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Abstract

Several discrete-time dynamic models are ultimately expressed in the form of
iterated piecewise linear functions, in one- or two- dimensional spaces. In this paper
we study a one-dimensional map made up of three linear pieces which are separated
by two discontinuity points, motivated by a dynamic model arising in social sciences.
Starting from the bifurcation structure associated with one-dimensional maps with
only one discontinuity point, we show how this is modi�ed by the introduction of a
second discontinuity point, and we give the analytic expressions of the bifurcation
curves of the principal tongues (or tongues of �rst degree), for the family of maps
considered, that depends on �ve parameters.

1 Introduction.

In the recent literature, several papers on dynamic modelling applied to the de-

scription of economic and social applications, as well as in engineering applications,

ultimately propose discrete-time models which are expressed in the form of iter-

ated piecewise linear (or more generally piecewise smooth) maps, continuous (see

e.g. Day 1984, 1992, Hommes 1991, 1995 Hommes and Nusse, 1991, Hommes et

al. 1995, Gallegati et al. 2003, Puu and Sushko 2002, 2006, Sushko et al., 2003,

2005, 2006, Gardini et al. 2006a, 2006b, 2008) or discontinuous, with one or more

discontinuity points (Puu et al. 2002, 2005, Puu 2007, Sushko et al. 2004, Tra-

montana et al. 2008). The bifurcations involved in such class of maps are often

described in terms of the so called border-collision bifurcations. We can classify as

border-collision any contact between an invariant set of a map with the border of

its region of de�nition. However, such contacts may, or may not, produce a bifur-

cation. The term border-collision bifurcation was used for the �rst time by Nusse

1JEL classi�cations: C02, C62, C63.
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and Yorke in 1992 (see also Nusse and Yorke, 1995) and it is now widely used in

this context, i.e. for piecewise smooth maps, although the study and description

of such border collision bifurcations started several years before those papers. For

example, Leonov (1959, 1962) described several bifurcations of that kind, and gave

a recursive relation to find the analytic expression of the sequence of bifurcations

occurring in a one-dimensional piecewise linear map with one discontinuity point,

which is still almost unknown, except for a limited number of researchers among

which Mira (1978), Maistrenko et al. 1993, 1995, 1998. In particular, the results

obtained by Feigen in 1978, re-proposed in di Bernardo et al. 1999, being almost

unknown up to their quotation, that was the first author able to give a clear and

simple analysis for n−dimensional piecewise linear continuous maps, with n > 1.

These authors already described, using different names and notations, the contact

bifurcations now called of border collision after Nusse and Yorke (1992).

These kinds of bifurcations are now widely studied and gave rise to a flourishing

literature in the last years, mainly because of their relevant applications in Electrical

and Mechanical Engineering. In fact, several papers on piecewise smooth dynamical

systems and border collision bifurcations have been motivated by the study of mod-

els used to describe particular electrical circuits or systems for the transmission of

signals (di Bernardo et al., 1999, Banerjee and Grebogi 1999, Banerjee et al. 2000a,

2000b, Feely et al. 2000, Fournier et al. 2001, Halse et al., 2003, Zhanybai et al.

2003, Avrutin and Schanz 2006, Avrutin et al., 2006, Zhusubaliyev et al. 2006,

2007).

The present work is motivated by some papers dealing with dynamic models

in social sciences, in which the models proposed are described by one dimensional

maps, piecewise linear or piecewise smooth, with two (or more) discontinuity points,

such as the duopoly model in Tramontana et al. (2008) and the model in Bischi

and Merlone (2008) (related to the works of Schelling, 1973, 1978). The family of

iterated maps considered in the present paper has the form:

x0 = T (x) =


TL(x) = m1x+ (1−m1) if 0 ≤ x < d1
TR(x) = m2x if d1 < x < d2
T3(x) = m3x+ (1−m3) if d2 < x ≤ 1

(1)

where the parameters satisfy the following conditions:

0 < mi < 1 , i = 1, 2, 3 , 0 < d1 < d2 ≤ 1 (2)

so that T maps the interval [0, 1] into itself. The goal of this paper is to describe

the possible bifurcations occurring in the map T in (1) when the parameters vary

in the ranges given in (2). As we shall prove later, the slope m3 is not a relevant

parameter, in the sense that whichever is its value inside the interval (0, 1) we obtain

the same kind of dynamics, hence we can arbitrarily fix its value, for example setting

m3 = m1. For this reason we shall also consider the following three-pieces piecewise

linear map:
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x0 = T2(x) =

(
TL(x) = m1x+ (1−m1) if 0 ≤ x < d1 or d2 < x ≤ 1
TR(x) = m2x if d1 < x < d2

(3)

such that the first and the third pieces belong to the same line.

