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The validity of the Hotelling’s rule, the fundamental theorem of nonrenewable resource 
economics, is limited by its partial equilibrium nature. One symptom of this limitation 
may be the disagreement between the empirical evidence, showing stable or declining 
resource prices, and the rule, predicting exponentially increasing prices. In this paper, 
we study the optimal  depletion of a nonrenewable resource in a dynamic general 
equilibrium framework. We show that, in the long run, the price of a nonrenewable (i) is 
constant when the nonrenewable is essential in production, and (ii) increases only if the 
rate of return of capital is larger than the capital depreciation rate and the non-renewable 
is an inessential input in production. We believe that our model offers a theoretical 
explanation to non-growing nonrenewable prices and hence at least partially solves the 
paradox between the Hotelling’s rule and the empirical regularity. We also show that 
two factors play a crucial role in determining the long run behavior of nonrenewable 
prices, namely the elasticity of substitution between input factors, and the long run 
behavior of the real interest rate. Another major achievement of this study is the full 
analytical solution of the model under a Cobb-Douglas technology. 
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Introduction 
 
In his seminal article, Hotelling (1931) showed that the price for a nonrenewable 

resource will rise at the real interest rate in an efficient market equilibrium,1 a result known as 
the ‘Hotelling’s rule’ since then. Hotelling’s rule has become the pillar of the theory of 
nonrenewable resource economics and has provided the fundamental insight into the long-run 
behavior of the price and extraction of a resource since then.2 In time, it has been documented 
that the Hotelling’s rule is not supported by empirical evidence. In particular, almost all 
empirical studies have shown that nonrenewable resources have either declining or constant 
prices in the last 150 years (e.g., see Krautkraemer, 1998). The response to this paradox has 
been the modification of the basic Hotelling’s formulation by incorporating additional 
elements into the model (e.g., exploration costs, capital investment and capacity constraints, 
ore quality variations, output substitution, or uncertainty), although some authors tried 
alternative econometric techniques or data so as to generate rising resource prices. 

Surprisingly, no one ever questioned a probable shortage in Hotelling’s approach, 
namely the exogeneity of the discount rate. This paper approaches the paradox from this point 
of view and shows that the paradox may indeed be fictitious in the sense that the true 
Hotelling’s rule may not suggest an ever-increasing nonrenewable resource price, at least not 
in all instances. Recall that Hotelling’s rule takes the interest rate as given if the resource 
sector is considered in isolation. Critical information is hence lost because the interaction 
between the marginal productivity of capital and the nonrenewable resource is not taken into 
consideration. In a general equilibrium setting, on the other hand, the level of extraction has a 
determining role on the marginal productivity of capital and hence on the real rate of interest, 
where the latter influences the resource price and the level of extraction. Hence, in general 
equilibrium, the resource price and real interest rate are determined simultaneously, in sharp 
contrast with the partial equilibrium approach. Let us illustrate this endogenous determination 
of factor prices in case both inputs are essential.3 The marginal productivity of capital 
decreases if the percentage change in resource extraction is dominated by the decline in 
percentage change in capital. It follows that the rental rate of capital decreases. Consequently, 
the rate of increase in the price of the nonrenewable declines because, according to the 
Hotelling’s rule, the rate of increase of the resource price cannot deviate from the real interest 
rate. Therefore, the endogenous interaction between factor prices and factor quantities may 
define a different time pattern for resource price than what partial equilibrium Hotelling’s rule 
suggests. We believe that this critical endogenous interaction is missing in the ‘partial 
equilibrium’ version of the Hotelling’s rule. Hence, a contradiction may arise between 
empirics and theory. The paradox vanishes if a “complete” solution, in the sense of an 
integrated nonrenewable resource sector and a good sector, is studied. 

