
 

WP-EMS
Working Papers Series in

Economics, Mathematics and Statistics

“A ‘Bull and Bear’ Model of Interacting   
Financial Markets. Part II: Dynamics  

in Three Dimensions” 

• Fabio Tramontana, (U. Ancona & U. Urbino) 
• Laura Gardini, (U. Urbino) 
• Roberto Dieci (U. Bologna) 
• Frank Westerho¤ff (U.  Bamberg) 
 

WP-EMS # 2008/08

ISSN 1974-4110 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6989845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A �bull and bear�model of interacting �nancial

markets. Part II: dynamics in three

dimensions.

1Fabio Tramontana, 2Laura Gardini, 3Roberto Dieci, 4Frank Westerho¤

1Università Politecnica delle Marche

2Università degli Studi di Urbino

3Università di Bologna

4University of Bamberg

JEL classi�cation: C61, C63, D84, G15

1



Abstract

In the �rst part of our paper we proposed a three-dimensional nonlinear dynamic model

of interacting stock and foreign exchange markets, jointly driven by the speculative activity of

heterogeneous investors. We focused, in particular, on the typical �bull and bear�scenario that

emerges from simpli�ed one- and two-dimensional settings. The goal of this part of the paper

is to provide a global analysis of the dynamics of the full model. As it turns out, the results

we obtained in the �rst part may serve as a road map to develop an initial understanding of

the much more complicated three-dimensional model.
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1 Introduction

In a previous paper (Tramontana et al. (2008), which we shall denote as Part I henceforth),

we developed a three-dimensional discrete-time dynamic model in which two stock markets of

two countries, say H(ome) and A(broad), are linked via and with the foreign exchange mar-

ket. The latter is modeled in the sense of Day and Huang (1990), i.e. it is characterized

by a nonlinear interplay between technical traders (or chartists) and fundamental traders (or

fundamentalists). In the absence of connections, the foreign exchange market is driven by the

iteration of a one-dimensional cubic map, which has the potential to produce a regime of alter-

nating and unpredictable bubbles and crashes for su¢ ciently large values of a key parameter,

which captures the speculative behavior of chartists. Such a dynamic feature, �rst observed

and explained by Day and Huang (1990) in their stylized model of �nancial market dynam-

ics, can be understood with the help of bifurcation analysis: an initial situation of bi-stability

(two coexisting, attracting �non-fundamental�steady states around an unstable �fundamental�

equilibrium) evolves into coexistence of cycles or chaotic intervals within two disjoint �bull�and

�bear�regions, which eventually merge via a homoclinic bifurcation. By introducing connections

between markets (i.e. by allowing stock market traders to be active abroad), the endogenous

�uctuations originating in one of the markets spread throughout the whole three-dimensional

system. It therefore becomes interesting to investigate how the coupling of the markets a¤ects

the �bull and bear�dynamics of the model. With regard to this, in Part I we already per-

formed a thorough analytical and numerical study of two simpli�ed lower-dimensional cases,

where connections are either totally absent (each market evolves according to an independent

one-dimensional map) or occur in one direction (a two-dimensional system evolves independen-

dently of the third dynamic equation). In the present paper we analyze the dynamic behavior

of the complete three-dimensional model, by following the approach adopted in Part I, based

mainly on the numerical and graphical detection of the relevant global bifurcations.

The structure of the paper is as follows. In Section 2 we brie�y describe the three-

dimensional model of interacting stock and foreign exchange markets. The main results regard-
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ing the lower-dimensional subcases explored in Part I are summarized in Section 3. Section 4

deals with the dynamics of the complete three-dimensional model by discussing, in particular,

the steady state properties and the existence of multiple equilibria (Section 4.1), the homoclinic

bifurcations of the nonfundamental steady states (Section 4.2) and of the fundamental equilib-

rium (Section 4.3), and the so-called ��nal bifurcation�(Section 4.4). Section 5 concludes the

paper.

2 The dynamic model

This model describes the joint evolution of two stock markets (denoted as H and A), denom-

inated in di¤erent currencies, and the related foreign exchange market. While the two stock

prices (PHt and PAt , respectively) adjust over time depending on the excess demand for stock

generated by national and foreign fundamental traders, the exchange rate1 (St) depends on the

excess demand of currency H. The latter consists of (i) demand for currency by heterogeneous

speculators (technical and fundamental traders) who explicitly focus on the foreign exchange

market and (ii) demand for currency by stock market traders who invest abroad, who obviously

buy/sell foreign currency to conduct stock market transactions. In the following, we denote

as FH , FA and F S the �fundamental values�of the two stock prices and the exchange rate,

respectively. Assuming, for the sake of simplicity, a linear price impact function, prices in the

three markets jointly evolve according to the following laws of motion:

PHt+1 = P
H
t + a

H(DHH
F;t +D

HA
F;t ), (1)

