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Abstract

This paper presents synthetically some recent developments in the theory of coalition and

network formation. For this purpose, some major equilibrium concepts recently introduced to

model the formation of coalition structures and networks among players are brie�y reviewed

and discussed. A few economic applications are also illustrated to give a �avour of the type

of predictions such models are able to provide.
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1 Introduction

Very often in social life individuals take decisions within groups (households, friendships,

�rms, trade unions, local jurisdictions, etc.). Since von Neumann and Morgenstern�s (1944)

seminal work on game theory, the problem of the formation of coalitions has been a highly

debated topic among game theorists.1 However, during this seminal stage and for a long

period afterward, the study of coalition formation was almost entirely conducted within the

framework of games in characteristic form (cooperative games) which proved not entirely

suited in games with externalities, i.e. virtually all games with genuine interaction among

players. Only in recent years, a widespread literature on what is currently known as nonco-

operative coalition formation or endogenous coalition formation has come into the scene with

the explicit purpose to represent the process of formation of coalitions of agents and hence

modelling a number of relevant economic and social phenomena.2 Moreover, following this

theoretical and applied literature on coalitions, the seminal paper by Jackson and Wolinsky

(1996) opened the way to a new stream of contributions using networks (graphs) to model

the formation of links among individuals3

Throughout these brief notes, I survey non exhaustively some relevant contributions of

this wide literature, with the main aim to provide an overview of some modelling tools for

economic applications. For this purpose, some basic guidelines to the application of coalition

formation in economics are presented using as primitives the games in strategic form.4 As far

as economic applications are concerned, most of the examples presented here mainly focus,

for convenience, on a restricted number of I.O. topics, as cartel formation, horizontal merger

and R&D alliances.
1Von Neumann & Morgenstern�s (1944) stable set and Aumann and Maschler�s (1964) bargaining set,

among the others, were solution concepts primarily designed to solve simultaneously the formation of a
coalition structure and the allocation of the coalitional payo¤ among the members of each coalition (see also
Greenberg (1994) and Bloch (1997)).

2Extensive surveys of the coalition formation literature are contained in Greenberg (1994), Bloch (1997,
2003), Yi (1997, 2003) and Ray and Vohra (1997).

3Excellent surveys for networks are contained in Dutta and Jackson (2003) and in Jackson (2003, 2005a,
2005b. 2007).

4Some of the results presented here are also contained in Currarini and Marini (2006).
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2 Coalitions

2.1 Cooperatives Games with Externalities

Since von Neumann and Morgenstern (1944), a wide number of papers have developed solu-

tion concepts speci�c to games with coalitions of players. This literature, known as cooper-

ative games literature, made initially a predominant use of the characteristic function as a

way to represent the worth of a coalition of players.

De�nition 1. A cooperative game with transferable utility (TU cooperative game) can

be de�ned as a pair (N; v), where N = f1; 2; ::; i; ::ng is the set of players and v : 2N ! R+

is a real valued function (characteristic function) representing the worth of every feasible

coalition.5

The value v (S) can be interpreted as the maximal aggregate amount of utility members of

coalition S can achieve by coordinating their strategies. However, in strategic environments

players�payo¤s are de�ned on the strategies of all players and the worth (or value) of a group

of players cannot be de�ned independently of the groups (or coalitions) formed by external

players (NnS). Hence, to obtain v(S) from a strategic situation we need �rst to de�ne an

underlying strategic form game.

De�nition 2. A strategic form game is a triple G =
�
N; (Xi; ui)i2N

�
, in which for each

i 2 N , Xi is the set of strategies with generic element xi, and ui : X1 � ::: � Xn ! R+ is

player�s i payo¤ function.

Moreover, henceforth we restrict the action space of each coalition S � N to XS �
Q
i2S
Xi.

Let, also, v(S) =
P
i2S
ui(x), for x 2 XN �

Q
i2N

Xi.6

Example 1. Two-player prisoner�s dilemma.

A B
A 3; 3 1; 4
B 4; 1 2; 2

Therefore, v(N) = 6 and v(fig) =
�
4 if xj = A
2 if xj = B

for j 6= i:

5Here we mainly deal with games with transferable utility. In games without transferable utility, the
worth of a coalition associates with each coalition a players�utility frontier (a vector of utilities).

6See Section 2.5 for an economic explanation of these restrictions.
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The cooperative allocation (3; 3) can be considered stable only if every player is expected

to react with strategy B to a deviation of the other player from the cooperative strategy A.

The above example shows that in order to de�ne the worth of a coalition of players, it is

required a speci�c assumption on the behaviour of the remaining players.

2.1.1 �� and �-Characteristic Functions

The concepts of � and � core, formally studied by Aumann (1967), are based on von Neu-

mann and Morgenstern�s (1944) early proposal of representing the worth of a coalition as the

minmax or maxmin aggregate payo¤ that it can guarantee its members in the underlying

strategic form game.

Accordingly, the characteristic function v(S) in games with externalities can be obtained

assuming that outside players act to minimize the payo¤ of every deviating coalition S � N .
In this minimax formulation, if members of S move second, the obtained characteristic

function,

(1) v�(S) = min
xNnS

max
xS

X
i2S
ui(xS; xNnS);

denoted �-characteristic function, represents what members in S cannot be prevented from

getting. Alternatively, if members of S move �rst, we have

(2) v�(S) = max
xS

min
xNnS

X
i2S
ui(xS; xNnS);

denoted �-characteristic function, which represents what members in S can guarantee them-

selves, when they expect a retaliatory behaviour from the complement coalition NnS.7

When the underlying strategic form gameG is zero-sum, (1) and (2) coincide. In non-zero

sum games they can di¤er and, usually, v�(S) < v�(S) for all S � N .

However, � and � characteristic functions express an irrational behaviour of coalitions of

players, acting as if they expected their rivals to minimize their payo¤. Although appealing

because immune from any ad hoc assumption on the reaction of the outside players (indeed,

their minimizing behavior is here not meant to represent the expectation of S but rather as a

mathematical way to determine the lower bound of S�s aggregate payo¤), still this approach

7Note that players outside S are treated as one coalition, so the implicit assumption here is that players
in NnS stick together after S departure from the grand coalition N .
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has important drawbacks: deviating coalitions are too heavily penalized, while outside play-

ers often end up bearing an extremely high cost in their attempt to hurt deviators. Moreover,

the little pro�tability of coalitional objections usually yield very large set of solutions (e.g.,

large cores).

2.1.2 Nash Behaviour among Coalitions

Another way to de�ne the characteristic function in games with externalities is to assume

that in the event of a deviation from N , a coalition S plays à la Nash with the remaining

players.8

Although appealing, such a modelling strategy requires some speci�c assumptions on the

coalition structure formed by remaining players NnS once a coalition S has deviated from
N .

Following the Hart and Kurtz�s (1983) coalition formation game, two extreme predictions

can be assumed on the behaviour of remaining players.

Under the so called 
-assumption,9 when a coalition deviates from N; the remaining

players split up in singletons; under the �-assumption, players in NnS stick together as a
unique coalition.10

Therefore, the obtained characteristic functions can be de�ned as follows:

(3) v
(S) =
X
i2S
ui

�
xS; fxjg

j2NnS

�
where x is a strategy pro�le such that, for all S � N , xS 2 XS and 8j 2 NnS, xj 2 Xj

x
S
= argmax

xS2XS

X
i2S
ui

�
xS; fxjg

j2NnS

�
x
j
= argmax

xj2Xj
uj

�
xS; fxkgk2(NnS)nfjg ; xj

�
:

Moreover,

(4) v�(S) =
X
i2S
ui
�
xS; xNnS

�
8This way to de�ne the worth of a coalition in as a non-cooperative equilibrium payo¤ of a game played

between coalitions was �rstly proposed by Ichiishi (1983).
9Hurt and Kurz�s (1983) � game is indeed a strategic coalition formation game with �xed payo¤ division,

in which the strategies consist of the choice of a coalition. Despite the di¤erent nature of the two games,
there is an analogy concerning the coalition structure induced by a deviation from the grand coalition.
10See Chander and Tulkens (1997) and Carraro and Siniscalco (1993) for applications of this approach.
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where,

x
S
= argmax

xS2XS

X
i2S
ui
�
xS; xNnS

�
and

xNnS = argmax
xNnS2XNnS

uj
�
xS; xNnS

�
:

In both cases, for (3) and (4) to be well de�ned, the Nash equilibrium of the strategic

form game played among coalitions must be unique. Usually, v�(S) < v�(S) < v�(S) for all

S � N .