The Hotelling’s rule was incorporated into (neoclassical) growth theory a long time 
ago, especially in the issue of sustainability. Several papers written in the 1970s hinted at the 
two means of achieving sustainability when an economy is dependent on nonrenewable 
resource: substitution for a reproducible factor and technological change (see Dasgupta and 
Heal (1974) and Stiglitz (1974a)). Surprisingly enough, these studies ignored a distinguishing 
feature of growth models with nonrenewable resources that we believe prevented them to 
expose the true general equilibrium version of the Hotelling’s rule. A peculiar characteristic 
of growth models with nonrenewables that have zero marginal cost of extraction is that the 
resource price and rental rate of capital ratio only depends on the ratio of capital and resource 
extraction. Further, the resource price path can be determined independently from the rest of 
the model (i.e., consumption, capital, and resource extraction). If the rental rate of capital and 
the interest rate used to discount profits in the extraction sector are assumed identical, it leads 
to a differential equation in terms of capital-resource extraction ratio that does not have any 
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counter-force on the accumulation of this ratio. The end result turns out to be a distortion of 
the solutions of rental rate of capital and resource price. A good illustration is the basic Solow 
(1956) model. If depreciation is removed from the fundamental equation of growth, capital 
and hence output would grow to infinite levels. Dasgupta and Heal (1974) and Stiglitz 
(1974a) neglected this aspect.4 However, Hotelling’s rule (that prices must grow to infinity) is 
not in general reproduced if capital depreciates and our paper shows exactly this. 

A summary of our model is as follows. There are two factors of production, namely a 
reproducible capital and a nonrenewable resource, and one final output, which can be 
consumed or invested. The two factors may be complements or substitutes in the production 
of the final good. Profit-maximizing firms operating in the good market imply a unique 
resource price/rental ratio and a corresponding optimal capital/resource ratio. A nonrenewable 
resource-extracting sector solves the dynamic problem of maximizing discounted profits over 
an infinite horizon, constrained by the initial stock of the nonrenewable. An exogenous 
savings rate assumption in the Solovian (Solow (1956)) sense on the allocation of factor 
income and market clearing conditions for capital and the nonrenewable complete the model. 

The organization of the paper is as follows. The second section presents the model 
under the Cobb-Douglas technology assumption. We show that the paradox between the 
Hotelling’s rule and the empirical evidence may indeed be fictitious and that the true 
Hotelling’s rule may suggest a constant nonrenewable resource price. The third section 
discusses the CES version of the model and presents numerical simulation results. The last 
section presents concluding remarks. 
 

The Model 
 
We assume that physical capital K and a nonrenewable resource R are used to produce 

a final good Y. The final good production technology is represented by F (K, R). It is 
supposed that F (•) is increasing, strictly concave, twice differentiable, homogenous of degree 
one, and shows a constant  elasticity of substitution (CES) between K and R. The 
nonrenewable resource sector production technology is based on extraction. For matter of 
simplicity, we assume that the intertemporal consumption-investment trade-off is given to the 
model, as in Solow (1956). Our motivation behind this assumption is that it allows us to solve 
the model analytically, which then, enables us to provide extremely valuable additional 
insights about the transitional behavior of all the variables in the model. We are aware of the 
fact that we miss some information by ignoring intertemporal household allocation decisions 
between consumption and savings. Nevertheless, we believe that the gain we make by this 
simplification is larger than the loss. Furthermore, we will show below that the constant 
savings rate assumption does not play any role in the long run behavior of the nonrenewable 
resource price (and other variables). 

 
Production Sector 
 
Let us take the final good’s price to be numeraire as traditionally done. The 

representative firm producing output Y solves the problem: 

where r and q are the rental rate of capital and the nonrenewable resource price and C (r, q, Y 
) is the optimized value (or cost function) of the cost minimization problem: 
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For analytical tractability we will exploit the Cobb-Douglas technology in the 
production of utput Y. In Section 3 we will generalize the model by using a CES technology. 

It is easy to how that if the technology is of the Cobb-Douglas type, say,  
then the cost function associated with problem (2) equals 

 
where MC (r, q) is the marginal cost of producing a unit of output Y. The conditional factor 
demands for K and R can be found by applying Shephard’s Lemma to the cost function: 

 
and 

    

 
The constant returns to scale property of the technology implies that C (r, q, Y ) is linear in Y 
and thus the profit maximization problem (1) can be rewritten as 

            