Moreover, in order to understand the bifurcations occurring in this map it is

convenient to describe first the bifurcations occurring in the following piecewise

linear map with only one discontinuity point:

x0 = T1(x) =

(
TL(x) = m1x+ (1−m1) if 0 ≤ x < d1
TR(x) = m2x if d1 < x ≤ 1 (4)

keeping the constraints on the parameters as given in (2).

The plan of the paper is the following. In section 2 we show the graphical

representation of the standard numerical exploration of the regions, in the space

of the parameters, where stable cycles of different periods exist. The main goal of

the paper is the analytic computation of the bifurcation conditions that mark the

separation between such regions. In order to obtain this we first study, in section

3, the border collision bifurcations of the map with one discontinuity point T1. On

the basis of the results obtained in this case, by using methods already given in the

literature, in section 4 we move to the analytic study of the sequences of bifurcations

that characterize the creation and destruction of periodic cycles of the map T2
characterized by the presence of two points of discontinuity. Finally, in section

5, we show how the study of the more general map T , with two discontinuities and

three different slopes, can be trivially deduced from the one of the map T2. Section

6 concludes.

2 Numerical explorations of the existence of periodic
cycles

In this section we consider the problem of existence of periodic cycles for the map

T . Let us first consider the map with only one discontinuity, x0 = T1(x). As we

shall see, the set of bifurcation curves of this map gives a basic structure which is

then modified by the introduction of another discontinuity point. In other words, the

basic skeleton that gives the conditions of existence of the periodic cycles of the map

T1, created and destroyed by border collision bifurcations, constitutes a benchmark

case from which the more involved bifurcation structures of the maps T2, as well as

the more general map T , characterized by the presence of two discontinuities, can

be derived.

This property can be easily conjectures even by a quick numerical computation

and graphical representations of the regions of existence of stable cycles of different

periods. In fact, for any value of the discontinuity point d1 ∈ [0, 1] the numerically
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computed two-dimensional bifurcation diagram in the parameter plane (m1,m2) has

a structure like the one represented Fig.1, where each color corresponds to a cycle of

fixed period, according to the numbers reported in the picture. Such colored regions

are usually called periodicity regions (or periodicity tongues due to their shape).

Along boundaries that separate two adjacent periodicity tongues a border-collision

occurs involving the cycles existing inside the regions.Let us consider now the map

Figure 1: Two-dimensional bifurcation diagram in the plane (m1,m2) at d1 = 0.4 and
d2 = 1 fixed, of the map T2, i.e. of the map T1. Different colors correspond to the existence
of cycles of different periods.

T , given in (1), characterized by two points of discontinuity 0 < d1 < d2 < 1.

The introduction of the second discontinuity clearly changes the bifurcations which

involve the periodic points (of any period) which may still exist. Two examples

are shown in Fig.2, at two different values of the pair of discontinuity points d1
and d2, and it is immediately clear that the periodicity regions are involved in new

kind of bifurcations, again border-collision ones. The bifurcation curves associated

with the map T1 can be obtained by using methods already known in the literature,

as described in section 3. The main results of this paper concern the explanation

of the bifurcation curves shown in Fig.2, whose shape is evidently related to the

”skeleton” of periodicity tongues of Fig.1, but there are evident modifications due

to the presence of the second discontinuity point. In section 4 we shall describe how

to obtain the analytic expression of such bifurcation curves as well.
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Figure 2: Two-dimensional bifurcation diagrams in the plane (m1,m2) of the map T2. In
(a) at d1 = 0.4 and d2 = 0.7. In (b) at d1 = 0.6 and d2 = 0.7.

3 Bifurcation curves of the map T1.

As recalled in the introduction, the main results of the dynamics of the map x0 =
T1(x) are due to Leonov (1959, 1962), also described by Mira (1987), and are quite

known nowadays, also due to the recent works of di Bernardo et al. (1999), Banerjee

and Grebogi (1999), Avrutin and Schanz (2006). We can also refer to the ”word-

shifting” technique as defined in Hao-Bai Lin (1989). However, in order to make the

paper more self contained, we apply these techniques to our map T1, because this will

then be useful to understand the properties of the map T with two discontinuities.

First of all, it is immediate to see that all the possible cycles of the map T1 of

period k > 1 are always stable. In fact, the stability of a k−cycle is given by the
slope (or eigenvalue) of the function T k

1 = T1 ◦ ...◦T1 (k times) in the periodic points
of the cycle, which are fixed points for the map T k

1 , so that, considering a cycle

with p points on the left side of the discontinuity and (k − p) on the right side, the

eigenvalue is given by mp
1m

(k−p)
2 which, in our assumptions, is always positive and

less than 1.