PAt+1 = P
A
t + a

A(DAA
F;t +D

AH
F;t ), (2)

St+1 = St + d

�
PHt D

HA
F;t �

PAt
St
DAH
F;t +D

S
C;t +D

S
F;t

�
, (3)

where aH , aA and d are positive parameters, and where the demand terms appearing on the

right-hand sides of the above equations have the following de�nitions and meaning:

1Here we de�ne the exchange rate as the price, expressed in currency A, of one unit of currency H.
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� DHH
F;t = b

H(FH � PHt ), bH > 0, is the demand2 for stock H by the fundamental traders

(or fundamentalists) from country H;

� DHA
F;t = c

H
�
(FH � PHt ) + 
H(F S � St)

�
, cH � 0, 
H > 0, is the demand for stock H by

the fundamental traders from country A;

� DAA
F;t = b

A(FA�PAt ), bA > 0, is the demand for stock A by the fundamental traders from

country A;

� DAH
F;t = c

A
h
(FA � PAt ) + 
A

�
1
FS
� 1

St

�i
, cA � 0, 
A > 0, is the demand for stock A by

the fundamental traders from country H;

� DS
C;t = e(St � F S), e > 0, and DS

F;t = f(F
S � St)3, f > 0, are the demands of currency

H by chartists and fundamentalists, respectively, who enter speculative positions in the

foreign exchange market. In particular, chartist demand coe¢ cient, e, turns out to be an

important bifurcation parameter in our analysis.

The following additional comments about agents�demands are useful:

(i) Fundamentalists seek to pro�t from mean reversion, so that they submit buying orders

(positive demand) when the market is undervalued (the price is below fundamental) and

selling orders (negative demand) when the market is overvalued.

(ii) In addition, foreign fundamentalists may also bene�t from exchange rate movements, and

therefore their demand function also includes a term that is dependent on the observed

mispricing in the foreign exchange market; in particular, traders from H to A take into

account the reciprocal values of the exchange rate and its fundamental.

(iii) In the foreign exchange market, chartists believe in the persistence of �bull�markets or

�bear�markets and therefore optimistically buy (pessimistically sell) currency H as long

as the exchange rate is high (low). Fundamentalists seek to exploit misalignments using

2The demand for stock is given in real units.
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a nonlinear trading rule. As long as the exchange rate is close to its fundamental value,

fundamentalists are relatively cautious, but the greater the mispricing, the more aggressive

they become.

(iv) Finally, PHt D
HA
F;t represents the demand for currency H generated by stock market orders

from A to H, and symmetrically PAt D
AH
F;t is the demand for currency A generated by

stock market orders from H to A: the latter is converted into an amount of currency H

of opposite sign, via the reciprocal exchange rate 1
St
.

By specifying all of the demand terms in equations (1)-(3), we obtain a three-dimensional

dynamical system with the following structure

8>>>><>>>>:
PHt+1 = G

H(PHt ; St)

St+1 = G
S(PHt ; St; P

A
t )

PAt+1 = G
A(St; P

A
t )

. (4)

In particular, for cH = cA = 0 the structure of the system (4) simpli�es into three indepen-

dent dynamic equations, PHt+1 = GH(PHt ), St+1 = GS(St), PAt+1 = GA(PAt ), of which that for

exchange rate S is nonlinear (of cubic type), whereas the two stock prices PH and PA evolve

linearly. More interestingly, for cA = 0 but cH > 0 the system is of the type

8>>>><>>>>:
PHt+1 = G

H(PHt ; St)

St+1 = G
S(PHt ; St)

PAt+1 = G
A(PAt )

, (5)

that is to say, PA decouples from the system, whereas PH and S co-evolve in a two-dimensional

nonlinear dynamical system. Both such lower-dimensional subcases were analyzed in detail in

Part I. The main �ndings of such an analysis are summarized in the following section.
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3 Results of the 1-D and 2-D analysis

In this section, we recall the main results regarding the simpli�ed, lower dimensional subcases

analyzed in Part I.

One-dimensional case

In the absence of interactions, cH = cA = 0, each market evolves as a one-dimensional

dynamical system. Stock markets are represented by simple linear equations and in each of

them the unique fundamental steady state is globally stable, at least for reasonable values of the

price and demand adjustment parameters. The law of motion of the foreign exchange market

is nonlinear, determined by iteration of a cubic map, with three �xed points: namely, two �non-

fundamental�steady states, say P1 and P2, relative to each of the two unimodal branches of the

cubic map, surrounding an unstable �fundamental�steady state (O). The map is symmetric

with respect to the fundamental value, which is why the bifurcations involving P1 and P2 are

synchronized. The bifurcation analysis with respect to parameter e highlighted the route to

chaotic �bull and bear�dynamics of the model. The (synchronized) period-doubling bifurcations

of P1 and P2, followed by the usual cascade of �ip bifurcations and the homoclinic bifurcations

