ψ. In these two cases, the short-memory process ut

is pre-whitened completely and d̂(α) is essentially a parametric estimator.

A small simulation study confirms the theoretical results and the use of the filter Fα,τ (B)

defined in (4.12). This will not be reported here to save space. However, how do we chose α
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practically, i.e. if βu is unknown? First of all note that β2
v(α) is concave with minimum zero at

α0. Also, the optimal value of α does not depend on m or n. In contrast, the optimal number of

frequencies, mopt, defined in (3.12) strongly depends on βv and hence on α. Instead of trying to

find mopt directly, it is therefore much easier to first estimate αo by minimizing an estimate of

the dominating term of the squared bias. The latter can be done using any reasonable m. Once

α is selected, m can be chosen by applying, for instance, the algorithm in Hurvich and Beltrao

(1994) to the filtered data. An explicit development of a data-driven algorithm and its practical

implementation is beyond the aim of the current paper and will be discussed elsewhere.

5 Final remarks

In this paper, we discussed the effect of filtering on the GPH-estimator of the fractional parame-

ter d. A modification was proposed based on a class of filters characterized by a one-dimensional

parameter α and the sign of βu. The method focusses on eliminating the main source of bias,

and provides the basis for a simple but effective data-driven algorithm. Since nonparametric

regression estimators correspond to special filters, the results also provide a tool for comparing

the performance of estimators obtained from a stationary process with those based on residuals

from nonparametric regression.
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Appendix: Proofs of results

Proof of Theorem 1. i) Note that

fW (λ) =

∣∣∣∣∣
∞∑

j=0

wje
−ijλ

∣∣∣∣∣
2

=

(
∞∑

j=0

wj cos(jλ)

)2

+

(
∞∑

j=1

wj sin(jλ)

)2

. (A.1)

fW (λ) is bounded from zero, since
∑∞

j=0wje
−ijλ 6= 0 for λ ∈ [−π, π]. And fW (λ) is bounded

from above, because
∑∞

j=1 |wj| <∞ which is satisfied, because
∑∞

j=1 |wj| ≤
∑∞

j=1 |j|3|wj| <∞.

Under this condition f ′W (λ) exists and is given by

f ′W (λ) = −2

(
∞∑

j=0

wj cos(jλ)

)(
∞∑

j=0

jwj sin(jλ)

)

+2

(
∞∑

j=1

wj sin(jλ)

)(
∞∑

j=1

jwj cos(jλ)

)

= −2w0

(
∞∑

j=1

jwj sin(jλ)

)
, (A.2)

which is antisymmetric and bounded on [−π, π] with f ′W (0) = 0. Straightforward calculation

shows that f
(k)
W (λ) exists and is bounded, if

∑∞
j=1 |j|k|wj| < ∞. Hence, under the condition∑∞

j=1 |j|3|wj| < ∞, we have both |f ′′W (λ)| < ∞ and |f ′′′W (λ)| < ∞ for all λ ∈ [−π, π]. Thus

Condition 2 is satisfied.

ii) LetW be the convolution ofW1, ..., Wk, k ≥ 2. Let fW (λ), fW1(λ), ..., fWk
(λ) denote their

transfer functions, all of them have zero derivative at λ = 0 and bounded second derivatives.

Following the idea of Remark 4 (cf. the proof of Theorem 4.3.1 in Fuller, 1996) it is easy to

show that, if k = 2, fW (λ) = fW1(λ)fW2(λ). This can then be generalized to

fW (λ) =
k∏

j=1

fWj
(λ). (A.3)

Under the assumptions of Theorem 1 we have

f ′′W (λ) =
k∑

j=1

f ′′Wj
(λ)
∏
l 6=j

fW1(λ) +
k∑

j=1

k∑
l=1,l 6=j

f ′Wj
(λ)f ′W1

(λ)
∏

m6=j,m6=l

fWm(λ).

Note that f ′Wj
(0) = 0 for all j. We have

βW =
f ′′W (0)

fW (0)

14



=

∑k
j=1 f

′′
Wj

(0)
∏

l 6=j fW1(0)∏k
j=1 fW (0)

=
k∑

j=1

f ′′Wj
(0)

fWj
(0)

=
k∑

j=1

βWj
. (A.4)

Theorem 1 is proved. �

Proof of Lemma 1. Let fI(λ) be the transfer function of I. We have fI(λ) ≡ 1 and

fW I (λ) =
1

fW (λ)
, (A.5)

which is bounded from zero and bounded above, if fW (λ) is. Furthermore,

f ′WI(λ) =
−f ′W(λ)

f 2
W(λ)

. (A.6)

Hence f ′WI(0) = 0 provided f ′W(0) = 0. Similarly, f ′′WI(λ) and f ′′′WI(λ) are bounded in a neigh-

bourhood of λ = 0, if fW(λ) satisfies Condition 2.

