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The validity of the Hotelling’s rule, the fundameahtheorem of nonrenewable resource
economics, is limited by its partial equilibriumtage. One symptom of this limitation
may be the disagreement between the empirical es&leshowing stable or declining
resource prices, and the rule, predicting expoakytincreasing prices. In this paper,
we study the optimal depletion of a nonrenewalglgource in a dynamic general
equilibrium framework. We show that, in the longnrthe price of a nonrenewable (i) is
constant when the nonrenewable is essential inugtaah, and (ii) increases only if the
rate of return of capital is larger than the cdmlgpreciation rate and the non-renewable
is an inessential input in production. We belieliattour model offers a theoretical
explanation to non-growing nonrenewable prices lagnkce at least partially solves the
paradox between the Hotelling’s rule and the erogirregularity. We also show that
two factors play a crucial role in determining tloeag run behavior of nonrenewable
prices, namely the elasticity of substitution beswenput factors, and the long run
behavior of the real interest rate. Another majdni@vement of this study is the full
analytical solution of the model under a Cobb-Dasdkchnology.
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Growth and Development

Introduction

In his seminal article, Hotelling (1931) showedttllae price for a nonrenewable
resource will rise at the real interest rate ireffitient market equilibrium,1 a result known as
the ‘Hotelling’s rule’ since then. Hotelling’s rulkas become the pillar of the theory of
nonrenewable resource economics and has provigefitidamental insight into the long-run
behavior of the price and extraction of a resoginee then.2 In time, it has been documented
that the Hotelling’s rule is not supported by engair evidence. In particular, almost all
empirical studies have shown that nonrenewableuress have either declining or constant
prices in the last 150 years (e.g., see Krautkraeh®98). The response to this paradox has
been the modification of the basic Hotelling’s fadation by incorporating additional
elements into the model (e.g., exploration cosdpjtal investment and capacity constraints,
ore quality variations, output substitution, or erainty), although some authors tried
alternative econometric techniques or data so generate rising resource prices.

Surprisingly, no one ever questioned a probablatage in Hotelling’'s approach,
namely the exogeneity of the discount rate. Thigepapproaches the paradox from this point
of view and shows that the paradox may indeed G&tidus in the sense that the true
Hotelling’s rule may not suggest an ever-increasiogrenewable resource price, at least not
in all instances. Recall that Hotelling’s rule takie interest rate as given if the resource
sector is considered in isolation. Critical infotina is hence lost because the interaction
between the marginal productivity of capital and titonrenewable resource is not taken into
consideration. In a general equilibrium setting tlom other hand, the level of extraction has a
determining role on the marginal productivity opttal and hence on the real rate of interest,
where the latter influences the resource price thedevel of extraction. Hence, in general
equilibrium, the resource price and real interagt are determined simultaneously, in sharp
contrast with the partial equilibrium approach. ustillustrate this endogenous determination
of factor prices in case both inputs are essedtiihe marginal productivity of capital
decreases if the percentage change in resourcaceatr is dominated by the decline in
percentage change in capital. It follows that #wtal rate of capital decreases. Consequently,
the rate of increase in the price of the nonrenévaleclines because, according to the
Hotelling’s rule, the rate of increase of the reseurice cannot deviate from the real interest
rate. Therefore, the endogenous interaction betvi@etor prices and factor quantities may
define a different time pattern for resource ptltan what partial equilibrium Hotelling’s rule
suggests. We believe that this critical endogeniotsraction is missing in the ‘partial
equilibrium’ version of the Hotelling’s rule. Henca contradiction may arise between
empirics and theory. The paradox vanishes if a ‘fdete” solution, in the sense of an
integrated nonrenewable resource sector and agguidr, is studied.

The Hotelling’s rule was incorporated into (neoslaal) growth theory a long time
ago, especially in the issue of sustainability.Salvpapers written in the 1970s hinted at the
two means of achieving sustainability when an eoonas dependent on nonrenewable
resource: substitution for a reproducible factod &&chnological change (see Dasgupta and
Heal (1974) and Stiglitz (1974a)). Surprisingly egb, these studies ignored a distinguishing
feature of growth models with nonrenewable resatbat we believe prevented them to
expose the true general equilibrium version of Hugelling’s rule. A peculiar characteristic
of growth models with nonrenewables that have meanginal cost of extraction is that the
resource price and rental rate of capital ratioy @idpends on the ratio of capital and resource
extraction. Further, the resource price path caddiermined independently from the rest of
the model (i.e., consumption, capital, and resoesteaction). If the rental rate of capital and
the interest rate used to discount profits in tkieaetion sector are assumed identical, it leads
to a differential equation in terms of capital-nesm®e extraction ratio that does not have any
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counter-force on the accumulation of this ratioe Bnd result turns out to be a distortion of
the solutions of rental rate of capital and reseymice. A good illustration is the basic Solow
(1956) model. If depreciation is removed from thedamental equation of growth, capital
and hence output would grow to infinite levels. gsta and Heal (1974) and Stiglitz

(1974a) neglected this aspect.4 However, Hotellimgle (that prices must grow to infinity) is

not in general reproduced if capital depreciatesaur paper shows exactly this.