2.1.3 Timing and the Characteristic Function

It is also conceivable to modify the 
- or �-assumption (coalitions playing simultaneously

à la Nash in the event of a deviation from the grand coalition) reintroducing the temporal

structure typical of the � and �-core.11

When a deviating coalition S moves �rst under the 
-assumption, members of S choose

a coordinated strategy as leaders, thus anticipating the reaction of the players in NnS, who
simultaneously choose their best response as singletons. The strategy pro�le associated to

the deviation of a coalition S is the Stackelberg equilibrium of the game in which S is the

leader and players in NnS are, individually, the followers. We can indicate this strategy
pro�le as a ~x (S) = (~xS; xj(~xS)) such that

(5) ~xS = argmax
xS2XS

X
i2S
ui

�
xS; fxj(xS)g

j2NnS

�
and, 8j 2 NnS,

(6) xj(xS) = argmax
xj2Xj

uj

�
xS; fxk(xS)gk2(NnS)nfjg ; xj

�
:

Su¢ cient condition for the existence of ~x (S) can be provided. Assume that G (NnS; xS),
the restriction of the game G to the set of players NnS given the �xed pro�le xS, possesses
a unique Nash Equilibrium for every S � N and xS 2 XS; where XS is assumed compact.

Let also each player�s payo¤ be continuous in each player�s strategy. Thus, by the closedness

of the Nash equilibrium correspondence (see, for instance, Fudemberg and Tirole (1991)),

members of S maximize a continuous function over a compact set (condition (5)) and, by

11See Currarini & Marini (2003) for details.
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Weiestrass Theorem, a maximum exists. As a consequence, for every S � N , there exists a
Stackelberg equilibrium ~x (S).

We can thus de�ne the characteristic function v�(S) as follows:

(7) v�(S) =
X
i2S
ui

�exS; fxj(exS)gj2NnS� :
Obviously, v�(S) � v
(S). In a similar way, the 
-assumption can be modi�ed by as-

suming that a deviating coalition S plays as follower against all remaining players in NnS
acting as singleton leaders. Obviously, the same can be done under the �-assumption.

2.1.4 The Core in Games with Externalities

We can test the various conversions of v(S) introduced above by examining the di¤erent

predictions obtained using the core of (N; v).

We �rst de�ne an imputation for (N; v) as a vector z 2 Rn
+ such that

P
i2N zi � v(N)

(feasibility) and zi � v(i) (individual rationality) for all i 2 N .

De�nition 3. The core of a TU cooperative game (N; v) is the set of imputations z 2 Rn+
such that

P
i2S zi � v(S) for all S � N .

Given that coalitional payo¤s are obtained from an underlying strategic form game, the

core can also be de�ned in terms of strategies, as follows.

De�nition 4. The joint strategy x 2 XN is core-stable if there is no coalition S � N

such that v (S) >
P
i2S
ui (x).

Example 2. (Merger in a linear Cournot oligopoly). Consider three �rms N =

f1; 2; 3g with linear technology competing à la Cournot in a linear demand market. Let

the demand parameters a and b and the marginal cost c, be selected in such a way that

interior Nash equilibria for all coalition structures exist. The set of all possible coalitions

of the N players is N = (f1; 2; 3g ; f1g ; f2g ; f3g ; f1; 2g ; f1; 3g ; f2; 3g ; f?g) : By de�nition,
v(f?g) = 0. Note that if all �rms merge, they obtain the monopoly payo¤ v(f1; 2; 3g) = A

4
;

where A = (a� c)2=b; independently of the assumptions made on the characteristic function.
These assumptions matters for the worth of intermediate coalitions. Under the �- and �-

assumptions, if either one single �rm or two �rms leave the grand coalition N , remaining

�rms can play a minimizing strategy in such a way that, for every S � N , v�(S) = v�(S) = 0.
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In this case, the core coincides with all individually rational Pareto e¢ cient payo¤s, i.e. all

points weakly included in the set of coordinates, Z =
��
A
8
; A
16
; A
16

�
;
�
A
16
; A
8
; A
16

�
;
�
A
16
; A
16
; A
8

��
.

Under the 
-assumption, we know that when, say �rms 1 and 2, jointly leave the merger,

a simultaneous duopoly game is played between the coalition f1; 2g and �rm f3g. Hence,
v
(f1; 2g) = A

9
: Similarly for all other couples of �rms deviating from N . When instead a

single �rm i leaves N , a triopoly game is played, with symmetric payo¤s v
(fig) = A
16
(these

payo¤s are obtained from the general expression v
(S) = A
(n�s+2)2 expressing �rms�pro�ts in

a n-�rm oligopoly). In this case, since intermediate coalitions made of two players do not

give each �rm more than their individually rational payo¤, the core under the 
-assumption

coincides with the core under the �- and �-assumptions. We know from Salant et al. (1982)

model of merger in oligopoly, that v
(S) >
P

i2S v
(fig) only for jSj > 0; 8 jN j : This means
that in the merger game the core under the 
-assumption shrinks with respect to the core

under the �- and �-assumptions only for n � 5. Under the �-assumption, when a single

�rm leaves N , a simultaneous duopoly game is played between the �rm fig and the remaining
�rms Nn fig acting as a single coalition. As a result, v�(fig) = A

9
; which is greater than A

12
,

the maximum payo¤ at least one �rm will obtain in the grand coalition: Therefore, under

the �-assumption, the core is empty. Finally, note that since under the �-assumption every

single �rm playing as leader obtains v�(fig) = A
12
; in such a case the core is unique and

contains only the equal split imputation z =
�
A
12
; A
12
; A
12

�
[see Figure 1 and 2].

2.2 Coalitional Equilibria in Strategic Form Games

2.2.1 Strong Nash Equilibrium

In the core �approach�described above, players can sign binding agreements.12 When this

assumption is relaxed, a Nash approach to coalitional deviations becomes more appropriate.

The concept of equilibrium proposed by Aumann (1959), denoted strong Nash equilibrium,

extends the Nash equilibrium to every coalitional deviation. Accordingly, a strong Nash

equilibrium is de�ned as a strategy pro�le that no group of players can pro�tably object,

given that remaining players are expected not to change their strategies.

De�nition 5 A strategy pro�le x̂ 2 XN for G is a strong Nash equilibrium (SNE) if

12More speci�cally, a coalition can change its strategy only by deviating from the grand coalition and it
cannot change strategy while remaining in the grand coalition.
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there exists no S � N and xS 2 XS such that

ui(xS; x̂NnS) � ui(x̂) 8i 2 S;

uh(xS; x̂NnS) > uh(x̂) for some h 2 S:

Obviously, all SNE of G are both Nash Equilibria and Pareto E¢ cient; in addition they

satisfy the Nash stability requirement for each possible coalition. As a result, SNE fails to

exist in many economic problems, and in particular, whenever Nash Equilibria fail to be

Pareto E¢ cient.

For the three players merger game of Example 1, the set of SNE is empty. This is because

the symmetric strategy pro�le x =
�
(a�c)
6b
; (a�c)

6b
; (a�c)

6b

�
yielding a Pareto e¢ cient allocation,

is not a Nash Equilibrium.

2.2.2 Coalition-proof Nash Equilibrium

To soften the existence problem of the SNE, a re�nement was proposed by Bernheim, Peleg

and Whinston (1987) and named coalition-proof Nash Equilibrium (CPNE). Di¤erently from

the SNE, here a restriction is imposed on coalional deviations that have to be self-enforcing,

i.e., not further improvable by subcoalitions of players.

De�nition 6. A coalition-proof Nash equilibrium (CPNE) x� 2 XN is de�ned induc-

tively with respect to the number of players n in the game: (i) If n = 1, then x�1 2 X1 is a

CPNE if and only if u1(x�1) � u1(x1) for any x1 2 X1; x1 6= x�1. (ii) Let n > 1. Assume that
the coalition-proof Nash equilibria have been de�ned for games with fewer than n players.

(a) For any game G with n players, x� 2 XN is a self-enforcing strategy pro�le if, for all

S  N , x�S is a CPNE of the reduced game Gjx��S . (b) Pro�le x
� is a CPNE of G if it is

a self-enforcing strategy pro�le and there is no other self-enforcing strategy pro�le x 2 XN

such that ui(xi; x�Nni) � ui(x�) for all i 2 N and ui(xi; x�Nni) > ui(x
�) for some i 2 N .

For the three players merger game of Example 1, the symmetric Nash strategy pro�le at

which the three �rms play independently x =
�
(a�c)
4b
; (a�c)

4b
; (a�c)

4b

�
is a CPNE, since coalitional

deviations made by two or three players are not self-enforcing.
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2.3 Cooperative Games with Coalition Structures

According to the original spirit of von Neumann and Morgenstern (1944), "the purpose of

game theory is to determine everything can be said about coalitions between players, com-

pensation between partners in every coalition, mergers or �ght between coalitions" (p.240).

To introduce the topic of competition among coalitions, a framework di¤erent from which

used by traditional cooperative games is required. The �rst required step is to extend the

game (N; v) to a game with a coalition structure � = (S1; S2; :::; Sm), i.e., a partition of

players N such that for all Sh; Sj 2 �; Sh \ Sj = ? and
S
k=1;::;m Sk = N . The second step

is to de�ne the worth to every coalition belonging to a given coalition structure. Finally, a

relevant issue is which coalition structure can be considered stable.