Following (A.5), it can be further shown that

f ′′WI(0) =
−f ′′W(0)

f 2
W(0)

. (A.7)

Also,

βWI =
f ′′WI(0)

fWI(0)

=
−f ′′W(0)

f 2
W(0)

fW(0)

= −f
′′
W(0)

fW(0)

= −βW. (A.8)

Lemma 1 is proved. �

Proof of Corollary 1. Note that ut is a MA(∞) process with iid innovations εt and

absolutely summable coefficients. It is well known that (see e.g. Corollary 4.3.1.1 in Fuller,

1996) the spectral density of such a process is given by

fu(λ) =
σ2

ε

2π

(
∞∑

j=0

ψje
−ijλ

)(
∞∑

j=0

ψje
ijλ

)
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=
σ2

ε

2π

(
∞∑

j=0

ψj [cos(jλ)− i sin(jλ)]

)(
∞∑

j=0

ψj [cos(jλ) + i sin(jλ)]

)

=
σ2

ε

2π


(

∞∑
j=0

ψj cos(jλ)

)2

+

(
∞∑

j=1

ψj sin(jλ)

)2
 , (A.9)

which is up to a positive constant factor the same as the transfer function of the linear filter

with ψj as coefficients. Hence results in Theorem 1 i) hold for fu. �

Proof of Theorem 2. Here only a very brief description as a connection between the proofs

of Theorem 2 here and Theorem 1 in Hurvich et al. (1998) will be given. For more details we

refer the reader to original proof.

Corollary 2 ensures that under Conditions 1 to 3 the conditions of Theorem 1 in Hurvich

et al. (1998) are all fulfilled. Let I∗j denote the periodogram ordinates at λj of the original

process Xt and define ε∗j = log(I∗j /f(λj)). Following the idea of Remark 4 and (A.3) it can be

shown that

Ij = I∗j fW(λj)[1 +Op(n
−1)] (A.10)

and

εj = ε∗j [1 +Op(n
−1)], (A.11)

where the Op(n
−1) term is due to the finite sample. This shows that the asymptotic variances

of d̂ and d̂GPH are the same up to a O(n−1) term, which is given in (3.8). See also (5) in Hurvich

et al. (1998).

The bias of the GPH estimator is quantified by (4) in Hurvich et al. (1998). All of the details

of the proof of Theorem 1 in Hurvich et al. (1998) related to the bias part stay asymptoti-

cally unchanged by replacing fu(λ) with fv(λ), because fv(λ) also satisfies the corresponding

assumptions. The dominating part of the bias is given in Lemma 1 there. Note in particular

that the o
(

m2

n2

)
term there is indeed of the order O

(
m3 log m

n3

)
(see the proof of Lemma 1 in

Hurvich et al., 1998). This concludes the proof of Theorem 2. �

Proof of Lemma 2. For F(α,k) we have
∑∞

j=0 ψje
−ijλ > 0 for all λ ∈ [−π, π], because φj

are of one sign for j > 0 and
∑∞

j=1 |ψj| = |α| < 1. Furthermore, the condition k > 4 ensures

that ∞∑
j=1

j3|ψj| ≤
α

ζ(k)

∞∑
j=1

j−2 <∞.

�
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Proof of Theorem 3. i) Following (A.1) we have

fα(0) =

(
∞∑

j=0

ψj

)2

= (1− α)2. (A.12)

Following (A.2) we can obtain

f ′′W(λ) = −2

(
∞∑

j=1

j2ψj cos(jλ)

)
. (A.13)

Hence,

β(α, k) =
f ′′α(0)

fα(0)

=
2α

(1− α)2

∑∞
j=1 j

k−2

ζ(k)

=
2α

(1− α)2

ζ(k − 2)

ζ(k)
. (A.14)

ii) Straightforward calculation shows that

β′(α, k) =
2

(1− α)3

ζ(k − 2)

ζ(k)
> 0 for all α ∈ (−1, 1).

Thus, β(α, k) is continuous, increases monotonically in α with β(0, k) = 0 and β(α, k) →∞ as

α→ 1. Hence, for any βu < 0, unique solutions α1 and α2 exist such that β(α1, k) = −βu and

β(α2, k) = −2βu which satisfy 0 < α1 < α2 < 1, because 0 < −βu < −2βu <∞. �

Proof of Theorem 4. i) By definition we have

F(α,k)(B)⊗ F I
(α,k)(B) =

(
∞∑
i=0

ψiB
i

)(
∞∑

j=0

ϕjB
j

)
≡ 1. (A.15)

The first part can be proved by matching the orders on the left- and right-hand sides of (A.15).