of the two steady states, lead to the coexistence of two symmetric intervals (around P1 and P2,

respectively), each characterized by chaotic dynamics (in the sense of chaos of full measure on

an interval). Due to the noninvertibility of the map, within this range of values of parameter e

the basins of the two coexisting attractors have a disconnected structure, each being made up

of an in�nite sequence of intervals which alternate on the real line with that of the competing

attractor. For higher values of parameter e, the two attractors and their basins merge together

via a homoclinic bifurcation of the fundamental steady state O. After this point, the exchange

rate dynamics, previously con�ned to below or above the fundamental value, depending on the

initial condition, wanders within a unique chaotic interval around the fundamental steady state,

alternating bull and bear market episodes in an unpredictable manner. A ��nal bifurcation�

then occurs when the unique attractor touches the border between its basin and the �basin of

in�nity�, B1, after which the generic trajectory is divergent.
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A crucial tool for the bifurcation analysis, strictly associated with the noninvertibility of

the map, is represented by the critical points (local extrema and their iterates), which are at

the boundary of chaotic intervals, and their contacts with the unstable steady states.

Two-dimensional case

By introducing a partial connection between stock markets A and H (namely, by allowing

investors from country A to trade in country H), the latter turns out to coevolve with the

foreign exchange market (whereas market A is still decoupled from the system). As a result,

we have a system of two coupled equations, one linear and one nonlinear. In particular, in the

nonlinear equation for the exchange rate we also have a feedback from stock market H, which

makes the dynamics even more intricate. One di¤erence with the one-dimensional case is that

now a unique steady state exists for small values of e. Another di¤erence is that the symmetry

property is lost. Apart from this, in the two-dimensional case we still observe the same multiple

steady state structure (when e is large enough) and a similar sequence of local and global

bifurcations. More precisely, we highlighted the homoclinic bifurcations that involve the saddle

equilibria P1 and P2 �rst (albeit now in an asynchronous manner) and then the fundamental

equilibrium O. Due to this sequence of bifurcations (also called interior and exterior crises in

Grebogi et al. (1983)), the system has a transition across di¤erent dynamic scenarios: from

coexisting attracting �bull� and �bear� chaotic regions, to the disappearance of one of them,

to the merging of the two regions into a unique wider chaotic area. The resulting dynamic

outcome is a coupled �bull and bear�market behavior of stock price H and the exchange rate,

which may switch across di¤erent regions of the two-dimensional phase space with apparently

random behavior. In all cases, the bifurcation mechanisms are basically due to contacts between

invariant sets - such as stable manifolds of saddles - and the boundary of chaotic attractors, the

latter being made up of portions of �critical curves�of the noninvertible two-dimensional map

(see Mira et al. (1996)). Finally, also the bifurcation leading to the disappearance of the unique

chaotic attractor is similar to that of the one-dimensional case. Such a two-dimensional analysis

has been largely carried out with the help of numerical simulation and graphical visualization.
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In particular, the tool of the �critical curves�has suggested how the basins of attraction may

acquire a disconnected structure.

4 Analysis of the 3-D case

In this section we deal with the complete three-dimensional model, mainly with the help of

numerical simulation. Our analysis will show that the dynamic phenomena highlighted in

Part I also persist in the full model, and can be detected and understood by extending the

approach and techniques used in the lower-dimensional cases to a three-dimensional setup. In

particular, we are also able in the full model to detect and explain the sequence of local and

global bifurcations that determine the transition between di¤erent dynamic regimes: namely,

from a unique attracting fundamental equilibrium to coexistence of attracting non-fundamental

equilibria, to more complex coexisting attractors, up to the homoclinic bifurcations which bring

about a regime of �bull and bear�market �uctuations, �rst established by Day and Huang

(1990) in a one-dimensional setup, characterized by apparently random switches of prices across

di¤erent regions of the phase space.

In the full model, stock market traders from countries A and H are allowed to trade in both

markets, i.e. cH > 0 and cA > 0. In this case, the two stock prices and the exchange rate are

all interdependent, and the model has the complete structure (4). The system (4), expressed

in deviations3 from fundamental values, x = (PH � FH), y = (S � F S) and z = (PA � FA), is

represented by a map T : R3 ! R3 that takes the following form:

T :

8>>>>><>>>>>:
xt+1 = xt � aH

�
(bH + cH)xt + c

H
Hyt
�

yt+1 = yt � d
�
cH
�
xt + F

H
� �
xt + 


Hyt
�
+ cA

zt + F
A

yt + F S

�

A

yt
F S(yt + F S)

� zt
�
� eyt + fy3t

�
zt+1 = zt � aA

��
bA + cA

�
zt � cA
A

yt
F S(yt + F S)

�
(6)

The model is not tractable analytically. Apart from the �fundamental��xed point, say O =

3Although we work with deviations, in all the following numerical experiments we have checked that original
prices never become negative.
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(0; 0; 0), whose existence can be immediately checked, we cannot solve explicitly for the coor-

dinates of further possible non-fundamental equilibria, nor can we obtain easily interpretable

analytical conditions for their existence. A brief discussion of the steady states is provided in

the following subsection.