In their seminal contribution, Aumann and Drèze (1974) extends the solution concepts of

cooperative game theory to games with exogenous coalition structures. In every � 2 �(N),
the set of all partitions of the N players, each coalition is allowed to distribute its members

only its own worth v(Sk), here assumed equal to the Shapley value de�ned for every given

coalition structure � 2 �.13 However, the above restriction has been criticized as inadequate
for all models in which "the raison d�etre for a coalition S to form is that its members try

to receive more than v(S) - the worth of S." (Greenberg, 1994, p.1313). A part from this

criticism, the most commonly used stability concept within this framework is the coalition

structure core.

De�nition 7. Let (N; v) be a cooperative game. The coalition structure � 2 �(N) is
stable if its core is nonempty, i.e., if there exists a feasible payo¤ z 2 Z(�) such that, for
every Sk 2 �, zk � v(Sk). The game (N; v) has a coalition structure core if there exists at
least one partition that is stable.

2.3.1 The Partition Function Approach

The presence of externalities among coalitions of players calls for a more encompassing

approach than that o¤ered by a cooperative games in characteristic function form. For

this purpose, in a seminal paper Thrall and Lucas (1963) introduce the games in partition

function form.

13The Shapley value is de�ned as �(N; v) =
P
S�N

q(s)�i(s), where q(s) =
(s�1)!(n�s)!

n! and �i(s) = v(S)�

v(Sn fig is the marginal contribution of player i to any coalition S in the game (N; v): Therefore, the Shapley
value of player i represents the weighted sum of his marginal contribution to all coalitions he can join.
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De�nition 8. A TU game in partition function form can be de�ned as a triple (N; �; w);

where � = fS1; S2; :::; Smg is a partition of players N and w(S; �) : 2N��! R is a mapping

that assigns to each coalition S embedded in a given partition � 2 �(N) a real number (a
worth).

In this way, the authors can de�ne the value of every non-empty coalition S of N as

v(S) = min
f�jS2�g

w(Sk; �);

where this minimum is over all partitions � which contain S as a distinct coalition. This

approach constitutes a generalization of the cooperative game (N; v) and the two games

coincides when the worth of a coalition is independent of the coalitions formed by the other

players. When coaltions�payo¤s are not independent, some assumptions are still required to

model the behaviour of coalitions with respect to �rival�coalitions. Since Ichiishi (1983), the

modern theory of coalition formation adopt the view that coalitions cooperate inside and

compete à la Nash with the other coalitions.

2.3.2 The Valutions Approach

Since the games in partition function are hard to handle and often pose technical di¢ culties,

many recent contributions impose a �xed allocation rule distributing the worth of a

coalition to all its members.

Such a �xed sharing rule gives rise to a per-member payo¤ (valuation) mapping coalition

structures into vectors of individual payo¤s.

De�nition 9. A game in valuation form can be de�ned as a triple (N; �; vi); where � =

fS1; S2; :::; Smg is a partition of players N and vi(S; �) : 2N � � ! RjSj is a mapping that

assigns to each individual belonging to a coalition S embedded in a given partition � 2 � a
real number (a valuation).

De�nition 10. A coalition structure � is core stable if there not exists a coalition S and

a coalition structure �0 such that for S 2 �0 and for all i 2 S; vi(S; �0) > vi(S; �).14

In the merger game of Example 1, the set of all feasible partitions is

� = ((f1; 2; 3g) ; (f1; 2g ; f3g) ; (f1; 3g ; f2g) ; (f2; 3g ; f1g) ; (f1g ; f2g ; f3g)) ;
14Analogous concept of �, �; 
; �; �- core stability can be de�ned for games in valuation form.
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and the grand coalition is a core-stable coalition structure under the valuations v�i ; v
�
i , v



i

and v�i . It is not core-stable under the valuation v
�
i .

2.4 Noncooperative Games of Coalition Formation

Most recent approaches have looked at the process of coalition formation as a strategy in

a well de�ned game of coalition formation (see Bloch, 1997, 2003 and Yi, 2003 for sur-

veys). Within this new stream of literature, usually indicated as noncooperative theory of

coalition formation (or endogenous coalition formation), the work by Hurt and Kurz (1985)

represents a seminal contribution. Most recent contributions along these lines include Bloch

(1995, 1996), Ray and Vohra (1997, 1999) and Yi (1997). In all these works, cooperation is

modelled as a two stage process: at the �rst stage players form coalitions, while at the second

stage formed coalitions interact in a well de�ned strategic setting. This process is formally

described by a coalition formation game, in which a given rule of coalition formation maps

players�announcements of coalitions into a well de�ned coalition structure, which in turns

determines the equilibrium strategies chosen by players at the second stage.

A basic di¤erence among the various models lies on the timing assumed for the coalition

formation game, which can either be simultaneous (Hurt & Kurz (1982), Ray & Vohra

(1994), Yi (1997)) or sequential (Bloch (1994), Ray & Vohra (1995)).

2.4.1 Hurt & Kurz�s Games of Coalition Formation

Hurt and Kurz (1983) were among the �rst to study games of coalition formation with a

valuation in order to identify stable coalition structures.15 As valuation, Hurt & Kurz adopt

a general version of Owen value for TU games (Owen, 1977), i.e. a Shapley value with prior

coalition structures, that they call Coalitional Shapley value, assigning to every coalition

structure a payo¤vector '(�) in RN , such that (by the e¢ ciency axiom)
P

i2N '(�) = v(N).

Given this valuation, the game of coalition formation is modelled as a game in which each

player i 2 N announces a coalition S 3 i to which he would like to belong; for each pro�le
� = (S1; S2; :::; Sn) of announcements, a partition � (�) of N is assumed to be induced on

the system. The rule according to which � (�) originates from � is obviously a crucial issue

for the prediction of which coalitions will emerge in equilibrium.

15Another seminal contribution is Shenoy (1979).
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Hurt and Kurz�s game � predicts that a coalition emerges if and only if all its members

have declared it (from which the name of �unanimity rule�also used to describe this game).

Formally:

� (�) = fSi (�) : i 2 Ng

where

Si (�) =

�
Si if Si = Sj for all j 2 Si

fig otherwise.
:

Their game � predicts instead that a coalition emerges if and only if all its members have

declare the same coalition S (which may, in general, di¤ers from S). Formally:

� (�) = fS � N : i; j 2 S if and only if Si = Sjg :

Note that the two rules of formation of coalitions are "exclusive" in the sense that each

player of a forming coalition has announced a list of its members. Moreover, in the gamma-

game this list has to be approved unanimously by all coalition members. Once introduced

these two games of coalition formation, a stable coalition structure for the game � (�) can be

de�ned as a partition induced by a Strong Nash Equilibrium strategy pro�le of these games.

De�nition 10. The partition � is a 
-stable (�-stable) coalition structure if � = � (��)

for some �� with the following property: there exists no S � N and �S 2 �S such that

vi(�S; �
�
NnS) > vi(�

�); for all i 2 S

and

vh(�S; �
�
NnS) > vh(�

�); for some h 2 S:

It can be seen that the two rules generate di¤erent partitions after a deviation by a

coalition: in the �-game, remaining players split up in singletons; in the �-game, they stick

together.

Example 2: N = f1; 2; 3g. �1 = f1; 2; 3g ; �2 = f1; 2; 3g ; �3 = f3g.

�
 (�) = (f1g ; f2g ; f3g) ;

�� (�) = (f1; 2g ; f3g) :

In the recent literature on endogenous coalition formation, the coalition formation game

by Hurt and Kurz is usually modelled as a �rst stage of a game in which, at the second stage

13



formed coalitions interact in some underlying strategic setting. The coalition formation

rules are used to derive a valuation vi mapping from the set of all players�announcements �

into the set of real numbers. The payo¤ functions vi are obtained by associating with each

partition � = fS1; S2; :::; Smg a game in strategic form played by coalitions

G(�) = (f1; 2; :::;mg ; (XS1 ; XS2 ; :::; XSm); (US1 ; US2 ; :::; USm));

in which XSk is the strategy set of coalition Sk and USk : �
m
k=1XSk ! R+ is the payo¤

function of coalition Sk, for all k = 1; 2; :::;m. The game G(�) describes the interaction of

coalitions after � has formed as a result of players announcements in � or �.

The Nash equilibrium of the game G(�) (assumed unique) gives the payo¤ of each coali-

tion in �; within coalitions, a �x distribution rule yields the payo¤s of individual members.

Following our previous assumptions (see section 1.2) we can derived the game G(�)

from the strategic form game G by assuming that XSk =
Q
i2Sk

Sk and USk =
P
i2Sk

ui, for

every coalition Sk 2 �. We can also assume ui =
USk
jSkj as per capita payo¤ function of

members of Sk. Therefore, using Example 1, for the � game, ui (x� (f1; 2; 3g)) = A
12
for

i = 1; 2; 3, ui (x� (fi; jg ; fkg)) = uj (x
� (fi; jg ; fkg)) = A

18
, uk (x� (fi; jg ; fkg)) = A

9
; and

ui (x
� (fig ; fjg ; fkg)) = A

16
. i = 1; 2; 3. Therefore, the grand coalition is the only stable

coalition structure of the �-game of coalition formation. For the �-game, there are no stable

coalition structures.