A summary of our model is as follows. There are tactors of production, namely a
reproducible capital and a nonrenewable resournd, ane final output, which can be
consumed or invested. The two factors may be camgas or substitutes in the production
of the final good. Profit-maximizing firms operagirin the good market imply a unique
resource price/rental ratio and a correspondingr@btcapital/resource ratio. A nonrenewable
resource-extracting sector solves the dynamic prolif maximizing discounted profits over
an infinite horizon, constrained by the initial dtoof the nonrenewable. An exogenous
savings rate assumption in the Solovian (Solow §)PSense on the allocation of factor
income and market clearing conditions for capital the nonrenewable complete the model.

The organization of the paper is as follows. Theosd section presents the model
under the Cobb-Douglas technology assumption. Wawvsthat the paradox between the
Hotelling’s rule and the empirical evidence mayded be fictitious and that the true
Hotelling’s rule may suggest a constant nonrenesvabkource price. The third section
discusses the CES version of the model and presemerical simulation results. The last
section presents concluding remarks.

The Model

We assume that physical capital K and a nonren@naisburce R are used to produce
a final good Y. The final good production technglog represented by F (K, R). It is
supposed that F (¢) is increasing, strictly concawee differentiable, homogenous of degree
one, and shows a constant elasticity of subsitut{CES) between K and R. The
nonrenewable resource sector production technoledyased on extraction. For matter of
simplicity, we assume that the intertemporal cornsiizn-investment trade-off is given to the
model, as in Solow (1956). Our motivation behing eissumption is that it allows us to solve
the model analytically, which then, enables us tovigle extremely valuable additional
insights about the transitional behavior of all #agiables in the model. We are aware of the
fact that we miss some information by ignoring iteemporal household allocation decisions
between consumption and savings. Nevertheless,elevb that the gain we make by this
simplification is larger than the loss. Furthermonee will show below that the constant
savings rate assumption does not play any rolearidng run behavior of the nonrenewable
resource price (and other variables).

Production Sector

Let us take the final good’s price to be numeraase traditionally done. The
representative firm producing output Y solves thabfem:

ax{Y —Clr, g Y) (1)
max{Y — C(r,q,Y)} i)

where r and g are the rental rate of capital aechttnrenewable resource price and C (r, q, Y
) is the optimized value (or cost function) of thest minimization problem:
C= ;gtgpn {rK +qR|Y = F(K,R)} (2)
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For analytical tractability we will exploit the Cb#Douglas technology in the
production of utput Y. In Section 3 we will geneézalthe model by using a CES technology.
S s B 0 et o
It is easy to how that if the technology is of fGebb-Douglas type, sa‘,l', = KORT,
then the cost function associated with problene(f)als

e l—o
C(r.q.¥) =MC (r,q)Y = (<) (1 . ) d 3)
¥ —

where MC (r, q) is the marginal cost of producingna of output Y. The conditional factor
demands for K and R can be found by applying Shefdhaemma to the cost function:

K=C,(r,qY)=MC;(r.q) Y (4)
and
R=Cu(r,g.Y)=MC,(r.q)Y (5)

The constant returns to scale property of the telclyy implies that C (r, g, Y ) is linear in Y
and thus the profit maximization problem (1) carrderitten as

Y2
Note that profit maximization implies

mai}‘»{ {Y —MC(r.q)Y} (6)

MC (r.q) = 1 ")

or the well known zero profit condition of perfemmpetition, where marginal cost equals
output price. In this economy, we assume that atitma s of total output Y is used to
accumulate the capital stock of the economy irfah@ of investment

K =sY — 6K (8)
where s is the exogenous saving ratés the depreciation rate, and a dot over a vaiabl

denotes its time derivative. We assume that the@og begins with an amount of physical
capital KO. Using (3) and (4) the demand for cdpgeaven output level Y , is found to be

MC (r,q) .
K = w} = i){ (9)
T T

Using (3) and (7) we can solve for r as follows

Solving for Y from (9) , and substituting for Y andh equation (8) we obtain

: - s (a®(1—a) 2\ .
K=k 5= (_) K — 6K (1)
o o g~ '

This is nothing but a first order differential etjoa with a variable coefficient and its
solution is
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e ae "L: jl::anl;l—ﬂ_:l-'_njlg |'\.—.:|_]+g—;:" dr
K (1) = Koelo (0100t _ g’ ( q } (12)
If we knew the path of q (t) then from (12) thelpat K (t) would also be known. To

solve for the path of g (t) we now look at the rearewable extracting sector’s problem.
Extraction Sector

Hotelling (1931) determined the optimal extractimihnonrenewable resources in a
perfectly competitive market economy in a partigliébrium setup. We exploit his setup in
order to determine the dynamics defined by theuresosector. Suppose that extraction is
costless. The representative firm taking q as gigelves the following maximization

problem:
o0 e P . N g o0
max {f q {fj Rt e Jg lriT)—djdr f B '::tt' < S } 1.13,
RZ0 0 0