4.1 Fixed points and multistability

By imposing the �xed point condition to (6), we obtain the following system of equations

(bH + cH)x+ cH
Hy = 0, (7)

cH
�
x+ FH

� �
x+ 
Hy

�
+ cA

z + FA

y + F S

�

A

y

F S(y + F S)
� z
�
� ey + fy3 = 0, (8)

�
bA + cA

�
z � cA
A y

F S(y + F S)
= 0. (9)

We observe from (7) and (9) that any steady state must belong to both the plane of equation:

y = � x

qH
(10)

and the surface of equation

z = qA
y

(y + F S)
, (11)

where

qH :=
cH
H

bH + cH
, qA :=

cA
A

(bA + cA)F S
.

This implies that when the steady state exchange rate is above the fundamental value (y > 0),

steady state price A is then above the fundamental value (z > 0), whereas steady state price H

is below the fundamental value (x < 0), and vice versa. From now on, we will label the region

y > 0, z > 0, x < 0 as the �bull�region and region y < 0, z < 0, x > 0 as the �bear�region.

By substituting (10) and (11) into (8), we are able to express condition (8) in terms of the
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steady state (deviation of) price H only, as follows:

x

�
f

(qH)3
x2 + bHx+

�
bHFH � e

qH

�
+M(x)

�
= 0, (12)

where

M(x) := bAqHqA
qHF SFA � x(qA + FA)

(qHF S � x)3 .

Therefore, besides the fundamental solution x = 0, further possible solutions are the roots of the

expression in square brackets in (12). Note that for cA = 0, and therefore qA = 0 andM(x) � 0,

the x-coordinates of further possible steady states are the solutions of a quadratic equation, and

their existence was discussed in detail in Part I.4 In contrast, if cA > 0, it becomes impossible to

solve equation (12) analytically. Clearly, if cA is small enough, the steady state structure must

be qualitatively similar to the two-dimensional subcase cA = 0, with two further steady states

initially appearing simultaneously in the �bull�region, via saddle-node bifurcation.5 However,

if cA is large enough, as is the case of the following numerical experiments, as we shall see, it

is di¢ cult to detect the appearance of further equilibria and their initial location with respect

to the fundamental.

We remark that the analytical investigation of the local stability properties of fundamental

�xed point O = (0; 0; 0) is also a di¢ cult task. The Jacobian matrix evaluated at O is given

by:

J(O) :

2666664
1� aH(bH + cH) �aHcH
H 0

�dcHFH 1� d
�
cHFH
H +

cAFA
A

(F S)3
� e
�

dcAFA

F S

0
aAcA
A

(F S)2
1� aA(bA + cA)

3777775 , (13)

and its eigenvalues (which are roots of a third-order polynomial) cannot be solved for explicitly.

Nor can we write down tractable analytical conditions for the eigenvalues to be smaller than

4Moreover, in this case, in which market A decouples from the system, (11) reduces to z = 0.
5This is also con�rmed by numerical simulation.
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one in modulus.

We shall now study the local and global bifurcations via numerical investigation, supported

by our knowledge of the model behavior in the simpli�ed, two-dimensional case. In fact, as

we shall see, the analysis performed in Part I provides important guidelines for understanding

the dynamic phenomena occurring in this more complex three-dimensional model. With the

parameter setting used in following numerical simulations (as well as with other similar con-

stellations of parameters) we do not observe the appearance of the non-fundamental equilibria

via saddle-node bifurcation. Instead, a pitchfork bifurcation of the fundamental steady state

seems to occur, leading to the appearance of two new stable equilibria, one in the �bull�region

and one in the �bear�region, at the same parameter value at which the fundamental becomes

unstable.6 The situation resulting from the local bifurcation of the fundamental steady state

is in any case qualitatively the same as for the two-dimensional subcase (see Part I). That is,

the phase space is shared amongst the basins of attraction of two non-fundamental equilibria,

separated by the stable set of the (saddle) fundamental steady state. From now on, the bifur-

cation sequences involving the two coexisting equilibria (or, more generally, the two coexisting

attractors) follow paths similar to those observed in the two-dimensional model, albeit involving

stable and unstable manifolds in higher dimensions. In this paper we con�rm and strengthen

almost all of the results of the two-dimensional case, albeit via numerical simulations only. We

shall describe various kinds of homoclinic bifurcations, following the same scheme of the study

carried out in Part I.