If we extend the merger game to n �rms, we know that the payo¤ of each �rm i 2 S � N
when all remaining �rms split up in singletons, is given by:

v
i (x (� (�
0))) =

(a� c)2

s(n� s+ 2)2 ;

where n � jN j, s � jSj and �0 =
�
fSgi2S ; fNgi2NnS

�
. The grand coalition, induced

by the pro�le �� =
�
fNgi2N

�
, is a stable coalition structure of the �-game of coalition

formation, if

v
i (x (� (�
�))) =

(a� c)2

4n
� v
i (x (� (�0))) =

(a� c)2

s(n� s+ 2)2

The condition above is usually veri�ed for every s � n. Therefore, the stability of the grand
coalition for the �-merger game holds also for a n-�rm oligopoly.

14



2.4.2 Sequential Games of Coalition Formation

Bloch (1996,1997) introduces a sequential coalition-formation game with in�nite horizon in

which, as in Hurt and Kurz�s (1988) �-game, a coalition forms if and only if all its members

have agreed to form the same coalition. The sequence of moves of the coalition formation

game is organized as follows. At the beginning, the �rst player (according to a given ordering)

makes a proposal for a coalition to form. Then, the player on his list with the smallest index

accepts or rejects his proposal. If he accepts, it is the turn of the following player on the

list to accept or reject. If all players on the list accept �rst player�s proposal, the coalition

is formed and the remaining players continue the coalition formation game, starting with

the player with the smallest index who thus makes a proposal to remaining players. If any

of the players has rejected �rst player�s proposal, the player who �rst rejected the proposal

starts proposing another coalition. Once a coalition forms it cannot break apart or merge

with another player or a coalition of players. Bloch (1996) shows that this game yields the

same stationary subgame perfect equilibrium coalition structure as a much simpler "size-

announcement game", in which the �rst player announces the size of his coalition and the

�rst s1 players accept; then player is+1 proposes a size s2 coalition and this is formed and so

on, until the last player is reached [see Figure 3 and 4]. This equivalence is basically due

to the ex ante symmetry of players. It can also shown that this size-announcement game

possesses a generically unique subgame perfect equilibrium coalition structure.

If we extend the merger game of Example 1 to n > 2 �rms, the unique subgame perfect

equilibrium coalition structure of Bloch�s (1996) sequential game of coalition formation is

a coalition structure � = (fSg ; fjgj2NnS), with s = jSj equal to the �rst integer following�
2n+ 3�

p
4n+ 5

�
=2.16 The explanation is as follows. We know that when a merger of

size s is formed in a Cournot market, the equal-split payo¤ of each �rm i 2 S in the merger
is ui

�
x�((fSg ; fjgj2NnS)

�
= A=s(n� s+2)2 which is greater than the usual Cournot pro�t

ui

�
x�(figi2NnS)

�
= A=(n+ 1)2 only for s >

�
2n+ 3�

p
4n+ 5

�
=2. When a merger of size

s is in place, each independent �rm outside the merger earns a higher pro�t than that of the

members of the merger, equal to uj
�
x�((fSg ; fjgj2NnS)

�
= A(n � s + 2)2. Therefore, in

the sequential game of coalition formation, the �rst �rms choose to remain independent and

free-ride on the merger formed by subsequent �rms. When the number of remaining �rms

is exactly equal to the minimal pro�table merger size s =
�
2n+ 3�

p
4n+ 5

�
=2, they will

16We know (see Salant et al.,1983) that
�
2n+ 3�

p
4n+ 5

�
=2 ' 0:8n.
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choose to merge, as it is no longer pro�table to remain independent.

2.4.3 Equilibrium Binding Agreement

Ray and Vohra (1997) propose a di¤erent stability concept. In this solution concept, players

start from some coalition structure and are only allowed to break coalitions to smaller ones.

The deviations can be unilateral or multilateral (i.e., several players can deviate together).

The deviators take into account future deviations, both by members of their own coalitions

and by members of other coalitions. Deviations to �ner partitions must be credible, i.e.

stable themselves, and therefore the nature of the de�nition is recursive. We can start

with a partition � and we can denote by B(�) all coalition structures that are �ner than

�. A coalition �0 2 B(�) can be induced from � if �0 is formed by breaking a coalition

in �. A coalition S is a perpetrator if it can induce �0 2 B(�) from �: Obviously, S is a

subcoalition of a coalition in �. Denote the �nest coalition structure, such that jSj = 1 for
all S, by �0. There are no deviations allowed from �0 and therefore �0 is by de�nition stable.

Recursively, suppose that for some �, all stable coalitions were de�ned for all �0 2 B(�), i.e.,
for all coalition structures �ner than �. Now, we can say that a strategy pro�le associated

to a coalition structure x(�) is sequentially blocked by x(�0) for �0 2 B(�) if i) there exists
a sequence fx(�1); x(�2); :::; x(�m)g with x(�1) = x(�) and x(�m) = x(�0); ii) for every

j = 2; :::;m, there is a deviator Sj that induces �j from �j�1; iii) x(�0) is stable; iv) �j is not

stable for any x(�j) and 1 < j < m; v) ui(x(�0) > ui(x(�j�1)) for all i 2 Sj and j = 2; :::;m.

De�nition 11. x(�) is an equilibrium binding agreement if there is no x(�0) for �0 2
B(�) that sequentially blocks x(�).

Applying the Equilibrium Binding Agreement to the Example 1, we obtain that, apart

from x (�0), with �0 = (f1g ; f2g ; f3g) ; which is by de�nition stable, also the grand coalition
strategy pro�le x (�) with � = f1; 2; 3g is an equilibrium binding agreement. For the n-�rm

merger game, Ray and Vohra�s show that there is a cyclical pattern, in which, depending on

n; the grand coalition can or not be a stable coalition structure. For n = 3; 4; 5 it is stable,

but not for n = 6; 7; 8. For n = 9 is again stable and so on, with a rather unpredictable

pattern. "The grand coalition survives if there exist �large�zones of instability in intermediate

coalition structures." (Ray & Vohra, 1997, p.73).
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2.5 Some Guidelines to Coalition Formation in Economic Appli-
cations

In order to compare and interpret the main predictions that endogenous coalition formation

theories obtain in some classical economic problems, it can be useful to use a very simple

setup in which the equal sharing rule within each coalition is not assumed but it is obtained

through some symmetry assumptions imposed on the strategic form game describing the

economic problem at hand.17 Once some basic assumptions are imposed on the strategic

form games underlying the games of coalition formation, the main economic applications

can be divided in a few categories: 1) games with positive or negative players-externalities;

2) games with actions that are strategic complements or substitutes; 3) games with or without

coalition-synergies. According to these three features, we usually have a much clearer picture

of the predictions which can be expected from the di¤erent concepts of coalitional stability

illustrated above and, in particular, of the stability of the grand coalition.

We start imposing some symmetry requirements on the strategic form game G.

Assumption 1. (Symmetric Players): Xi = X � R is compact and convex for all

i 2 N . Moreover, for all x 2 XN and all permutations p : N ! N :

up(i)
�
xp(1); :::; xp(n)

�
= ui (x1; :::; xn) :

Assumption 2. (Monotone Player-externalities). One of the following two cases must

hold for ui(x) : XN ! R assumed quasi-concave:

1. Positive player-externalities: ui(x) strictly increasing in xNni for all i and all x 2 XN ;

2. Negative player-externalities: ui(x) strictly decreasing in xNni for all i and all x 2 XN .

Assumption 1 requires that all players have the same strategy set, and that players payo¤

functions are symmetric, by this meaning that any switch of strategies between players

induces a corresponding switch of payo¤s. Assumption 2 requires that the cross e¤ect on

payo¤s of a change of strategy have the same sign for all players and for all strategy pro�les.

Lemma 1. For all S � N; exS 2 argmaxxS2XSPi2S ui(xS; xNnS) implies exi = exj for all
i; j 2 S and all xNnS 2 XNnS:

17I follow here Currarini and Marini (2006).
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Proof. See Appendix. �

An important implication of Lemma 1 is that all players belonging to a given coalition

S � N will play the same maximizing strategy and then will obtain the same payo¤. We

can thus obtain a game in valuation form from a game in partition function form without

imposing a �xed allocation rule.

The next lemma expresses the fact that in every coalition structure �, at the Nash

equilibrium played by coalitions, when players-externalities are positive (negative), being

a member of bigger rather than a smaller coalition is convenient only when each member

of S plays a strategy that is lower (higher) than that played by each member of a smaller

coalition.

Lemma 2. Let Assumptions 1 and 2 hold. Then, for every S 2 � and T 2 �, with
jT j � jSj:

i) Under Positive Player-externalities, us(x(�)) � ut(x(�)) if and only if xs � xt;

ii) Under Negative Player-externalities, us(x(�)) � ut(x(�)) if and only if xs � xt.

Proof. See Appendix. �

Finally, we can use a well known classi�cation of all economic models in two classes: 1)

games in which players�actions are strategic complements; 2) games in which players�actions

are strategic substitutes.18

One basic feature of games with actions that are strategic complements is that players�

payo¤s exhibits increasing di¤erences on XN:.