According to equation (13), the representative fimihe resource sector maximizes
discounted profits over an infinite horizon subjexthe physical resource constraint that total
extraction can be utmost the initial stock SO. 18)( r (t) —d is the real interest rate. In
contrast to the partial equilibrium Hotelling’'sppach the real interest rate is endogenously
determined in our model. Equation (13) is an ismpeiric problem of calculus of variations.
The Lagrangian integrand becomes

L =q(t) R(t) e~ JorM=0dr _ \p(¢) (14)

where A is Lagrange multiplier and constant (see Chiarif2]1 p.139-143 for a proof of
argument). The solution of this isoperimetric célsuof variations problem leads to the
following Euler-Lagrange equation:

g (£) = Aelo r(T)=8)ar (13)

The transversality condition of this problem isegivby (see Chiang, 1992, p.101-102)
tm.n quE—f:'.'?“'_'-‘J—;:'_ﬁm'T =0 IL‘jfj“.

Taking the log time derivative of (15) and emplayibeibniz’s rule we obtain the Euler
condition of problem (13)

&tl =rit)—4d (17)
g(t) ! ’
Equation (17) is a non-arbitrage condition sayimat the nonrenewable is essentially
an asset and therefore its (real) price must gita¥eareal interest rate.

Substituting (10) into (17) we obtain:

o fera—a\T ) .
glt)=gql(t) k t;‘l—_"‘ —aJ (18)
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The solution to this differential equation is giviey

As time evolves to infinity, the nonrenewable raseuprice q converges to

i—

. a®(1—a)t™® i .
s = 11 ) =| ————— (20)
¢ss = limg (1) ( = ) 20)

That is, g is constant in the long run.6 Note #riation (19) depends on g (0) which has to
be determined from the model. To find the valug @) , we use the constraint

o
/ R(t) < So (21)
0

First, we employ the factor-input condition obtalri®y using (4) and (5)

R= (1 _a) 'k (22)
o /g
Next, substituting (10) and (12) into (22) we obtai
(1 — o) __I"\._f [fiI:a“l;I—ﬂ':-'_“:I?c'l;.-—':_.I%—s' dar
Rit) =L =Yg\ ) (23)
a g

We can integrate (23) to solve for q (0) if (21)ldeowith equality. We claim that if an
equilibrium exists then (21) must hold with equalitlote that equation (15) indicates that

g (0). For an equilibrium to exist it must be tlase that q (0) is positive. Otherwise, sector Y
would demand an infinite amount of R, which is ad#le since R is bounded by SO. Thus,
the existence of equilibrium requires q (0)X)=to be positive and therefore the constraint
(21) holds with equality. This allows us to use)(&i solve for q (0) . Substituting (23) into
(21) and solving for g (0) we obtain (see Appertlifor derivations of this result)

£

. (1-a\ K -
q(0) = ( “) 20 (24)
o—a ) S o

We impose the condition that the share of capitgreater than the savings rade>(
S) in order to assure a positive initial resourgeep Indeed, this condition is also required by
— AE_‘IHJ dT)dT
the transversality condition defined by (16). Te $lis, first note theqr from
equation (15). Hence, the transversality conditempyation (16) , can be rewritten as
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- [Fi(rydr @ ey o— [Filr)dr : £ R
thm Aelo {HTAT R (1) g~ Jo #HT)AT — )\thm R(t)=0 (25)
— 00 — 00

Thus, for the transversality to be satisfied we thmase that

Jim R () =0 (26)
which can be trivially shown under the assumptlaatd > s (cf., equation (30) below).

It should be noted that the long run value of @by influenced by technological
parameters and the depreciation rate of capjtdhough the exogenous savings rate s has
some effect on its value transitionally. In otheasrds, the long run value (steady state) of q is
free of the constant savings rate assumption. Butsg (20) and (24) into (19) we obtain the
path of g (t) which is given by

1l—o —_
o 1= l—aKg\ = == _l-a e ;
g |_t._| = (CL-;‘ T ((a — Q?D) — Gss ) € = df) L

Thus g (t) approaches gss from below (above) if

o]
=l

Ky e T . oo
5— < (>) (E) (v — 3] (28)
0

and converges asymptotically to a constant. Thidirfig is important for two reasons. Firstly,
we show that non-renewable price does not necssariease in the long-run, even in such
a case that it is an essential input in producti®econdly, transitionally, the resource price
may increase or decrease, depending on the rekiigeof the initial capital stock to resource
- - R P . L
stock. For example, if =v LT ' "'the resource price will increase at
decreasing rates and converge to its steady-sédte yrom below. Hence, resource prices
may transitionally show diverging behaviors in diffint economies and/or for different
nonrenewable resource stocks.
We also have from (12) and (24) that

, {.fl i (=R , .
K(t) = Kj (fj . ) e\ =5 Jot (29)
.\ s q|:~0_| \ s

. ;o .O.—S Si} i 2= g
= £k (t) o T W Ta AN
o (a0 (15) 22) e

Note that as t goes to infinity K (t) approachesozand its long run growth rate equals