 
Note that profit maximization implies 
  

 
or the well known zero profit condition of perfect competition, where marginal cost equals 
output price. In this economy, we assume that a fraction s of total output Y is used to 
accumulate the capital stock of the economy in the form of investment 

 
where s is the exogenous saving rate, δ is the depreciation rate, and a dot over a variable 
denotes its time derivative. We assume that the economy begins with an amount of physical 
capital K0. Using (3) and (4) the demand for capital, given output level Y , is found to be 

 

 
Using (3) and (7) we can solve for r as follows 
 

 
Solving for Y from (9) , and substituting for Y and r in equation (8) we obtain 
  

 
This is nothing but a first order differential equation with a variable coefficient and its 
solution is 
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If we knew the path of q (t) then from (12) the path of K (t) would also be known. To 

solve for the path of q (t) we now look at the nonrenewable extracting sector’s problem. 
 
Extraction Sector 
 
Hotelling (1931) determined the optimal extraction of nonrenewable resources in a 

perfectly competitive market economy in a partial equilibrium setup. We exploit his setup in 
order to determine the dynamics defined by the resource sector. Suppose that extraction is 
costless. The representative firm taking q as given solves the following maximization 
problem: 

 
 

According to equation (13), the representative firm in the resource sector maximizes 
discounted profits over an infinite horizon subject to the physical resource constraint that total 
extraction can be utmost the initial stock S0. In (13), r (t) − δ is the real interest rate. In 
contrast to the partial  equilibrium Hotelling’s approach the real interest rate is endogenously 
determined in our model. Equation (13) is an isoperimetric problem of calculus of variations. 
The Lagrangian integrand becomes 

 
where λ is Lagrange multiplier and constant (see Chiang, 1992, p.139-143 for a proof of 
argument). The solution of this isoperimetric calculus of variations problem leads to the 
following Euler-Lagrange equation: 
 

 
The transversality condition of this problem is given by (see Chiang, 1992, p.101-102) 
 

 
Taking the log time derivative of (15) and employing Leibniz’s rule we obtain the Euler 
condition of problem (13) 
 

 
Equation (17) is a non-arbitrage condition saying that the nonrenewable is essentially 

an asset and therefore its (real) price must grow at the real interest rate.5 
Substituting (10) into (17) we obtain: 
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The solution to this differential equation is given by: 

 

As time evolves to infinity, the nonrenewable resource price q converges to 
 

 
 

That is, q is constant in the long run.6 Note that equation (19) depends on q (0) which has to 
be determined from the model. To find the value of q (0) , we use the constraint 

 
First, we employ the factor-input condition obtained by using (4) and (5) 

 

Next, substituting (10) and (12) into (22) we obtain 
 

 
 

We can integrate (23) to solve for q (0) if (21) holds with equality. We claim that if an 
equilibrium exists then (21) must hold with equality. Note that equation (15) indicates that λ = 
q (0). For an equilibrium to exist it must be the case that q (0) is positive. Otherwise, sector Y 
would demand an infinite amount of R, which is infeasible since R is bounded by S0. Thus, 
the existence of equilibrium requires q (0) (= λ) to be positive and therefore the constraint 
(21) holds with equality. This allows us to use (21) to solve for q (0) . Substituting (23) into 
(21) and solving for q (0) we obtain (see Appendix B for derivations of this result) 

 
 

We impose the condition that the share of capital is greater than the savings rate (α > 
s) in order to assure a positive initial resource price. Indeed, this condition is also required by 

the transversality condition defined by (16). To see this, first note that from 
equation (15). Hence, the transversality condition, equation (16) , can be rewritten as 
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Thus, for the transversality to be satisfied we must have that 

 
which can be trivially shown under the assumption that α > s (cf., equation (30) below). 

It should be noted that the long run value of q is only influenced by technological 
parameters and the depreciation rate of capital δ, though the exogenous savings rate s has 
some effect on its value transitionally. In other words, the long run value (steady state) of q is 
free of the constant savings rate assumption. Substituting (20) and (24) into (19) we obtain the 
path of q (t) which is given by 

 
Thus q (t) approaches qss from below (above) if 
 

 
 
and converges asymptotically to a constant. This finding is important for two reasons. Firstly, 
we show that non-renewable price does not necessarily increase in the long-run, even in such 
a case that it is an essential input in production. Secondly, transitionally, the resource price 
may increase or decrease, depending on the relative size of the initial capital stock to resource 

stock. For example, if the resource price will increase at 
decreasing rates and converge to its steady-state value from below. Hence, resource prices 
may transitionally show diverging behaviors in different economies and/or for different 
nonrenewable resource stocks. 