De�nition 12. The payo¤ function ui exhibits increasing di¤erences on XN if for all

S, xS 2 XS, x0S 2 XS, xNnS 2 XNnS and x0NnS 2 XNnS such that x0S > xS and x
0
NnS > xNnS

we have

ui
�
x0S; x

0
NnS
�
� ui

�
xS; x

0
NnS
�
� ui

�
x0S; xNnS

�
� ui

�
xS; xNnS

�
:

This feature is typical of games, as price oligopoly models with di¤erentiated goods, for

which players�best-replies are upward-sloping. For these games, we can prove the following.

Lemma 3. Let assumptions 1-2 hold, and let ui have increasing di¤erences on XN , for

all i 2 N . Then, for every S 2 � and T 2 �, with jT j � jSj: i) Positive Player-externalities
imply xs � xt ; ii) Negative Player-externalities imply xs � xt.
18See for this de�nition Bulow et al. (1985)
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Proof. See Appendix. �

Suppose now to have a game with actions that are strategic substitutes. This is the case

of Cournot oligopoly and many other economic models. Suppose also that a boundary on

the slope of reaction maps is imposed by the following contraction assumption.

Assumption 3. (contraction) Let S 2 �. Then, there exists a c < 1 such that for all
xNnS and x0NnS: 

fs �xNnS�� ft1 �x0NnS�

 � c 

xNnS � x0NnS

 :
where k:k denotes the Euclidian norm in the space Rn�s

Lemma 4. Let assumptions 1-3 hold. Then, for every S 2 � and T 2 �, with jT j �
jSj: i) Positive Player-externalities imply xs � xt ; ii) Negative Player-externalities imply

xs � xt.

Proof. See Currarini and Marini (2006). �

Using all lemmata presented above we are now able to compare the valuation of players

belonging to di¤erent coalitions in a given coalition structure and then, to a certain extent,

the pro�tability of deviations. However, the above analysis is limited to games in which

forming a coalition does not enlarge the set of strategy available to its members and does

not modify the way payo¤s within a coalition originate from the strategies chosen by players

in N . In fact, as assumed at the beginning of the paper, the action space of each coalition

S � N is restricted to XS �
Q
i2S
Xi. Moreover v(S; �) =

P
i2S
ui(x (�)). The only advantage

for players to form coalitions is to coordinate their strategies in order to obtain a coalitional

e¢ cient outcome. This approach encompasses many well known games without synergies,

such as Cournot and Bertrand merger or cartel formation and public good and environmental

games, but rules out an important driving force of coalition formation, i.e. the exploitation

of synergies, typically arising for instance in R&D alliances or mergers among �rms yielding

some sort of economies of scales.

Within this framework, we can present the following result.

Proposition 1. Let assumptions 1-2 hold, and let ui have increasing di¤erences on XN ,

for all i 2 N . Then the grand coalition N is a stable coalition structure in the game of

coalition formation � derived from the game in strategic form G.

Proof. By Lemma 3, positive externalities imply that for all �, at x(�) larger coalitions
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choose larger strategies than smaller coalitions, while the opposite holds under negative

externalities, and then vi (S; �) � vi (T; �) for all S; T 2 � with jT j � jSj. This directly
implies the stability of the grand coalition in �. To provide a sketch of that proof, we

note that any coalitional deviation from the strategy pro�le �� yielding the grand coalition

induces a coalition structure in which all members outside the deviating coalitions appear as

singleton. Since these players are weakly better o¤ than any of the deviating members, and

since all players were receiving the same payo¤ at ��, a strict improvement of the deviating

coalition would contradict the e¢ ciency of the outcome induced by the grand coalition. �

In games with increasing di¤erences, players strategies are strategic complements, and

best replies are therefore positively sloped. The stability of the e¢ cient coalition structure

�� = fNg in this class of games can be intuitively explained as follows. In games with
positive externalities, a deviation of a coalition S � N will typically be associated with a

lower level of S�s members�strategies with respect to the e¢ cient pro�le x(��), and with a

higher level in games with negative externalities (see lemma 3 and 4 above). If strategies are

the quantity of produced public good or prices (positive player-externalities), S will try to

free ride on non members by reducing its production or its price; if strategies are emissions

of pollutant or quantities (negative player-externalities), �S will try to emit or produce more

and take advantage of non members�lower emissions or quantities. The extent to which these

deviations will be pro�table ultimately depend on the reaction of non members. In the case

of positive externalities, S will bene�t from an increase of non members�production levels or

prices; however, strategic complementarity implies that the decrease of S�s production levels

or prices will be followed by a decrease of the produced levels or prices of non members.

Similarly, the increase of S�s pollutant emissions or quantities will induce higher pollution

or quantity levels by non members. Free riding is therefore little pro�table in these games.

From the above discussion, it is clear that deviations can be pro�table only if best reply

functions are negatively sloped, that is, strategies must be substitutes in G. However, the

above discussion suggests that some �degree�of substitutability may still be compatible with

stability. Indeed, if S�s decrease in the production of public good is followed by a moderate

increase in the produced level of non members, S may still not �nd it pro�table to deviate

from the e¢ cient pro�le induced by ��. Therefore, if the absolute value of the slope of the

reaction maps is bounded above by 1, the stability result of proposition 1 extends to games

with strategic substitutes.
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Proposition 2. Let assumptions 1-3 hold. The grand coalition N is a stable coalition

structure in the game of coalition formation � derived from the game in strategic form G.

Moreover, we can extend the results of proposition 1 and 2 to games with negative

coalition-externalities.19

De�nition 13. A game in valuation form vi (K; �) exhibits positive (negative) coalition-

externalities if, for any coalition structure � and a coalition S 2 �,

vi (S; �
0) > (<) vi (S; �)

where �0 is obtained by � by merging coalitions in �nS.

It is clear from the above de�nition, that under negative coalition-externalities, v
i (x (� (�
0))) <

v�i (x (� (�
0))), where �0 =

�
fSgi2S ; fNgi2NnS

�
; just because �
 (�0) =

�
fSg ; fjgj2NnS

�
and

�� (�0) = (fSg ; fNnSg). The following propositions exploits this fact.

Proposition 3. Let assumptions 1-2 hold, and let ui have increasing di¤erences on XN ,

for all i 2 N . Let also the game G (�) exhibits negative coalition-externalities. Then the
grand coalition N is a stable coalition structure in the game of coalition formation � derived

from the game in strategic form G.

Proposition 4. Let assumptions 1-3 hold. Let also the game G (�) exhibits negative

coalition-externalities. Then the grand coalition N is a stable coalition structure in the game

of coalition formation � derived from the game in strategic form G.

A comparison of the above results, obtained for Hurt and Kurz�s (1985) games of coalition

formation, with the other solution concepts can be mentioned. It can be shown (see Yi, 1997)

that for all games without synergies in which - as in the merger example - players prefer

to stay as singletons to free-ride on a forming coalition - Bloch�s (1996) sequential game of

coalition formation gives rise to equilibrium coalition structures formed by one coalition and

a fringe of coalition acting as singletons. Moreover, even in a linear oligopoly merger game,

19See Bloch (1997) or Yi (2003) for such a de�nition. There is not a clear relationship between games with
positive (or negative) player-externalities and games with positive (or negative) coalition-externalities. How-
ever, for most well known games without synergies, both positive-player externalities (PPE) plus strategic
complement actions (SC) as well as negative-player externalities (NPE) plus strategic substitute actions (SS)
yield games with positive coalition-externalities. These are the cases of merger or cartel games in quantity
oligopolies (NPE+SS), merger or cartel games in price oligopolies (PPE+SC) and public goods (PPE+SS)
or environmental games (NPE+SS). Similarly, we can obtain Negative Coalition-Externalities in a game by
associating NPE and SC as in a cartel game in which goods are complements and then the game exhibits
SC.
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Ray and Vohra�s (1997) Equilibrium Binding Agreement may or may not support the grand

coalition as a stable coalition structure, depending on the number of �rms in the market.