- (552) ¢

" Equation (20) and (17) imply that r does not grovihie long run and equals the
depreciation rate of capitdl Using (22) and (29) we obtain

. l _— 1 ft\-l i . L — & S‘ i (o= i . :
R(t)=(—— ) =K, (q[i} 2 ) L R (30)
’ o git) o 1l —a /) Ky o

Thus asymptotically R (t) shows the same propeegeK. The single most important
finding of the model is that the resource price ganstant in the long run. Our explanation is
that resource depletion has immediate impacts otorfgrices that are fed back to capital
accumulation and resource extraction. In the C-8ecthough capital stock starts to decline
after a while, the decrease in resource extradtiasers marginal productivity of capital and
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hence the real interest rate. The decrease imtheest rate means a lower rate of growth in
the resource price that further lowers extractiemel. The “vicious” cycle generates an
optimal (contraction) path for all variables. Thisding is a counter-example to the partial
equilibrium Hotelling’s rule suggesting that resoeiprices are not necessarily growing. It
also contradicts with previous general equilibristadies, e.g., Dasgupta and Heal (1974).
Below, in Table |, we compare and contrast ounlts{GTY) with that study (D-H) for the
C-D technology.

Table I Long run behavior of variables

D-H GTY
r 0 0
a®(l—a)l—= ﬁ
K 0 0
H 0 0

The basic difference between our model and Dasgapth Heal's model can be
observed from Table I. Firstly, recall that g anih @ growth model with a nonrenewable are
solely function of K/R and that they are indepertideom the rest of the model. In Dasgupta and
Heal, the ratio K/R approaches infinity. In our rahdk/R approaches a constant and hence g and
r also approach a constant. Note that results ldfi®ebtained whed = 0 is assumed on GTY.

Monopoly

An alternative market structure assumption in #source market is monopoly. In our
model, a monopolist who owns all deposits takes atcount the relationship between g and
R, so that the necessary condition in (15) becoma&ginal revenue equal to marginal user
cost. Hence, marginal revenue (and not price) ngé at the rate of interest (in case of zero
extraction costs). But this in itself does not tedlwhether the resource will be extracted more
or less rapidly than by competitive producers. Sdmlowing Hotelling (1931, p.153), might
assume that the rate of resource extraction iscesibecause of “the general tendency for
production to be retarded under monopoly”. HowewasrWeinstein and Zeckhauser (1975),
Sweeney (1977), Stiglitz (1976), and Kay and Megg1975) discussed and showed, the
deviation in the extraction behavior of monopoiisth respect to the perfectly competitive
case depends on the price elasticity of demanghahticular, under the constant elasticity
demand schedules, with zero extraction costs, nugpqpices and competitive equilibrium
prices will in fact be identical, and hence theerat utilization of the natural resource. Since
our analytical model exploits a Cobb-Douglas tedbgy it implies a constant elasticity
demand and therefore monopoly and perfectly conmpettases are identical. Unfortunately,
algebra becomes unnecessarily complicated for th8 €ase. Therefore, we ignore these
analysis in this paper.
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The CES Technology

We now assume that the technology fodpcang output Y is given by

Y = (aK” + (1 — a) R?)* (31)
pe(—oc, 1], . L o= - . -
where “"a Is the distribution parameter, ar l—g is the elasticity of
substitution between K and R. With this technoldbgg cost function similar to the one
specified in (3) is given by
C(r.g.Y)=MC(r,g)Y = e —Y (32)
I S —_ 2 T
(o_'l—aq'.—_a | 1 — C'L:|1_'° rl—a)
Since the envelope properties of the cost funatdhhold we have that
1 1
i . a1—.r.|q.s—'| - i )
K=C,(rqY)= . 1 —1 (33)
(a:q‘?—_‘ +(1—a)T- -r;) F
and _
|[ — m ﬁ i i
R=C,(rqV)=— 2 " oY (34)
(aﬁqﬁ +(1—a)TF ?‘T) )
Using the zero profit condition (7) and (32) we samplify K to get
K= al___& Yy (35)
Substituting this expression into (8) we obtain
1
K=s—K-0K 136
yi-e

Using (7) and (32) we can solve for r in terms &b @btain

)

1 o r
Q'.—pql—.r-
=l—= T
gli-r — (1 —a)l-r

substituting (37) into (36) we obtain
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L £ 1?
- g D_'I—aq'l—_n ' } . P
K= . K -K (38)
1 _L 1 \, i
al-s ql—a—{'[—,jc]ﬁ

the solution to this first order differential equat is given by

f =1 ]
o A m"‘_-"“."-_'ﬂm
K(t) = Kge

.'| .
-0 |&r
i
s

(39)

o |
o |

-1/ 1 sy iy~

=L P ,

=plai=egl=r | |q(t)'?—(l-a)'~" :. -
, | 9T A=)

L ¥

rt
Jo | 5@

= Kge
Analogous to the Cobb-Douglas case, if we knew koewolves over time then the

path of K would be fully determined. We now turmainhe extracting sector’s problem to find
the path of g (t) . Substituting (37) into (17) wlatain

i
I

q(t) a

g .