Our base parameter selection is the following: aH = 0:41, bH = 0:11, cH = 0:83, FH = 4:279,


H = 0:3, d = 0:35, f = 0:7, F S = 6:07 (which are the same parameters used in the simulations

in Part I, enabling a direct comparison), aA = 0:43, bA = 0:21, cA = 0:9, 
A = 0:36 and

FA = 1:1. In order to su¢ ciently distinguish the model from the two-dimensional case studied

in Part I (where cA is zero), we have chosen a value of cA that is much further away from

6We remark that this is just numerical evidence, and we cannot exclude the existence of a sequence similar to
that described in Part I for the 2D model, occurring in a very narrow range of parameter e, i.e. a Saddle-Node
bifurcation immediately followed by a Transcritical.
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zero, and even higher than cH . Bifurcations similar to those described below are observed with

several other parameter constellations. The numerical analysis shows that O loses stability

when one eigenvalue becomes equal to 1 at e ' 0:124984. We argue that this corresponds to a

pitchfork bifurcation, because we observe the simultaneous appearance of two further equilibria,

which we denote as P1 (in the �bear�region) and P2 (in the �bull�region). Fig. 1 shows the

asymptotic dynamics in the three-dimensional phase space for increasing values of e. We can

see that the fundamental �xed point is unstable and that two new stable �xed points exist.

The stable �xed points are located on opposite sides with respect to plane y = 0 (i.e. S = F S),

as shown in Fig. 1a. Since only one eigenvalue of J(O) becomes larger than 1, while two other

eigenvalues are real and still smaller than one in absolute value, the fundamental equilibrium

is a saddle with a one-dimensional unstable manifold (made up of two branches, connecting

O with P1 on one side and O with P2 on the opposite side), while the stable set W s
O of the

origin is a two-dimensional manifold, which separates the two basins of attraction of the two

coexisting �xed points. In other words, the frontier of the basins of attraction of P1 and P2;

say B1 and B2, respectively, includes surface W s
O. Moreover, it is easy to see that divergent

behavior is also possible, so that the basin of divergent trajectories, B1, also exists (and will

be involved in the �nal bifurcation, as we shall see below). The structure of the basins after

the appearance of the two new attractors is shown in Fig. 2, where a cross section of a plane

through the fundamental �xed point O = (0; 0; 0) is considered. The value of the parameter

is e = 0:89, as in Fig. 1a, and two attracting �xed points coexist. In the cross section, the

di¤erent colors belong to di¤erent basins of attractions. We denote in pink the basin of the

�xed point P1 (in the �bear�region). The basin of �xed point P2 (in the �bull�region) is orange,

while points generating divergent trajectories, and thus belonging to the basin B1, are shown

in gray.

As already conducted in Part I of our study, we analyze the sequence of bifurcations oc-

curring when parameter e is increased. We �rst show a bifurcation diagram of the asymptotic

behavior of state variable y as a function of parameter e. The diagram (Fig. 3) highlights how a
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sequence of bifurcations very similar to those observed in the two-dimensional case also occurs

in the three-dimensional case and, as expected, in an asynchronous manner (because in the full

model, as well as in the two-dimensional subcase studied in Part I, there is no symmetry with

respect to the origin). In Fig. 3a, the initial condition is taken close to the �xed point P1, while

in Fig. 3b the starting point is close to the other �xed point P2. The global bifurcations �rst

involve the attractor associated with equilibrium P1 (in blue) and then that associated with P2

(in red).

4.2 Homoclinic bifurcation of equilibria P1 and P2

As noted above, after their appearance, both locally stable �xed points undergo a cascade of �ip

bifurcations (in an asynchronous manner), leading to chaos (see Figs. 1b, c, d). In particular,

in Fig. 1c we can see that the attracting set in the �bull�region (in red) is still made up of two

disjoint pieces, located on opposite sides with respect to the unstable �xed point P2, while the

second attractor, located in the �bear�region (in blue), is already a one-piece chaotic attractor.

Although we do not have the coordinates of the unstable �xed points P1 and P2, we can state

that in this case (Fig. 1c) �xed point P1 is already homoclinic, at least on one side, and belongs

to the chaotic area (it is probably located on its boundary), while the �xed point P2 is not yet

homoclinic, although it will be involved later (i.e. for larger e) in a homoclinic bifurcation,

causing the reunion of the two pieces of chaotic attractor around P2. Fig. 1d indeed shows

the situation existing after both the �rst homoclinic bifurcations of equilibria P1 and P2 have

occurred.

In the bifurcation diagram in Fig. 3 we plot the asymptotic behavior of the state variable y,

as e varies in the range [0; 5:5]. In the interval of values of e denoted by A, the only attracting

set is the fundamental equilibrium O. Its pitchfork bifurcation occurs at e ' 0:125, after which

we have the appearance of two further stable equilibria. In (a) the initial condition is taken

close to the �xed point P1, while in (b) it is taken close to the �xed point P2: The �xed points

are stable up to their �ip bifurcation, which occurs for P1 �rst, and then for P2. In the interval

14



denoted by B we observe the typical �route to chaos�for each �xed point, and the parameter

values e1(BC) and e
2
(BC) are the homoclinic bifurcation values of P1 and P2, respectively, at which

the reunion of two pieces into one single chaotic attractor takes place. In the proposed example,

we �rst observe this bifurcation in the �bear�region, at e1(BC) ' 3:56 (leading to the one-piece

chaotic attractor in blue), and then in the �bull�region, at e2(BC) ' 3:6 (leading to the one-piece

chaotic attractor in red).