When the gameG is a game with synergies, a classi�cation of the possible results. becomes

even more complex. To give an illustration, we can introduce a simple form of synergy

by assuming, as in Bloch�s (1995) and Yi�s (1997) R&D alliance models, that when �rms

coordinate their action and create a R&D alliance, they pool their research assets in such

a way to reduce the cost of each �rm in proportion to the number of �rms cooperating in

the project.20 Let the producing cost of �rms participating to a R&D alliance of s �rms be

c(xi; si) = (c+ 1� si)xi, where si is the cardinality of the alliance containing �rm i: Let

also a > c � n. As shown by Yi (1997), at the unique Nash equilibrium associated with

every coalition structure �, the pro�t of each �rm in a coalition of size si is given by:

v
i (x (�)) =

 
a� (n+ 1) (c+ 1� si) +

kP
j=1

sj (c+ 1� sj)
!2

(n+ 1)2
;

When � = �
 (�0), symmetry can be used to reduce the above expression to:

v
i (� (�
0)) =

(a� (n� si + 1) (c+ 1� si) + (n� si) c)2

(n+ 1)2
:

Straightforward manipulations show that the deviation of a coalition S from the grand

coalition in the game � is always pro�table whenever:

si > �
1

2
n+ c� 1

2

p
(n2 � 4 (nc� c2)� 8(a� c� 1):

To give an example, for n = 8, the deviation of a group of six �rms (si = 6) induces a

per �rm payo¤ of vi (� (�0)) =
(a�c+15)2

81
higher than �rms� payo¤ in the grand coalition

vi (� (�
�)) = (a�c+7)2

81
. Therefore, it becomes more di¢ cult to predict the stable coalition

structures in Hurt and Kurz�s � and � games. In the sequential games of coalition formation

(Bloch, 1996 and Ray & Vohra 1999) for a linear Cournot oligopoly in which �rms can form

reducing-cost alliances, and each �rm�s i 2 S bears a marginal cost

ci = 
 � �s

where s is the size of the alliance to which �rm i�s belongs, the equilibrium pro�t of each

�rm i 2 S is:

vi (�) =

"
1� 

n+ 1

+ �si �
P

j 6=i s
2
i

(n+ 1)

#
:

20This is usually classi�ed as a game with negative coalition-externalities (see Yi, 1997, 2003).
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Therefore, the formation of alliances induces negative externalities on outsiders, just

because an alliance reduces marginal costs of participants and make them more aggressive in

the market. Moreover, members of larger alliance have higher pro�ts and then, if membership

is open, all �rms wants to belong to the association (Bloch, 1996, 2005). In the game of

sequential coalition formation, anticipating that remaining players will form an association

of size (n � s); the �rst s players optimally decide to admit s� = 3n+1
4

and the unique

equilibrium coalition structure results in the formation of two associations of unequal size

�� =
��

3n+1
4

	
;
�
n�1
4

	�
.

3 Networks

3.1 Notation

We follow here the standard notation applied to networks.21 A nondirected network (N; g)

describes a system of reciprocal relationships between individuals in a set N = f1; 2; ::ng, as
friendships, information �ows and many others. Individuals are nodes in the graph g and

links represent bilateral relationship between individuals.22 It is common to refer directly to

g as a network (omitting the set of players). The notation ij 2 g indicates that i and j are
linked in network g. Therefore, a network g is just a list of which pairs of individuals are

linked to each other. The set of all possible links between the players in N is denoted by

gN = fijj i; j 2 N; i 6= jg. Thus G =
�
g � gN

	
is the set of all possible networks on N , and

gN is denoted as the complete network. To give an example, for N = f1; 2; 3g, g = f12; 13g
is the network with links between individuals 1 and 2 and 1 and 3, but with no link between

player 2 and 3. The complete network is gN = f12; 23; 13g. The network obtained by adding
link ij to a network g is denoted by g + ij, while the network obtained by deleting a link ij

from a network g is denoted g � ij. A path in g between individuals i and j is a sequence
of players i = i1; i2; :::iK = j with K � 2 such that ikik+1 2 g for each k 2 f1; 2; :::; K � 1g.
Individuals who are not connected by a path are in di¤erent components C of g; those who

are connected by a path are in the same component. Therefore, the components of a network

are the distinct connected subgraphs of a network. The set of all component can be indicated

as C(g). Therefore, g =
S
g02C(g) g

0. Let also indicate with N(g) the players who have at

21See, for instance, Jakcson and Wolinski (1996), Jackson (2003) and van den Noweland (2005).
22Here both individuals engadged in a relationship have to give their consent for the link to form. If

the relationship is unilateral (as in advertising) the appropriate model is a directed network. Also, here the
intensity of a link is assumed constant.
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least one link in network g.

3.2 Value Functions and Allocation Rules

It is possible to de�ne a value function assigning to each network a worth.

De�nition 14. A value function for a network is a function v : G! R.

Let us denote V the set of all possible value functions. In some applications v(g) =P
i ui(g) where ui : G! R. A network g 2 G is de�ned (strongly) e¢ cient if v(g) � v(g0) for

all g0 2 G. If the value is transferable across players, this coincides with Pareto-e¢ ciency.23

Since the network is �nite, it always exists an e¢ cient network.

Another relevant modelling feature is the way in which the value of a network is distrib-

uted among the individuals forming the network.

De�nition 15. An allocation rule is a function Y : G� V ! RN .

Thus, Yi(g; v) is the payo¤ obtained by every player i 2 N(g) under the value function
v.

Some important properties of the value functions v and of the allocation rules Y are

listed below.24

(1) Component Additivity. A value function v is component additive if v(g) =P
g02C(g) v(g

0) for all g 2 G.

This property requires that the value of the network equals the sum of the value of its

components. This means that the value of one component is independent of the structure of

the other components.

When an allocation rule Y distributes all the value accruing to one component to its

members, it is component balanced.25

(2) Component Balance. An allocation rule is component balanced if for any compo-

23A network g is Pareto e¢ cient (PE) with respect to a value v and an allocation rule Y if there not exists
any g0 2 G such that Yi(g0; v) � Yi(g; v) with strict inequality for some i. Note that if a network is PE with
respect to v and Y for all possible allocation rules Y; it is (strong) e¢ cient (see Jackson 2003).
24See Jackson and Wolinsky (1996) and Jackson ( 2005a) for details.
25An allocation rule is balanced if

P
i Yi(g; v) = v(g) for all v and g.
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nent additive v, for every g 2 G and g0 2 C(g)X
i2N(g0)

Yi(g
0; v) = v(g0):

(3) Fairness (Equal Bargaining Power). An allocation rule Y satis�es fairness if,

for any component additive v and for every g 2 G;

Yi(g)� Yi(g � ij) = Yj(g)� Yj(g � ij):

This property implies that under Y every i and j gain equally from the existence of their

link when compared to their payo¤s in absence of this link. If we take a permutation of

the players p : N ! N we can de�ne the same network with permuted individuals as

gp = fijj i = p(h); j = p(k); hk 2 gg and, if vp(gp) = v(g), we say that the value function is
anonymous.

(4) Anonymity. An allocation rule Y is anonymous if for any permutation p of the N

players, Yp(i)(gp; vp) = Yi(v; g).

A strong symmetry assumption on the allocation rule Y requires that for all anonymous

v 2 V , g 2 G and permutations p such that gp = g; Yp(i)(gp; vp) = Yi(g; v) (equal treatment
of equals).

When compared to the characteristic function of cooperative games (see Section 1.1),

here a value function v is sensitive not only to the number of players connected (in a compo-

nent of g) but also to the speci�c architecture in which they are connected. However, v can

be restricted to depend only on the number of players connected in a coalition. In a sem-

inal contribution, Myerson (1977) starts with a TU cooperative game (N; v) and overlaps

a communication network g to such a framework. Myerson (1977) associates a "graph-

restricted value" vg : 2N ! R, assigning to each coalition S a value equal to the sum of

worth generated by the connected components of players in S. Formally, players in S have

links in g(S) = fij 2 gj i 2 S; j 2 Sg and this induces a partition of S into subsets of players
S (g) that are connected in S by g. Thus, vg(S) =

P
g02CS(g) v(g

0) for every S � N , where
CS(g) indicates the set of components induced by g involving players belonging to coalition

S. This value assumes that players in S can coordinate their action only within their own

components.26 Two assumptions underline this value: i) there are no externalities between

di¤erent components of a network; ii) what matters for the worth vg is only the worth of the

26This implies a component balanced allocation rule Y .
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coalition of players which are in a component, not the type of connections existing within the

coalition. Within this framework, Myerson characterizes a speci�c allocation rule (known as

Myerson value) distributing the payo¤s among individuals, and shows that under two axioms

- fairness and component additivity - the unique allocation rule satisfying these properties

is the Shapley value of the graph-restricted game (N; vg):

Yi(g; v
g) =

X
S�Nnfig

jSj! (jN j � 1� jSj)!
jN j! (vg(S [ fig)� vg(S)):

3.3 Networks Formation Games

3.3.1 Networks Formation in Extensive Form

Aumann and Myerson (1988) propose an extensive form game to model the endogenous

formation of cooperation structures. In their approach, which involves a sequential formation

of links among players, bilateral negotiations take place in some predetermined order. Firstly,

an exogenous rule determines the sequential order in which pairs of players negotiate to form

a link. A link is formed if and only if both players agree and, once formed, cannot be broken.

The game is one of perfect information and each player knows the entire history of links

accepted or rejected at any time of the game. Once all links between pairs of players have

formed, single players can still form links. Once all players have decided, the process stops

and the network g forms and the payo¤ is assigned according to the Myerson value, i.e.,

the Shapley value of the restricted game (N; vg): Stable cooperative structure are considered

only those associated with subgame perfect equilibria of the game.

Example 3.27 Suppose a TU majority game with N = f1; 2; 3g and v(S) = 1 if jSj �
2 and v(S) = 0 otherwise. If the exogenous rule speci�es the following order of pairs:

f1; 2g ; f1; 3g ; f2; 3g. The structure f1; 2g is the only cooperation structure supported by a
subgame perfect equilibrium of the game. Neither player 1 nor player 2 have an interest to

form a link with player 3, provided that the other player has not formed a link with 3. So,

using backward induction, if at the �nal stage f2; 3g has formed, at stage 2 also f1; 3g forms
and player 1 obtains a lower payo¤ than in a coalition with only player 2. Thus, at stage 1

player 1 forms a link with player 2 and the latter accepts. No other links are formed at the

following stages.