= -0 (40}

g (t) e 1y =2 L
| (q-l_d _IZI _O:']-_F) .

This expression however does not have an analyatation. Therefore, we solve the
model numerically and find the transition pathsatif the variables of the model under
different elasticity assumptions. Before this Istlook at the stability and long run properties
of the model in the CES case.

Long Run Equilibria and Stability Properties

In this subsection, we present the long-run stgbgifoperties and long run equilibria
of the CES case. Note that all the variables ofntieglel could be found if the path of q (t)
were known. Thus, it is sufficient to look at thakslity properties of equation (40). To this
end, we compute the derivative of (40) and exantinender each of the possible long-run
behaviors of g, as indicated in Table II:

Table 11 Stability property cases

Casze 1 % = 0 1n the long run | = ¢ 13 constant 1n the long run

Case 2 2 < 0in the long run | = limg(¢) =0
g t—oo

Caze 3 % = 0 in the long run | = limg(f) = ¢

t—oa

222



International Conference on Human and Economic iess, Izmir, 2006

ﬂ' = D

* c‘lq (3
Recall that for a system to be stable around sahe? we should have thi '@

dg

Denote as € the derivative® which is given by

g 1 (77 21—
{i_q:an( _3—0 (41)
o (qﬁ—[l—ajﬁ)"
Case 1 % =0
i—qQ.
if A then (17) implies that r 8. Using (37) to solve for q and setting Bb=we

have that as t evolves to infinity q approachebitg run or steady state vaI?"?S

1-p
i

(1-a)T5 675 \
| L) I
T l..-Lz'II

QS'J = @

v — —
1—p

0-F —

=
)

We now use (41) and the ru foe to verify whether Case 1 and (42) represent a
stable long run equilibrium. (41) evaluated at (d@yals

=
')

1 ]

. al-r —gl-s -
) | ———— 143)

al-r

1 -

€q, aT—rF < §1-¢ or a < 0F.

Note that *** is less than zero as long _ -

i_—9

then a long run equilibrium for whic? represents a stable equilibrium. Note that the
Cobb-Douglas case presented in the previous sutaseefers to the case whare= 0. Since

@ <1 then Case 1 applies to the Cobb-Douglas technology

That is, if & < 6"
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We can easily rule out case 2 as a long run equilib solution. Note that if
i -0, lim g(t) = 0:
9 then we must have tht—=2< in such a case, sector Y ’s problem does not
have a solution and equilibrium does not exist.

Using (37) g can be expressed in terms of r:

i 1—p
g —

; | — — 7

(1-a)-rri-e

(44)

q:

£ —_
pl-p — pl-»

1

[ —_—

— 1—
(44) implies that for q to be infinite it must beat " approachesa " “The other
—ocorr — 0

alternatives for q to approach infinity such” can be easily ruled out (see

1

appendix C). Note that since r approac ¢ as time goes to infinite, then it is also the case

4 r—d=a% —4. 2 31>0
that % approaches the consta To study if 9 represents a stable
equilibrium we first normalize q as follows. Let

. g -
=T (45)
|f17"—|ﬂI |t
El‘~ !
so that
q _q 1 N
::__(aa_a) (46)
qg q *
note that
i 1 l—p
) . 1=
a. a:'l—aq'l—p 5 1
- = - —Qr
g ql-—L.n: _ |1 — O‘-H.'E
{1 3
1 (afr=dt_
ore’ /q 1 Lo
= — —(r 47)
=laf-d)t_» 1
£ \ J.' I:]r]—f_‘l —_ |:\I —_ I:j__:l'.—.l:l
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setting gl and simplifying we get

= |q~ ——— (48)

€
_% 3 o D 'D" s ['
for this to hold we must have that b@* ~— ¢ = (note that for? to hold it must be
1
s —o = 0) p=>0 . _ :
that “and 7 7" That is, for q to represent a “stable” equilibrivmhmen it

a? —§ >0and p > 0.
approaches infinite it must be th__

We now summarize. The following represent stalig lun equilibria:

1
i} If &% < & then,

lim 2 =0 (49)

t—ooT
=

E _ (1l—o)ToF s TS5 = (500
lim g = | —————— (50)
t—oo = T2

limr = & (51)
——

lim /X =0 (52)
T—oo

lim B = 0 (53)
t—o0

i) If o = & and p > O then,

p !
lim2 =ar —4§ >0 (54)
t—ood
lim g = oo (55)
i

= ( BED
Ihimr = a* (56
T—oo
. - A
Iim A = oo (57
t—oa
lim & = 0 (58)
T—oo
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For an economy to afford higher values of q atstleady state (as case (ii) indicates) it
must be that the marginal physical product of (ah[r =ar(>9) is large enough as to
compensate for the lost of capital due to deprieciain such case capital accumulates and

: . = 0, iy
the economy displays positive growth. Note thatyomhen p output can be positive
even though R may be zero, (Y (K, 0) > 0). In otivards, capital and the nonrenewable
resource must be substitutes in production, if tp@sioutput has to be assured. Hence, a

precondition for the prices of nonrenewables toreggh infinite \9 = Vs the ability of
the economy to accumulate capital and the degreelstitution between K and R.