We also have from (12) and (24) that7 

 
 

Note that as t goes to infinity K (t) approaches zero and its long run growth rate equals 

Equation (20) and (17) imply that r does not grow in the long run and equals the 
depreciation rate of capital δ. Using (22) and (29) we obtain 

 
Thus asymptotically R (t) shows the same properties as K. The single most important 

finding of the model is that the resource price q is constant in the long run. Our explanation is 
that resource depletion has immediate impacts on factor prices that are fed back to capital 
accumulation and resource extraction. In the C-D case, though capital stock starts to decline 
after a while, the decrease in resource extraction lowers marginal productivity of capital and 
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hence the real interest rate. The decrease in the interest rate means a lower rate of growth in 
the resource price that further lowers extraction level. The “vicious” cycle generates an 
optimal (contraction) path for all variables. This finding is a counter-example to the partial 
equilibrium Hotelling’s rule suggesting that resource prices are not necessarily growing. It 
also contradicts with previous general equilibrium studies, e.g., Dasgupta and Heal (1974). 
Below, in Table I , we compare and contrast our results (GTY) with that study (D-H) for the 
C-D technology. 

 

 
The basic difference between our model and Dasgupta and Heal’s model can be 

observed from Table I. Firstly, recall that q and r in a growth model with a nonrenewable are 
solely function of K/R and that they are independent from the rest of the model. In Dasgupta and 
Heal, the ratio K/R approaches infinity. In our model, K/R approaches a constant and hence q and 
r also approach a constant. Note that results of D-H is obtained when δ = 0 is assumed on GTY. 

 
 Monopoly 
 
An alternative market structure assumption in the resource market is monopoly. In our 

model, a monopolist who owns all deposits takes into account the relationship between q and 
R, so that the necessary condition in (15) becomes marginal revenue equal to marginal user 
cost. Hence, marginal revenue (and not price) will rise at the rate of interest (in case of zero 
extraction costs). But this in itself does not tell us whether the resource will be extracted more 
or less rapidly than by competitive producers. Some, following Hotelling (1931, p.153), might 
assume that the rate of resource extraction is reduced because of “the general tendency for 
production to be retarded under monopoly”. However, as Weinstein and Zeckhauser (1975), 
Sweeney (1977), Stiglitz (1976), and Kay and Mirrlees (1975) discussed and showed, the 
deviation in the extraction behavior of monopolist with respect to the perfectly competitive 
case depends on the price elasticity of demand. In particular, under the constant elasticity 
demand schedules, with zero extraction costs, monopoly prices and competitive equilibrium 
prices will in fact be identical, and hence the rate of utilization of the natural resource. Since 
our analytical model exploits a Cobb-Douglas technology, it implies a constant elasticity 
demand and therefore monopoly and perfectly competitive cases are identical. Unfortunately, 
algebra becomes unnecessarily complicated for the CES case. Therefore, we ignore these 
analysis in this paper. 
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          The CES Technology 
 

          We now assume that the technology for producing output Y is given by 

 
 

where α is the distribution parameter, and  is the elasticity of 
substitution between K and R. With this technology the cost function similar to the one 
specified in (3) is given  by 

 
Since the envelope properties of the cost function still hold we have that 
 

 
and 

 
 
Using the zero profit condition (7) and (32) we can simplify K to get 

 

Substituting this expression into (8) we obtain 
 

 
Using (7) and (32) we can solve for r in terms of q to obtain 

 

 
substituting (37) into (36) we obtain 
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the solution to this first order differential equation is given by 

 

 
 
Analogous to the Cobb-Douglas case, if we knew how q evolves over time then the 

path of K would be fully determined. We now turn into the extracting sector’s problem to find 
the path of q (t) . Substituting (37) into (17) we obtain 

 
This expression however does not have an analytical solution. Therefore, we solve the 

model numerically and find the transition paths of all the variables of the model under 
different elasticity assumptions. Before this let us look at the stability and long run properties 
of the model in the CES case.  