Thus, ψ0ϕ0 = 1, implying ϕ0 = 1, and for any j > 0, (4.6) follows from

j∑
l=0

ψlϕj−l = 0.

ii) Now we will give more detailed calculations to show that simple closed form formulae for

ϕj might not exists. For j = 1 we have

ϕ1 = −ψ1 =
α

ζ(k)
,
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for j = 2

ϕ2 = −ψ1ϕ1 − ψ2 =
α2

ζ2(k)
+
α2−k

ζ(k)
,

for j = 3

ϕ3 = −ψ1ϕ2 − ψ2ϕ1 − ψ3

=
α

ζ(k)

(
α2

ζ2(k)
+
α2−k

ζ(k)

)
− α22−k

ζ2(k)
+
α3−k

ζ(k)

=
α3

ζ3(k)
+
α3−k

ζ(k)

and for j = 4

ϕ4 = −ψ1ϕ3 − ψ2ϕ2 − ψ3ϕ1 − ψ4

=
α

ζ(k)

(
α3

ζ3(k)
+
α3−k

ζ(k)

)
+
α2−k

ζ(k)

(
α2

ζ2(k)
+
α2−k

ζ(k)

)
− α3−k

ζ(k)

α

ζ(k)
+
α4−k

ζ(k)

=
α4

ζ4(k)
+
α32−k

ζ3(k)
+
α24−k

ζ2(k)
+
α4−k

ζ(k)
.

For j > 4 we can see that the first term of −ψ1ϕj−1 is always αj

ζj(k)
, which is the dominating

term of ϕj. All other terms are at most of the order O(2−k). �

Proof of Lemma 3. i) Note that ψ1 → α and ψj → 0 for j > 1, as k → ∞. Thus,

F(α,k)(B) → (1− αB) as k →∞.

ii) Following ii) of Theorem 4 we have ϕj → αj for all j = 0, 1, ..., as k → ∞. These are

the coefficients of (1− αB)−1. Thus, F I
(α,k)(B) → (1− αB)−1 as k →∞.

iii) This result is obvious. �

Proof of Theorem 5. i) Results in this part can be obtained by simply combining the two

formulae given in Lemma 4 and by checking their limits.

ii) Note that for βu = 0 we have obviously α0 = α1 = 0. Hence we will only consider the

case with βu 6= 0. For βv = 0 we have βF(ατ) = −βu. α0 can be obtained by solving the

equation
2α0τ

(1− α0)2
= −βu. (A.16)

For βu > 0 we have τ = −1 and
2α0

(1− α0)2
= βu. (A.17)

Straightforward calculation leads to the solution

α0 =
1 + βu ±

√
1 + 2βu

βu

. (A.18)
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Note that α0 < 1. Hence, the unique solution is

α0 =
1 + βu −

√
1 + 2βu

βu

. (A.19)

For βu < 0 we have τ = 1, leading to the unique solution

α0 = −1− βu −
√

1− 2βu

βu

. (A.20)

For βv = −βu we have βF(ατ) = −2βu. Similarly the unique solution of

2α1τ

(1− α1)2
= −2βu (A.21)

is

α1 =
1 + 2βu −

√
1 + 4βu

2βu

(A.22)

for βu > 0 and

α1 = −1− 2βu −
√

1− 4βu

2βu

(A.23)

for βu < 0.

For βu > 0 we have

α1 − α0 =
2
√

1 + 2βu − (1 +
√

1 + 4βu)

2βu

. (A.24)

Let T1 = 2
√

1 + 2βu and T2 = 1 +
√

1 + 4βu. T1 and T2 are both positive, and

T 2
1 − T 2

2 = 2(1 + 2βu −
√

1 + 4βu)

= 2(
√

1 + 4βu + 4β2
u −

√
1 + 4βu) > 0.

Thus, 0 < α0 < α1 < 1 for βu > 0. This also follows from the monotonicity of βF(α). Similarly,

we have 0 < α0 < α1 < 1 for βu < 0, too. Furthermore, all of these solutions can be summarized

in the form given in (4.14) and (4.15).

For any α ≤ α1 we have β2
v ≤ β2

u. Following (3.12) we have mopt

d̂(α)
≥ mopt

d̂GPH
. This results

in that the two dominating terms of MSEopt(d̂(α)) as given in (3.9) are both asymptotically

smaller than those for MSEopt(d̂GPH), respectively. We have therefore

lim
n→∞

MSEopt(d̂(α))

MSEopt(d̂GPH)
≤ 1.

�
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