At this point, we would like to pinpoint anotherntobuting aspect of our study.
Contrary to what Dasgupta and Heal (1974) propleses we find that the long run behavior
of g does not only depend on whether inputs arstgutes or not in production. In addition
to this, the long run behavior of g also dependshensize of the rate of depreciation and the

CES share parameter In Dasgupta and Heal (197[{, > 1 always leads the economy to
infinitely value the nonrenewable in the long-re above showed that for low levels of
substitution (i.e., forp values that approach zero from the right), the ddem

(C‘k% < L}') "

holds and the rest 7 realizes. Figure 1 below depicts the thresholdlleve

Stability of qit) for =07 and 5=0.04

L.ED .

Figure 1 Stability of g(t)

ar < .{}')

When - holds, the long run marginal productivity of capiteecomes
insufficient to compensate for the loss in capitepreciation and hence results diverge from
the “general solution,” where resource price graavanfinite values. This result also shows
that the rate of depreciation plays an importamé io the behavior of the nonrenewable
resource price.
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Simulations

The simulations of the CES case reveal valuablerimdtion on the time path of the
model’s variables under varying elasticity of sith&ibn assumptions. Below, we present the
time paths of the rental rate of capital r, reseypdce g, capital K, and extraction rate R. We
assume the following parameter values:

5=02,06=004, a=0.7, Ky =50, Sp =25, and p = ﬁ, (= o = 1.5),

= (= g = 1] :——I [ — — | o = : |r:'-"ﬂ':-1.5.|
orp=0(=0oc=1),0rp 5 (=0 'g-'l'Note that wher 7\ )
we have that the conditions of stability for Case 3hold

;
(s 0 FAR - _ 10 _
(e —0=10545 > 0and p =5 > 0) 3 therefore the price of the nonrenewable grows

o _ p=0(=o=1l)orp=—-1(=0c=09) -
to infinity (see Figure 3). Wher ' 4 " the stability
condition of Case 1 holds which refers to the aalsere q converges to a constant.
The rental rate of capital shows a similar behawvidhe three cases in the sense that it
always converges to a constant (see Figure 2). tNeless, r converges to different levels,

depending on the elasticity of substitution assuompt In particular, when

:g-.% _ ar—§ >0
,given that holds. When

=

p:% (= o = 1.5), r
r converges to

_ N B b X _ | i, . ]
p=0{=c=NDorp=—3(=0=9) . ohserve that r tends ® In the former
case, the level of r is large enough to compensatthe loss of capital due to depreciation,
and hence, capital accumulates and tends to pfastFigure 4 displays. Otherwise, capital
stock tends to zero level after showing some irseaaitially. The behavior of resource price
is substantially affected by the rental rate ofiedpWhen that rate converges dpthe net
return for capital assets become zero, and heregribe of nonrenewable converges to a
constant. Otherwise, its price explodes (see Fi@rerhe extraction R path of the non-
renewable resource tends to zero for any elastafityubstitution assumption; nonetheless,
larger levels of extraction are observed in thertshan when the resource is a substitute in
production. This is optimal as the economy caladahat it may initially exploit resource
stocks for accelerating capital accumulation, whielm be later used to substitute for the
resource as it depletes (see Figure 5).

227



Growth and Development

0.7

Rental rate of capital rit)

050 4

05D 4

02D H

03D 4

020 4

0L

000

100

Figure 2 The time path of ()

200.00

Resource price qft)

250.00 4

200.00 4

q 15000 -

100.00 4

50,00

Cobb-Douglas

g=09

000

200

Figure 3 The time path of g(#)

Capital Kit)

100

Cobb-Douglss

200

Figure 4 The time path of K(t)
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Resource use R(t)

(]
[=]

R 10

Cobb-Douglas

Figure 5 The time path of E(t)

Our numerical simulations for the ca® = 9" With @ =1 confirm our stability
analysis, indicating that an elasticity of subsitn greater than one between a nonrenewable
and reproducible capital is not sufficient to gextera growing economy. Figure 6 shows the

simulation of GDP for parameter values
1

a=.7.6=.04 p=0.047619 (= 0 = 1.05) .\gtice that " ° = ° under these

assumptions. Our explanation to this behavior & tiet returns to capital approach zero and
hence the model economy cannot sustain sufficresentives for accumulating capital. It is
also matter of interest to see from Figure 7 thatresource price converges to a constant in
the long run. We conclude that the system can gémesustainable growth if both

o > 1and a > 0°, gpnosite to the argument of Dasgupta and Heal (1924 7 ~ |
sufficient condition.

is a

GDP with o > 1

GDP

o =] 1tIJI 150 200

Figure 6 The time path of GDP(t) for & < ¢” and o > 1
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Resource price gty with o = 1