27This example is taken from Dutta, van den Noweland & Tijs (1995).
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It is possible that a subgame Nash equilibrium of the Aumann and Myerson�s network

formation game in extensive form does not support the formation of the complete network

even for superadditive games. Moreover, no general results are known for the existence of

stable complete networks even for symmetric convex games.28

3.3.2 Networks Formation in Strategic Form

Myerson (1991) suggests a noncooperative game of network formation in strategic form.29

For each player i 2 N a strategy �i 2 �i is given by the set of players with whom she want to
form a link, i.e. �i = (Sj S � Nn fig). Given a n-tuple of strategies � 2 �1��2� :::��n a
link ij is formed if and only if j 2 �i and i 2 �j. Denoting the formed (undirected) network
g(�), the payo¤ of each player is given by Yi(v; g(�)) for every � 2 �N . A strategy pro�le
� is a Nash equilibrium of the Myerson�s linking game if and only if, for all player i and all

strategies �0 2 �i,
Yi(v; g(�)) � Yi(v; g(�0i; ��i)):

We can also de�ne a network g Nash stable with respect to a value function v and an

allocation rule Y , if there exists a pure strategy Nash equilibrium � such that g = g(�).

The concept of Nash equilibrium applied to the network formation game appears a too

weak notion of equilibrium, due to the bilateral nature of links. The empty network (a g

with no links) is always Nash stable for any v and Y . Moreover, all networks in which there

is a gain in forming additional links but no convenience to sever existing links are also Nash

stable. Re�nements of the Nash equilibrium concept for the network formation process have

been proposed. The pairwise stability introduced by Jackson and Wolinsky (1996) plays a

prominent role in the recent developments of the analysis of networks formation.

3.3.3 Pairwise Stability

We should expect that in a stable network players do not bene�t by altering the structure of

the network. Accordingly, Jackson and Wolinsky (1996) de�nes a notion of network stability

denoted pairwise stability.

De�nition 16. A network g is pairwise stable with respect to the allocation rule Y and

value function v if
28See, for a survey of this approach, van den Noweland (2005).
29This game is also analyzed by Quin (1993) and Dutta, van den Noweland & Tijs (1995).
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(i) for all ij 2 g; Yi(g; v) � Yi(g � ij; v) and Yj(g; v) � Yj(g � ij; v), and

(ii) for all ij =2 g; if Yi(g + ij; v) > Yi(g; v) then Yj(g + ij; v) < Yj(g; v).

As shown by Jackson and Watts (1998), a network is pairwise stable if and only if it

has no improving path emanating from it. An improving path is a sequence of networks

fg1; g2; :::; gKg where each network gk is defeated by a subsequent (adjacent) network gk+1,
i.e., Yi(gk+1; v) > Yi(gk+1; v) for gk+1 = gk � ij or Yi(gk+1; v) � Yi(gk+1; v) and Yj(gk+1; v) �
Yj(gk+1; v) for gk+1 = gk+ ij, with at least one inequality holding strictly. Thus, if there not

exists any pairwise stable network , then it must exists at least one cycle, i.e. an improving

path fg1; g2; :::; gKg with g1 = gk. Jackson and Wolinsky (1996) show that the existence of
pairwise stable networks is always ensured for certain allocation rules. They prove that under

the egalitarian and the component-wise egalitarian rules30 pairwise stable networks always

exists. In particular, under the egalitarian rule, any e¢ cient network is pairwise stable.

Under the component-wise allocation rule, a pairwise stable network can always be found.

This can be done for component additive v by �nding components C that maximize the

payo¤s of its players, and then continuing this process for the remaining players NnN(C).
The network formed by all these components is pairwise stable. Another allocation rule

with strong existence properties is the Myerson value. As shown by Jackson and Wolinsky

(1996), under Myerson�s allocation rule there always exists a pairwise network for every value

function v 2 V: Moreover, all improving paths emanating from any network lead to pairwise
stable networks, i.e. there are no cycles under the Myerson value allocation rule.31

However, as it is shown by Jackson and Wolinsky and by Jackson (2003), there exists a

tension between e¢ ciency and stability whenever the allocation rule Y is component balanced

and anonymous, in the sense that there does not exists an allocation rule with such properties

that for all v 2 V yields an e¢ cient network that is pairwise stable. In what follows we report
the illustrative example by Jackson and Wolinsky (1996) known as the connection model.

Example 4 - (The Connection Model-Jackson and Wolinsky 1996). This is

a model dealing with social communication between individuals. Links among individuals

allows them to communicate directly, but also indirectly with those individuals to whom their

30The egalitarian allocation rule Y e is such that Y ei (g; v) =
v(n)
n for all i and g. The component-wise

allocation rule Y ce is an egalitarian rule respecting component balance, i.e., such that Y cei (g; v) =
v(C)
jN(C)j

when N(C), the set of players in component C is non empty and Y cei (g; v) = 0 otherwise. See Jackson and
Wolinsky (1996) and Jackson (2003) for details.
31See also Jackson (2003) for details.
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adjacent individuals are linked, and so on. To form a link is costly, but yields also a bene�t

depending on the distance tij among individuals, de�ned as the number of links in the shortest

path between i and j ( tij = 1 when there is no path between i and j). De�ning wij the

value of individual j to individual i, the utility of each player from network g is

ui(g) = wii +
X
j 6=i

�tijwij �
X
j:ij2g

cij;

where 0 < � < 1 is a parameter expressing the value for i of the proximity of j: less

distant links are more valuable than more distant ones. Let also v(g) =
P

i2N ui(g). In the

symmetric case, with cij = c, wij = 1 for all j 6= i and wii = 0, we have the following results:
i) For c < � � �2 the unique e¢ cient and pairwise stable network is the complete network
gN ; ii) For � � �2 < c < � + ((n� 2)=2)�2 the star network with one individual maintaining
one link with all other individuals is the only e¢ cient network and this is pairwise stable for

� � �2 < c < �; (iii) For c > � any non-empty pairwise stable network is such that each

player has two links and is ine¢ cient;(iv) For c > �+((n�2)=2)�2 the empty network is the
only e¢ cient network. Let us show these results for N = f1; 2; 3g [see also Figure 5 ] When
c < � � �2; this implies that �2 < � � c, and every pair of individuals not directly connected
would gain by forming a direct link (since c < �), and this also increases the network value.

The value of the complete network is v(gN) = 6 (� � c). The value obtained with the star
network (only one individual linked to any other) is v(gS) = 4

�
� + �2

2
� c
�
and therefore

v(gN) � v(gS) = 2
�
� � �2 � c

�
> 0 for c < � � �2. For gS to become e¢ cient it is required

that �� �2 < c < �+ �2, where the right hand side of the inequality ensures that every player
who is maintaining only one link receives a positive payo¤. The star network gS becomes

the unique pairwise stable network when �� �2 < c < �; since in this case neither peripheral
players want to create links nor the player mantaining all links (center of the star) want to

sever her links. 32 The critical cost range is � + �2

2
> c > �, since in this case the unique

pairwise stable network is the empty network, but this is ine¢ cent given that the star network

yields a value of v(gS) = 4
�
� + �2

2
� c
�
> 0. Finally, for c > � + �2

2
the empty network is

the only e¢ cient pairwise stable network.

Thus, the example above shows that a pairwise stable network can either be ine¢ cient or

e¢ cient, depending on the cost range. The tension between e¢ ciency and stability appears

here for intermediate levels of the cost.
32For n > 3 the encompassing star is not necessarily the unique pairwise network.
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3.3.4 Further Re�nements of Network Stability Concepts

As in the case of coalition formation, equilibrium concepts immune to coordinated deviations

by players are also conceivable for networks (see Dutta andMutuswami, 1997, Dutta, Tijs and

van den Noweland, 1998 and Jackson and van den Noweland 2005). By allowing every subset

of players to coordinate their strategies in arbitrary ways yields a strong Nash equilibrium

for network formation games. That is, a strategy pro�le � 2 �N is a strong Nash equilibrium
of the network formation game if there not exist a coalition S � N and a strategy pro�le

�0S 2 �S such that
Yi(v; g(�

0
S; �NnS)) � Yi(v; g(�))

with strict inequality for at least one i 2 S. Hence, a network g is strongly stable with respect
to a value function v and an allocation rule Y , if there exists a strong Nash equilibrium �

such that g = g(�).