 
 Long Run Equilibria and Stability Properties 
 
In this subsection, we present the long-run stability properties and long run equilibria 

of the CES case. Note that all the variables of the model could be found if the path of q (t) 
were known. Thus, it is sufficient to look at the stability properties of equation (40). To this 
end, we compute the derivative of (40) and examine it under each of the possible long-run 
behaviors of q, as indicated in Table II: 
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Recall that for a system to be stable around some value  we should have that  

Denote as   the derivative   which is given by 

 
 

  
 

If  then (17) implies that r = δ. Using (37) to solve for q and setting r = δ, we 

have that as t evolves to infinity q approaches its long run or steady state value  
 

 

We now use (41) and the rule  to verify whether Case 1 and (42) represent a 
stable long run equilibrium. (41) evaluated at (42) equals 

 

Note that  is less than zero as long as That is, if  

then a long run equilibrium for which  represents a stable equilibrium. Note that the 
Cobb-Douglas case presented in the previous subsection refers to the case where ρ = 0. Since  

 then Case 1 applies to the Cobb-Douglas technology. 
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We can easily rule out case 2 as a long run equilibrium solution. Note that if 

then we must have that in such a case, sector Y ’s problem does not 
have a solution and equilibrium does not exist. 

 

 
 
Using (37) q can be expressed in terms of r: 

 

(44) implies that for q to be infinite it must be that  approaches The other 

alternatives for q to approach infinity such as  can be easily ruled out (see 

appendix C). Note that since r approaches  as time goes to infinite, then it is also the case 

that approaches the constant To study if  represents a stable 
equilibrium we first normalize q as follows. Let 
 

 
  
so that 
 

 
 
note that 
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setting  and simplifying we get 
 

 

for this to hold we must have that both  (note that for  to hold it must be 

that  and  That is, for q to represent a “stable” equilibrium when it 

approaches infinite it must be that   
 

We now summarize. The following represent stable long run equilibria: 
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For an economy to afford higher values of q at the steady state (as case (ii) indicates) it 

must be that the marginal physical product of capital  is large enough as to 
compensate for the lost of capital due to depreciation. In such case capital accumulates and 

the economy displays positive growth. Note that only when  output can be positive 
even though R may be zero, (Y (K, 0) > 0). In other words, capital and the nonrenewable 
resource must be substitutes in production, if positive output has to be assured. Hence, a 

precondition for the prices of nonrenewables to approach infinite  is the ability of 
the economy to accumulate capital and the degree of substitution between K and R. 

At this point, we would like to pinpoint another contributing aspect of our study. 
Contrary to what Dasgupta and Heal (1974) propose, here we find that the long run behavior 
of q does not only depend on whether inputs are substitutes or not in production. In addition 
to this, the long run behavior of q also depends on the size of the rate of depreciation and the 

CES share parameter α. In Dasgupta and Heal (1974),  always leads the economy to 
infinitely value the nonrenewable in the long-run. We above showed that for low levels of 
substitution (i.e., for ρ values that approach zero from the right), the condition 

holds and the result realizes. Figure 1 below depicts the threshold level. 
 
 

 
 

When holds, the long run marginal productivity of capital becomes 
insufficient to compensate for the loss in capital depreciation and hence results diverge from 
the “general solution,” where resource price grows to infinite values. This result also shows 
that the rate of depreciation plays an important role in the behavior of the nonrenewable 
resource price. 
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Simulations 
 
The simulations of the CES case reveal valuable information on the time path of the 

model’s variables under varying elasticity of substitution assumptions. Below, we present the 
time paths of the rental rate of capital r, resource price q, capital K, and extraction rate R. We 
assume the following parameter values: 

Note that when   
we have that the conditions of stability for Case 3 hold 

and therefore the price of the nonrenewable grows 

to infinity (see Figure 3). When   the stability 
condition of Case 1 holds which refers to the case where q converges to a constant. 