<} 100 200 ot 300 400 500

Figure 7 The time path of g (t) for a < 6 and ¢ > 1

Conclusion

In this paper, inspired by Dasgupta and Heal (194 have studied the growth
behavior of an economy in the presence of a nowable resource. Like Dasgupta and Heal
(1974), we integrated a nonrenewable resource rsegtb an output sector. In contrast to
them, we focused on market solution, as it reveldarer information on the behavior of
variables and on Hotelling’s rule. The basic diéfere between our model and Dasgupta and
Heal’'s model, however, is that we differentiateviln the rental rate of capital and interest
rate, which is used to discount profits in the tee sector. This single difference
substantially changes the transitional and longbeiavior of the rental rate of capital r and
the non-renewable resource price g. This is bectdnasefficiency rule for resource extraction
can be expressed as a differential equation ing@icapital-resource extraction ratio, which
grows infinitely if there is no countervailing fact We first show analytically that, with a
Cobb-Douglas technology, the nonrenewable resquice converges to a constant. Next, we
extend our analysis to CES technology using sinariat and show that a similar behavior of
resource price is observed if the nonrenewablecsnaplement. Our simulation analysis also
reveals that the elasticity of substitution assuompheavily affects the path of depletion and
capital accumulation. We show that for levels afsétity of substitution close to one from
the right the model reproduces results similarhtmsé cases when R is an essential input in
production. We conclude that the economy wouldrghii elasticity of substitution is not
sufficiently greater than one.

Our analysis shows that the dynamic general eguifibb version of Hotelling’s rule
does not necessarily imply an infinitely growingaarce price. This solves, at least partially,
the paradox between the Hotelling’s rule and th@igoal evidence that resource prices are
constant in the long-run. However, our results ravecomplete due to at least two reasons,
which brings us to suggest two research questions.

First, our analysis needs to be extended into Ramsetup, where the
saving/consumption allocation is endogenously mélde.believe that the (long-run) results
would not change qualitatively. Nevertheless, adogenous saving/consumption allocation
brings into stage an important additional factod@pleting-resource analysis: the consumer’s
patience. When it is known that a nonrenewableuresois being depleted, discounting the
future plays a crucial role in consumptioninvestingecisions. In that respect, the impact of
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the consumer’s patience on the optimal depletiorresources must be significant and
deserves investigation.

Secondly, we ignored technological improvements oar analysis. However,
technological change is the second alternative wfagnitigating resource needs and may
reduce the demand for nonrenewable resources. Hemgceptimal behavior of resource price
may change significantly under technological charfdwes is the second area that we suggest
for future work.

Notes

1. Hotelling (1931) assumes the real interestt@tee a constant.

2. A short review of the literature is as followGray (1914) was the first who
discussed the nonrenewable resource problem frenfittm’s viewpoint. Hotelling (1931)
made the full analytical treatment. Herfindahl (3PSstudied Gray’'s work analytically.
Gordon (1967) presented a concise review of thexaliire and discussed a case where
cumulative extraction increases costs. Smith (1@883ented a unified theory of production
of natural resources. Dasgupta and Heal (1974pv661974), and Stiglitz (1974a, 1974b)
investigated conditions for a sustainable consumnptin one-sector growth models
constrained by nonrenewable resources. These papevs that technological change and a
high degree of substitutability between nonreneeslaind reproducible capital are necessary
conditions for achieving a non-decreasing consumnptsee surveys of Peterson and Fisher
(1977) and Krautkraemer (1988) for a good expogutke rest of the literature.

3. We call a factor input essential if a positiveaant of such input is necessary to
produce a positive level of output.

4. Stiglitz (1974a, p.124) states that "As usua,either can think of Q as net output,
or we can explicitly assume that there is no deatien. The necessary modifications for
exponential depreciation are straightforward”. Tihagper shows that excluding depreciation
matters a lot.

5. In appendix A we show that not nominal but y@ates matter. We also show that
capital price appreciation is irrelevant in thel negerest rate determination, given a single
final good.

6. For long-run stability properties of this mogétase refer to Section 3.

7. Note that

oaing

or i&. e\ . o\ p
EJIU |~ o |'- {.I'+IJ_."I dl."ldl = E..IrLI oo o2 _I'-. na .-lél'

a1 ?l_?l: i a—o
— E:|]1m+| — fluf:lf

(] i ((a—oe)
g(0)
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Appendix A

We show in this annex it is real prices that matiarour model, and that gains from
capital price appreciation can be ignored, giveat the have a single final good. In nominal
terms the firm solves the following optimizatioroplem

maxp(t)Y —F (1) K —G(t) R (59)
subject to the technological constraint:

Y =K*“R'™® (60)

where “p (t) , denotes the nominal price of outpuand “rk (t) and “q (t) denote the nominal
renta price of capital K and the nominal price lté honrenewable R at time t, respectively.
The firs order conditions of the firm are given by

Y Y g .
S L] d (1-a)=== (61)
K~ an S TYRTS B

manipulating this expression we obtain

T W g R . o g P
—_— = or K=

Y =—— === _
P o Pl — e

Substituting for K from (62) into (60) we get

PR
(1 —a)prg 0

equating this last expression to Y from (62) weaetlation of nominal prices as follows