The coexistence of two disjoint attractors in the bull and bear regions is coupled with

an increase of complexity in the structure of the related basins of attraction B1 and B2: An

example is shown in Fig. 4: in (a) we show the two disjoint attractors and in (b) a cross

section through the origin shows the basins in di¤erent colors. B1, in pink, is the locus of initial

points converging to the chaotic attractor in blue, and B2; in orange, is the locus of points

converging to the chaotic attractor in red, while the gray points belong to basin B1. Note that

the basins are now disconnected: within the region that approximately coincides with basin B1

of Fig. 2 there are now also points belonging to basin B2 and to B1; at the same time, points

belonging to basin B1 and to B1 are now located in the region previously belonging to basin B2

in Fig. 2. This phenomenon is again due to contact bifurcations of the basins of attraction with

�critical sets�(critical surfaces, in this three-dimensional case). That is, denoting by J(x; y; z)

the Jacobian matrix of the map (6) and by SC�1 the locus of points de�ned by the equation

det J(x; y; z) = 0, this set plays the same role of the critical points xm�1 and x
M
�1 in the one-

dimensional map corresponding to the subcase cH = cA = 0, and to the critical curve LC�1 in

the two-dimensional map corresponding to cA = 0, both analyzed in Part I. The image of SC�1

under map T gives a surface, SC := T (SC�1), which is responsible for the contact bifurcations

of the basins of attraction. In the 3-D phase space this critical surface SC separates regions of

points with a di¤erent number of rank-1 preimages. When basin B1 (or basin B1) touches the

critical surface SC and then crosses it, a portion of the basin, say H 0, enters a region of the

phase space whose points have a higher number of preimages, thus leading to the appearance

of new portions of the basin. Such portions consist of the region (volume) T�1(H 0), located
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around the critical surface SC�1, and of its further preimages.

4.3 Homoclinic bifurcation of the fundamental equilibrium O

The coexistence of two attractors located in two disjoint �bull�and �bear�regions ends at the

�rst homoclinic bifurcation of the origin. In the parameter situation shown in Fig. 4 we are

already very close to this bifurcation: the section of the basins of attractions in Fig. 4b shows

that the chaotic attractor in the bear region, colored blue, is very close to the boundary of

its basin B1. Moreover, we know that the frontier of the two basins B1 and B2 includes the

two-dimensional stable set W s
O of the fundamental �xed point O, which is now a set with a

complex structure. However, at the �xed point itself the stable set is a surface tangent to the

plane generated by the eigenvectors associated with the two stable eigenvalues of the Jacobian

matrix J(O): A portion of this plane (tangent at the origin to the surface W s
O ) is shown in

Fig. 5, at e = 4:1841 (same parameter value as in Fig. 4). At this value the eigenvalues

of the Jacobian matrix J(O) are given by �1 = 2:1725, �2 = �0:5341 and �3 = 0:5216: The

eigenvectors associated with eigenvalues �2 and �3 (less than 1 in modulus), say v2 and v3,

respectively, are given by:

v2 =

0BBBB@
�0:6066

�0:769

�0:2017

1CCCCA , v3 =

0BBBB@
�0:2582

�0:2836

0:9235

1CCCCA
and the tangent plane is generated by these two vectors. We can see that in Fig. 5 the tangent

plane is already crossed by the chaotic attractor in blue. This means that we are not far

from the parameter value at which a contact with surface W s
O occurs. Since one branch of the

unstable setW u
O of the origin tends to the chaotic attractor, the contact of the chaotic attractor

with the stable set of the origin is also a contact between the unstable set W u
O and the stable

set W s
O, leading to the �rst homoclinic bifurcation of the �xed point O. After the contact, the

stable and unstable sets have in�nitely many transverse intersections. However, the chaotic set

16



associated with the origin is not observable in the asymptotic dynamics. In fact, as a result of

this bifurcation we have the disappearance of the chaotic attractor in the bear region. That is,

the previous blue chaotic attractor has now turned into a chaotic repellor, which also includes

homoclinic trajectories on one side of the origin. We may observe this via the long chaotic

transient of trajectories starting from initial conditions in the old blue area: they remain in the

old region for several iterations before converging to the chaotic set in the �bull�area.