The rental rate of capital shows a similar behavior in the three cases in the sense that it 
always converges to a constant (see Figure 2). Nonetheless, r converges to different levels, 
depending on the elasticity of substitution assumption. In particular, when 

r converges to ,given that  holds. When 

 we observe that r tends to δ. In the former 
case, the level of r is large enough to compensate for the loss of capital due to depreciation, 
and hence, capital accumulates and tends to infinity as Figure 4 displays. Otherwise, capital 
stock tends to zero level after showing some increase initially. The behavior of resource price 
is substantially affected by the rental rate of capital. When that rate converges to δ, the net 
return for capital assets become zero, and hence the price of nonrenewable converges to a 
constant. Otherwise, its price explodes (see Figure 3). The extraction R path of the non-
renewable resource tends to zero for any elasticity of substitution assumption; nonetheless, 
larger levels of extraction are observed in the short run when the resource is a substitute in 
production. This is optimal as the economy calculates that it may initially exploit resource 
stocks for accelerating capital accumulation, which can be later used to substitute for the 
resource as it depletes (see Figure 5). 
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Our numerical simulations for the case  confirm our stability 
analysis, indicating that an elasticity of substitution greater than one between a nonrenewable 
and reproducible capital is not sufficient to generate a growing economy. Figure 6 shows the 
simulation of GDP for parameter values 

Notice that  under these 
assumptions. Our explanation to this behavior is that net returns to capital approach zero and 
hence the model economy cannot sustain sufficient incentives for accumulating capital. It is 
also matter of interest to see from Figure 7 that the resource price converges to a constant in 
the long run. We conclude that the system can generate sustainable growth if both 

opposite to the argument of Dasgupta and Heal (1974) that is a 
sufficient condition. 
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           Conclusion 

 
In this paper, inspired by Dasgupta and Heal (1974), we have studied the growth 

behavior of an economy in the presence of a nonrenewable resource. Like Dasgupta and Heal 
(1974), we integrated a nonrenewable resource sector with an output sector. In contrast to 
them, we focused on market solution, as it reveals clearer information on the behavior of 
variables and on Hotelling’s rule. The basic difference between our model and Dasgupta and 
Heal’s model, however, is that we differentiate between the rental rate of capital and interest 
rate, which is used to discount profits in the resource sector. This single difference 
substantially changes the transitional and long-run behavior of the rental rate of capital r and 
the non-renewable resource price q. This is because the efficiency rule for resource extraction 
can be expressed as a differential equation in terms of capital-resource extraction ratio, which 
grows infinitely if there is no countervailing factor. We first show analytically that, with a 
Cobb-Douglas technology, the nonrenewable resource price converges to a constant. Next, we 
extend our analysis to CES technology using simulations, and show that a similar behavior of 
resource price is observed if the nonrenewable is a complement. Our simulation analysis also 
reveals that the elasticity of substitution assumption heavily affects the path of depletion and 
capital accumulation. We show that for levels of elasticity of substitution close to one from 
the right the model reproduces results similar to those cases when R is an essential input in 
production. We conclude that the economy would shrink if elasticity of substitution is not 
sufficiently greater than one. 

Our analysis shows that the dynamic general equilibrium version of Hotelling’s rule 
does not necessarily imply an infinitely growing resource price. This solves, at least partially, 
the paradox between the Hotelling’s rule and the empirical evidence that resource prices are 
constant in the long-run. However, our results are not complete due to at least two reasons, 
which brings us to suggest two research questions. 

First, our analysis needs to be extended into Ramsey setup, where the 
saving/consumption allocation is endogenously made. We believe that the (long-run) results 
would not change qualitatively. Nevertheless, an endogenous saving/consumption allocation 
brings into stage an important additional factor in depleting-resource analysis: the consumer’s 
patience. When it is known that a nonrenewable resource is being depleted, discounting the 
future plays a crucial role in consumptioninvestment decisions. In that respect, the impact of 
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the consumer’s patience on the optimal depletion of resources must be significant and 
deserves investigation. 

Secondly, we ignored technological improvements in our analysis. However, 
technological change is the second alternative way of mitigating resource needs and may 
reduce the demand for nonrenewable resources. Hence, the optimal behavior of resource price 
may change significantly under technological change. This is the second area that we suggest 
for future work. 