Similarly, an intermediate concept of stability, stronger than pairwise stability and weaker

than strong Nash equilibrium, has been proposed (Jackson and Wolinsky, 1996) and denoted

pairwise Nash equilibrium. This can be de�ned as a strategy pro�le � 2 �N such that, for
all player i and all strategies �0i 2 �i;

Yi(v; g(�
0
i; �Nni)) � Yi(v; g(�))

and there not exists a pair of agents (i; j) such that

Yi(v; g(�) + ij) � Yi(v; g(�));

Yj(v; g(�) + ij) � Yj(v; g(�))

with strict inequality for at least one of the agents. Therefore, a network g is pairwise Nash

stable with respect to a value function v and an allocation rule Y , if there exists a pairwise

Nash equilibrium � such that g = g(�).33

It can be shown that, given a value function v and an allocation rule Y , the set of

strongly stable networks is weakly included in the set of pairwise Nash stable networks and

that the latter set coincides with the intersection of pairwise stable networks and Nash stable

33This equilibrium concept has been adopted in applications by Goyal and Joshi (2003) and Belle�amme
and Bloch (2004) and formally studied by Calvo-Armengol and Ilkilic (2004), Ilkilic (2004) and Gillies and
Sarangi (2004).
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networks.34 Moreover, the set of pairwise stable networks and the set of Nash stable networks

can be completely disjoint even though neither is empty.35

In the next section, I brie�y illustrate some very simple applications of network formation

games to classical I. O. models. These are taken from Bloch (2002), Belle�amme and Bloch

(2004) as well as Goyal and Joshi (2003).

3.3.5 Some Economic Applications

Collusive Networks In Bloch (2002) and in Belle�amme and Bloch (2004) it is assumed

that �rms can sign bilateral market sharing agreements. Initially �rms are present on di¤er-

ent (geographical) markets. By signing bilateral agreement they commit not to enter each

other�s market.

If ij 2 g, �rm i withdraws from market j and �rm j withdraws from market i. For

every network g and given N �rms, let ni(g) be the number of �rms in �rm i�s market. with

ni(g) = n� di(g) where di(g) is the degree of vertex (�rm) i in the network, i.e. the number
of its links.

If all �rms are identical, �rm i�s total pro�t is

Ui(g) = ui(ni(g)) +
X
j; ij =2g

ui(nj(g)):

With linear demand and zero marginal cost, under Cournot competition we obtain

Ui(g) =
a2

[ni(g) + 1]
2 +

X
j; ij =2g

a2

[nj(g) + 1]
2 :

If n � 3; there are exactly two pairwise stable networks, the empty network and the

complete network. For n = 2; the complete network is the only stable network.

Note that the empty network is stable since for every symmetric �rm the bene�t to form

a link is

Ui(g + ij)� Ui(g) =
a2

n2
� 2 a2

(n+ 1)2

that, for n � 3, is negative.
34See, for instance, Jackson and. van den Nouweland, (2005) and Bloch and Jackson (2006).
35See Bloch and Jackson (2006) and Bloch and Jackson (2007), for an extensions of these equilibrium

concepts to the case in which transfers among players are allowed.
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For every incomplete network, Ui(g)� Ui(g � ij) � 0, requires that

a2

[ni(g) + 1]
2 �

"
a2

[ni(g) + 2]
2 +

a2

[nj(g) + 1]
2

#
� 0

and this holds only for ni(g) = nj(g) = 1, i.e., when the network is complete.

In this case (see, �gure 5 for the case with 3 �rms),

Ui(g
N)� Ui(gN � ij) =

a2

4
� 2a

2

9
> 0:

Therefore, it follows that the only nonempty network which is pairwise stable is the complete

network.

3.3.6 Bilateral Collaboration among Firms

Bloch (2002) and Goyal and Joshi (2003) consider the formation of bilateral alliances between

�rms that reduce their marginal cost. as

ci = 
 � �di(g)

where di(g) denotes the degree of vertex i, i.e. the number of bilateral agreements signed by

�rm i.

Under Cournot competition with linear demand, we have each �rm�s pro�t is given by

Ui(g) =

�
a� 

n+ 1

+ �di(g)�
�
P

j dj(g)

n+ 1

�2
:

For such a case, the only pairwise stable network turns out to be the complete network

gN (see Goyal and Joshi, 2003). This is because, by signing an agreement, each �rm increases

its quantity by �qi = n�
n+1

and, consequently, its pro�t. Moreover, when a large �xed cost

to form a link is included in the model, Goyal and Joshi show that stable networks possess

a speci�c form, with one complete component and a few singleton �rms.

4 Appendix

Lemma 1. For all S � N; exS 2 argmaxxS2XSPi2S ui(xS; xNnS) implies exi = exj for all
i; j 2 S and all xNnS 2 XNnS:
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Proof. Suppose exi 6= exj for some i; j 2 S. By symmetry we can derive from exS a new
vector expS permuting the strategies of players i and j such thatX

i2S
ui(expS; xNnS) =X

i2S
ui(exS; xNnS)

and hence, by the quasi-concavity of all ui (x) ; for all � 2 (0; 1) we have that:X
i2S
ui(�expS + (1� �)exS; xNnS) >X

i2S
ui(exS; xNnS):

Since, by convexity of X, the strategy vector
�
�expS + (1� �)exS; xNnS� 2 XS, we obtain a

contradiction. �

Lemma 2. Let Assumptions 1 and 2 hold. Then:

i) Under Positive Externalities, us(x(�)) � ut(x(�)) if and only if xs � xt;

ii) Under Negative Externalities, us(x(�)) � ut(x(�)) if and only if xs � xt.

Proof. Given a partition � of N , we consider S 2 � and T 2 �, with jT j � jSj. We
denote by xs 2 X and by xt 2 X the strategies chosen by each member of S and T at the

equilibrium pro�le x(�), respectively. It will be useful to refer to a partition of the coalition

T into the disjoint subsets T1 and T2 of T , such that jT1j = jSj (T2 is, of course, the empty
set if jT j = jSj). To keep notation simple, we will refer to players payo¤s omitting from
the argument of payo¤ functions all the strategies played by players in Nn (T [ S) at the
equilibrium pro�le x(�). More precisely, we will use the following notational convention:

((x; y); z) �
�
(x)i2T1 ; (y)i2T2 ; (z)i2S; (xj(�))j2Nn(T[S)

�
where (x)i2T1 denotes the joint strategy xT1 2 XT1 in which xi = x for all i 2 T1, and

the same notational convention applies to (y)i2T2 and (z)i2S. It follows that the triplet

((xt; xt); xs) identi�es the equilibrium pro�le x(�).

We prove the result for the case of positive externalities, starting with the �only if�part.

By lemma 1, all members of T get the same payo¤ at x (�). By de�nition of x(�), the pro�le

in which all members of T play xt maximizes the utility of each member of T , so that

(8) ut((xt; xt)xs) � ut((xs; xs) ; xs):

Suppose now that xs > xt. By assumption 1 and 2.1 we have

(9) ut((xs; xs) ; xs) = uti((xs; xs) ; xs) = us((xs; xs) ; xs) > us((xt; xt) ; xs):
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To prove the �if�part, consider coalitions T1, T2 and S which, as de�ned at the beginning

of this section, are such that jT1j = jSj and such that fT1; T2g forms a partition of T . By
de�nition of x(�), the utility of each member of S is maximized by the strategy pro�le xS.

Using the de�nition of us and of xs we write:

(10) us((xt; xt) ; xs) � us((xt; xt) ; xt):

By assumption 2.1, if xs � xt then

(11) us((xt; xt) ; xt) � us((xs; xt) ; xt):

Finally, by assumption 1 and the fact that jT1j = jSj, we obtain

(12) us((xs; xt) ; xt) = ut1((xt; xt) ; xs) = ut((xt; xt) ; xs);

implying, together with (11) and (12), that

(13) us(x(�)) = us((xt; xt) ; xs) � ut((xt; xt) ; xs) = ut(x(�)):

The case of negative externalities can be proved along similar lines. �

Lemma 3. Let assumptions 1-2 hold, and let ui have increasing di¤erences on XN , for

all i 2 N . Let �, T and S be de�ned as in Notation 1. Then: i) Positive Externalities imply
xs � xt ; ii) Negative Externalities imply xs � xt.

Proof. i) Suppose that, contrary to our statement, positive externalities hold and

xs > xt. By increasing di¤erences of ui for all i 2 N (and using the fact that the sum of

functions with increasing di¤erence has itself increasing di¤erences), we obtain:

(14) us((xs; xt); xs)� us((xs; xt); xt) � us((xt; xt); xs)� us((xt; xt); xt):

By de�nition of xs we also have:

(15) us((xt; xt); xs)� us((xt; xt); xt) � 0:

Conditions (14) and (15) directly imply:

(16) us((xs; xt); xs)� us((xs; xt); xt) � 0:

Referring again to the partition of T into the disjoint coalitions T1 and T2 as de�ned in

Notation 1, an application of the symmetry assumption 1 yields:

us((xs; xt); xs) = ut1((xs; xt); xs);(17)

us((xs; xt); xt) = ut1((xt; xt); xs):
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Conditions (16) and (17) imply:

(18) ut1((xs; xt); xs) � ut1((xt; xt); xs):

Positive externalities and the assumption that xs > xt imply:

(19) ut2((xs; xt); xs) > ut2((xt; xt); xs):

Summing up conditions (18) and (19), and using the de�nition of T1 and T2, we obtain:

(20) ut((xs; xt); xs) > ut((xt; xt); xs);

which contradicts the assumption that xt maximizes the utility of T given xs.

The case ii) of negative externalities can be proved along similar lines. �
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