For this reason, the interval labelled C in Fig. 3a (where two one-piece chaotic attractors

coexist) ends with the �rst homoclinic bifurcation of the origin, which occurs at e1(CD) ' 4:185,

when the chaotic attractor in the �bear� region disappears and the generic initial condition

in that region then converges to the red attractor, in the �bull�region. Similarly to the two-

dimensional case, a range of values of the parameter e exists such that the chaotic attractor

located (approximately) in the region S > F S (y > 0), colored red, becomes the only attractor

in the phase space (see Fig. 6a). From the asymptotic behavior, shown in Fig. 6a, we cannot

observe the chaotic repellor, which we know exists. The chaotic repellor will again be observable

after the second homoclinic bifurcation of the origin, which occurs at e2(DE) ' 4:3, leading to

an �explosion�of the chaotic attractor into a wide region of the phase space, as shown in Fig.

6b.

From Fig. 6a we can see that the tongues of the red chaotic set increasingly approach the

fundamental �xed point, and thus we are very close to the second homoclinic bifurcation of O.

This bifurcation involves a contact between the branch of W u
O that converges to the chaotic

attractor in the �bull�region and the surface representing the stable set W s
O. The result of this

bifurcation is an explosion of the chaotic set (which includes both the previous chaotic attractor

and the previous chaotic repellor), as shown in Fig. 6b.

This brings about a major change of the dynamics. Whatever the initial condition is (from

either the bear or the bull region), the trajectory will wander in both regions, jumping from

one to the other after an unpredictable number of iterations. An example of the resulting

�uctuations of the state variables is given in Fig. 7. The dynamics we obtain are much more
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intricate than those observed in Day and Huang (1990). The reason for this is that there

is a feedback process from the foreign exchange markets on the stock markets and from the

stock markets on the foreign exchange market. The �rst feedback process generates endogenous

dynamics in the stock markets, where otherwise no dynamics would be observable. The second

feedback process may be interpreted as deterministic noise impacting on the evolution of the

exchange rate. Also, the three markets demonstrate excess volatility and endogenous bubbles

and crashes.

4.4 Final bifurcation

After the above-described second homoclinic bifurcation of the origin, the region of the phase

space covered by the chaotic dynamics becomes wider as parameter e increases. The oscillations

of the trajectories increase in amplitude, and we approach a catastrophic situation, after which

trajectories will be mainly divergent. In Fig. 3 this bifurcation is revealed by the existence of

a unique attractor, colored green, which covers both chaotic regions and exists up to its �nal

bifurcation at ef ' 5:03:

The �nal bifurcation is again given (as in the one- and two-dimensional cases studied in

Part I) by a contact of the chaotic attractor with the frontier of its basin of attraction. This is

shown in Fig. 8 where, for a speci�c value of e close to the �nal bifurcation, we represent the

attractor in black and its basin of attraction in green.7 Gray points, as usual, denote points

belonging to basin B1: Fig. 8 shows four di¤erent sections with planes of equation y = k: In the

�rst hyperplane (at y = 3:8), the boundary between the green and gray points is a simple line,

and this section is still far from the chaotic attractor. In the second cross section (at y = 2:95),

the boundary has become more complex, and the attractor is crossed: the section of attractor

belonging to the plane, still inside the green area, is close to the frontier, in the points indicated

by an arrow. In the third section (at y = 1), the attractor again appears a long distance from

7For better visualization, the region of the three-dimensional phase space represented in Fig. 8 also includes
a set of points that are not economically meaningful (the bottom part of the cube and of the related sections),
but the attractor and the contacts that give rise to the ��nal bifurcation�all belong to the economically relevant
zone.
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the border of the basin. Finally, the last section (at y = �1:4) again suggests that a portion of

the attractor is close to the frontier, in the points indicated by the arrow.

The contact between two invariant sets of di¤erent nature (the chaotic attractor and the

frontier of its basin) leads to the �nal bifurcation, which will leave a chaotic repellor instead of

the chaotic attractor. That is, after this �nal bifurcation the model is no longer meaningful, as

the generic trajectory in the phase space is a divergent trajectory (maybe after a long chaotic

transient). The chaotic repellor survives in a set of zero measure, almost inaccessible, and

includes all of the unstable �xed points and cycles, as well as all of their stable sets.

5 Conclusion

In this paper we have furthered the study of a dynamic model (commenced in Part I), where

two stock markets are linked with each other due to the trading activity of foreign investors.

Connections occur through the foreign exchange market, where demand for currencies, and

consequent exchange rate adjustments, are generated partly by international stock market

transactions and partly by the trading activity of heterogeneous foreign exchange speculators.