 
Notes 
 
1. Hotelling (1931) assumes the real interest rate to be a constant. 
2. A short review of the literature is as follows. Gray (1914) was the first who 

discussed the nonrenewable resource problem from the firm’s viewpoint. Hotelling (1931) 
made the full analytical treatment. Herfindahl (1955) studied Gray’s work analytically. 
Gordon (1967) presented a concise review of the literature and discussed a case where 
cumulative extraction increases costs. Smith (1968) presented a unified theory of production 
of natural resources. Dasgupta and Heal (1974), Solow (1974), and Stiglitz (1974a, 1974b) 
investigated conditions for a sustainable consumption in one-sector growth models 
constrained by nonrenewable resources. These papers show that technological change and a 
high degree of substitutability between nonrenewables and reproducible capital are necessary 
conditions for achieving a non-decreasing consumption. See surveys of Peterson and Fisher 
(1977) and Krautkraemer (1988) for a good exposure to the rest of the literature. 

3. We call a factor input essential if a positive amount of such input is necessary to 
produce a positive level of output. 

4. Stiglitz (1974a, p.124) states that "As usual, we either can think of Q as net output, 
or we can explicitly assume that there is no depreciation. The necessary modifications for 
exponential depreciation are straightforward". This paper shows that excluding depreciation 
matters a lot. 

5. In appendix A we show that not nominal but real prices matter. We also show that 
capital price appreciation is irrelevant in the real interest rate determination, given a single 
final good. 

6. For long-run stability properties of this model please refer to Section 3. 
7. Note that 
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Appendix A 
 
We show in this annex it is real prices that matters in our model, and that gains from 

capital price appreciation can be ignored, given that we have a single final good. In nominal 
terms the firm solves the following optimization problem 
 

 
subject to the technological constraint: 

 

 
 
where ˆp (t) , denotes the nominal price of output Y, and ˆrk (t) and ˆq (t) denote the nominal 
renta price of capital K and the nominal price of the nonrenewable R at time t, respectively. 
The firs order conditions of the firm are given by 
 

 
manipulating this expression we obtain 

 

 
 
Substituting for K from (62) into (60) we get 
 

 
equating this last expression to Y from (62) we get a relation of nominal prices as follows 

 

 
 
Let us use the current price level of output (ˆp (t)) as deflator, as is customary (e.g., Lucas and 

Rapping (1970) or Blanchard (2003)). We thus define  where r and q 
denote the real rental price of capital and the real price of the nonrenewable resource, 
respectively. Then, substituting for r and q in (64) we get 

Therefore the rental rate of capita (the real rental price of 
capital) can be expressed as a function of the real price of the nonrenewable q as follows 
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In nominal terms the extracting sector solves the optimization problem 

 where ˆı is the nominal interest rate (note 
that when working in nominal terms the correct discount factor for the firm’s problem is the 
nominal interest rate of the market). The first order conditions for this problem imply 

Further manipulation of 
the first order conditions of the extracting sector leads to (by taking the time derivative of ˆq 
and by applying the Leibniz’s rule): 

 

we have that the nominal interest rate ˆı (τ ) equals That is, the nominal 
interest rate equals capital gains plus gains from the capital price’s appreciation minus the 

depreciation rate of capital. Since by definition  then taking the log time derivative 
of ˆq we get: 

 

substituting this into (66) we get That is, the real price of the nonrenewable 
resource grows at real interest rate. We therefore, using (65), can express the representative 
firm’s first order conditions in terms of a differential equation in q (the real price of the 
nonrenewable resource) which is given by 
 

 
where only real prices are relevant. 
 

 
Appendix B 

Here we show that Note that the resource constraint that the 

total amount of extractions  must equal the initial stock of the non-renewable 
S0 can be rewritten as 
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Substituting (71) into (70) we get 

 
Claim 

 
Since this limit must exist we impose that s < α. 
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Proof. It suffices to show that 

 
Taking the time derivative we get 

 

 
Substituting (73) into (72) we get 

 
 
 
Appendix C 
 

Firstly, if  we have that (44) becomes 
 

 

that is q would be a constant in the long run contradicting that Now if 

then applying L’Hôspital’s rule to (44) we have 
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This also implies that q is constant in the long run (even perhaps a complex number) 

contradicting Secondly, if    which contradicts 

Thus the only admissible way for q to be infinite is when  
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