=0

a®(l-a

[=]

20 zl-a

"|l_|ﬁ. _ T,I q {4y
T fl-o 04
Let us use the current price level of output ()pds deflator, as is customary (e.g., Lucas and

il

. r=andg=4%"

Rapping (1970) or Blanchard (2003)). We thusde 7 P where r and q
denote the real rental price of capital and thd peme of the nonrenewable resource,
respectively.  Then, substituting for r and q in )64 we get
a® (1 —a)'™® = pagl—a
' ' Therefore the rental rate of capita (the real dept&ce of
capital) can be expressed as a function of theprézg of the nonrenewable g as follows
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In nominal terms the extracting sector solves thptinozation problem

WD - Y (- L oo 7 ~ Y
max Re—Jo i(r)ar gy Rdt < 5y ' o
{Jrﬂ 9 Jr“ - } where "I is the nominal interest rate (note

that when working in nominal terms the correct dist factor for the firm’s problem is the
nominal interest rate of the market). The first esradonditions for this problem imply

s S oJsi(T)dr 0 (hera 3 e mrc o )

g = Ae and A = 0 (here A 1z co-state Ha”ab]ﬂ"Further manipulation of
the first order conditions of the extracting sedeads to (by taking the time derivative of "q
and by applying the Leibniz’s rule):

I -i(r) (66)
g

—" FEe
1] I —

L 1(7T) + & —0. : .
we have that the nominal interest rater) ¢quals * ° L That is, the nominal
interest rate equals capital gains plus gains ftbencapital price’s appreciation minus the

depreciation rate of capital. Since by definit 9=197 then taking the log time derivative
of "q we get:

===4= (67)

substituting this into (66) we g@;" ¢=7=0 Thgt is, the real price of the nonrenewable
resource grows at real interest rate. We therefsimg (65), can express the representative
firm’s first order conditions in terms of a differal equation in g (the real price of the
nonrenewable resource) which is given by

Al
i [a®(1-0) %\ -
i_ ‘T .y (69)
q q

where only real prices are relevant.

Appendix B

g(0) = (';“) %‘L
Here we show tha 7%/ 2" Note that the resource constraint that the

oo Y !
. R(t)dt -
total amount of extractlor,(,fc' \£)at) must equal the initial stock of the non-renewable
SO0 can be rewritten as
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f R(t)dt=1—° LEHI‘LEJII 2r(n)=d)drgs — 5
0

ql_n

1
. a(l—a)l=®\ = p s .
Since r = (Q—L-a—) and by f =1 —0 (69) can be rewritten as

/-oc q|:t::._% Efﬂiﬂig._a;]—d)dﬂ.'dt _ 1 _ &
0

(1-a)= Bo
Note that
ER - ".:.-_:l.".ll.:I.'LD_ —x | ks
[a[i‘-l-) ld = lngl.l :Td'_E\TJ&"

Substituting (71) into (70) we get

a0 . .
1./ Nl e L P .
0

g(0)% (1-a)= Ko
Claim
: =2 (e==)st |*
/ﬁcfi’lt‘ = el S = 4 VRO '.
0 (s—a)(l-—a)= 0
Qss” tli.fglce{?:]af —fi"fﬂl?
= =

(s—a)(l-a)

0=
giv)

(a—3)(l-—a)=

Since this limit must exist we impose that §.<
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Proof. It suffices to show that

d (g"t:?f[%}j )

(s—a)(l-a) = ezl (a=a)s -
S L gy SN (74
dt - |
Taking the time derivative we get
d _ﬁﬂlﬁﬁt?]ﬂ =R (=2 )6t :
(s—a)(l-a) ™= _ git) = e\ = (s—ag_ (S_&)d)
at (s—a)(l-a)= \ @ ¢ a

_ )= = [af(1-0)
- ] l—o 1-o
a(l-a)= g =
= () T (75)
Substituting (73) into (72) we get
. Ky fl-a .
QfUJ—S—U(a_S) (76)
Appendix C
Firstly, if 7 — °© @nd > 0 e have that (44) becomes
'|___£
i e
. _ (1-a)T= , 1 -~
im ¢g= lm —_— =(1-a)- (77)
r—s0c,p>0 r—sn0, p=0 ﬁ'rl—,,. ‘ ’ o
1- -
ri-g
i-0
that is q would be a constant in the long run aufitting that 9 Now if

r—ocand p <0 hen applying L’Hospital’s rule to (44) we have
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1 1
_ _ l-a)rr _ ol (1-a)
Iim ¢ = Im —= Im - -
r—ng,0<0 r—eopsl; o 1 \= r—oop<l S IS
(T]—d _al—pj : (-]V‘-.—IEI _&l—a)
iy L
at-r (1-a)

= —— { ?8}

This also implies that q is constant in the long f@ven perhaps a complex number)

g~ )] ; .

- = U . r —0,then £ = —§ - . .
contradicting g Secondly, if ' 9 which contradicts
C =0 +
> e

‘Thus the only admissible way for q to be infinkexhen " =
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