The model results in a three-dimensional nonlinear dynamical system, which is able to generate

the typical �bull and bear�dynamic behavior already detected and discussed by Day and Huang

(1990) in a one-dimensional �nancial market model with fundamentalists and chartists. The

previous study (Part I) was devoted to the derivation of the model and a thorough analysis of

its dynamic behavior in simpli�ed one- and two-dimensional cases, corresponding to situations

in which the three markets are at least partially disconnected, due to restrictions to the trading

activity of foreign investors. This present paper focused on the dynamic behavior of the com-

plete three-dimensional model. Study of the full model was mainly carried out by numerical

simulation and graphical visualization, following the �road map�provided by the analysis per-

formed in Part I, and taking advantage of the techniques employed in the 1-D and 2-D cases,

to reveal contact bifurcations between invariant sets of di¤erent nature. Also in the 3-D case it

turns out that the typical �bull and bear�dynamics - with seemingly random switches of stock
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prices and exchange rates across di¤erent regions of the phase space - results from a sequence of

homoclinic bifurcations involving both the non-fundamental steady states and the fundamental

equilibrium of the model. Our results thus extend such dynamic mechanisms, which provide

a simpli�ed yet intriguing explanation for the emergence of bubbles and crashes in �nancial

markets, to higher-dimensional setups.
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Figures

Fig. 1 Coexisting attractors for increasing values of parameter e and other parameters according

to our base selection. In (a), e = 0:89, the attractors are two stable �xed points P1 and P2:

In (b), e = 2:43, there is coexistence of the stable �xed point P2 and a stable 2-cycle. In (c),

e = 3:576, one chaotic attractor (blue, in the bear region) consists of a unique piece (after the

homoclinic bifurcation of the �xed point P1) while the other chaotic attractor (red, in the bull

region) is made up of two disjoint pieces, on opposite sides with respect to the �xed point P2.

In (d), e = 4:1841, both have become one-piece attractors, and the blue one approaches the

stable set of the fundamental �xed point in the origin. The boxes are centered in O and the

range of all axes is [�3;+3].

22



Fig. 2 Cross section along a plane through the fundamental �xed point O = (0; 0; 0). The

value of parameter is e = 0:89, as in Fig. 1a. The box is centered in O and the range of axes

is [�3;+3] for all state variables. In the cross section, di¤erent colors denote di¤erent basins

of attractions. Basin B1 of the �xed point P1 is in pink, basin B2 of the �xed point P2 is in

orange, basin B1 is in gray.
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Fig. 3 Bifurcation diagrams of y versus parameter e, ranging from 0 to 5:5. The range of

e is subdivided into di¤erent intervals. In interval A the only attractor is the fundamental

equilibrium O. Its pitchfork bifurcation occurs at e ' 0:125, after which two new stable

equilibria appear. In (a) the initial condition is close to the �xed point P1, in (b) it is close to

P2: In interval B we observe a complete �route to chaos�for each �xed point. The homoclinic

bifurcation of P1 occurs at e1(BC) ' 3:56, which results in the one-piece chaotic attractor in

blue. The homoclinic bifurcation of P2 occurs at e2(BC) ' 3:6, leading to the one-piece chaotic

attractor in red. In interval C there is coexistence of two one-piece chaotic attractors. The

upper bound of interval C corresponds to a homoclinic bifurcation of the origin. In (a) the

blue chaotic attractor disappears at the �rst homoclinic bifurcation of the origin, which occurs

at e1(CD) ' 4:185, so that for any e in interval D (e1(CD) < e < e
2
(DE)) the unique attractor is

the red one. The second homoclinic bifurcation of the origin occurs at e2(DE) ' 4:3 and leads

to an �explosion�of the chaotic attractor into a wider region (in green). This unique chaotic

attractor exists up to its �nal bifurcation at ef ' 5:03:

Fig. 4 Coexisting attractors at e = 4:1841: The boxes are centered in O and the range of axes

is [�3;+3]: In (b) a plane through the origin O is shown, along which di¤erent colors denote

di¤erent basins of attraction, as in Fig.2.
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Fig. 5 Coexisting attractors for e = 4:1841 (as in Fig. 4) and a portion of the plane through

the origin O, tangent to the stable set W s
O.

Fig. 6 (a): unique chaotic set in the �bull� region, at e = 4:208; after the �rst homoclinic

bifurcation of the fundamental equilibrium O. (b): unique chaotic set covering both the �bull�

and �bear�regions, at e = 4:761; after the second homoclinic bifurcation of the fundamental

equilibrium O. Boxes are centered in O and the range of axes is [�3;+3].
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Fig. 7 Trajectories of the state variable x (deviation of stock price PH from the fundamental

price FH), y (deviation of the exchange rate S from the fundamental exchange rate F S), z

(deviation of stock price PA from the fundamental price FA), obtained at e = 4:75.
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Fig. 8 Chaotic attractor at e = 5:02 and four di¤erent sections of the three-dimensional phase

space through planes of equation y = k. The gray points belong to B1 and thus generate

divergent trajectories; the green points belong to the basin of attraction of the attracting

set (in black). The bottom part of each section corresponds to initial conditions that have

no economic relevance (z < �FA), included only for better visualization of the basins. The

contacts occur in the meaningful region.
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