Moreover each k−cycle exists in a proper region, called ”periodicity region” or
”periodicity tongue” (due to the particular shape of these regions). Now let us

show, by using the method described by Leonov (1959, 1962), how to obtain the

analytical equation of the bifurcation curves that we have seen in Fig.1. Let us

consider first the bifurcation curves of the so-called ”principal tongues”, or ”main

tongues” (Maistrenko et al. 1993, 1995, 1998, di Bernardo et al. 1999, Banerjee
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2000a, Avrutin and Schanz 2006, Avrutin et al. 2006) or ”tongues of first level of

complexity” (Leonov, 1959, 1962) or ”tongues of first degree of complexity” (Mira,

1978, 1987). In the following we shall use ”degree” for short. These are the regions

of existence of the cycles of period k having one point on one side of the discontinuity

point d1 and (k− 1) points on the other side (for any integer k > 1). It is plain that

we may have one point on the left side and (k− 1) points on the right side, or vice-
versa. To formalize the results it is useful to label the two components of the map

x0 = T1(x) as TL and TR, as we have already done in the definition (4). Let us start

with the conditions to determine a cycle of period k having one point on the left side,

L, and (k−1) points on the right side, R.The condition that starts the existence of a

Figure 3: Starting condition in (a) and closing condition in (b) related with the period-3
orbit associated with the symbol sequence LRR.

k−cycle, i.e. the bifurcation that marks the creation of a cycle of period k, is that the
critical point x = d1 (the discontinuity point) is a periodic point to which we apply, in

the sequence, the maps TL, TR, ..., TR. Figure 3a shows the starting condition related

with k = 3, i.e. a 3−cycle, given by TR ◦ TR ◦ TL(d1) = d1. Then the k−cycle with
periodic points x1, ..., xk, numbered with the first point on the left side (x1 < d1,

xi > d1 for i = 2, ..., k) satisfies x2 = TL(x1), x3 = TR(x2), ..., x1 = TR(xk). In

formulae we get:

p1 = d1 (5)

p2 = m1d1 + 1−m1

p3 = m2(m1d1 + 1−m1)

...

pk+1 = m
(k−1)
2 (m1d1 + 1−m1)
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and a k−cycle occurs when pk+1 = p1, i.e. the following equality holds:

d1 = m
(k−1)
2 (m1d1 + 1−m1)

and rearranging we obtain (for any k > 1):

φka : m1 =
m
(k−1)
2 − d1

(1− d1)m
(k−1)
2

(6)

This cycle ends to exist when the last point (xk) merges with the discontinuity

point, that is, xk = d1, which may be stated also as: the point x = d1 is a periodic

point to which we apply, in the sequence, the maps TR, TL, TR, ..., TR. In the quali-

tative picture in Fig.3b we show the closing condition related with the 3−cycle, that
is, TR ◦TL ◦TR(d1) = d1. In general, a k−cycle exists until the point x = d1 becomes

a periodic point when we apply, in the sequence, the maps TR, TL, TR, ..., TR. Thus

we obtain the following expressions:

p1 = d1 (7)

p2 = m2d1

p3 = m1m2d1 + 1−m1

p4 = m2(m1m2d1 + 1−m1)

...

pk+1 = m
(k−2)
2 (m1m2d1 + 1−m1)

and the condition for a k−cycle pk+1 = p1 becomes

d1 = m
(k−2)
2 (m1m2d1 + 1−m1)

which, rearranged, gives (for any k > 1):

φkb : m1 =
m
(k−2)
2 − d1

(1−m2d1)m
(k−2)
2

(8)

Summarizing, the k−cycle exists for m1 in the range

m1a :=
m
(k−1)
2 − d1

(1− d1)m
(k−1)
2

≤ m1 ≤ m1b :=
m
(k−2)
2 − d1

(1−m2d1)m
(k−2)
2

The relations given above can also be used to find the explicit coordinates of the

k−cycles. Let (x∗1, x∗2, ..., x∗k) be the periodic points of the k−cycle, where x∗1 < d1
and x∗i > d1 for i > 1, then from (6) we have:

x∗1 =
m
(k−1)
2 (1−m1)

1−m1m
(k−1)
2

(9)
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and then (10)

x∗2 = TL(x
∗
1) = m1x

∗
1 + 1−m1

x∗3 = TR(x
∗
2) = m2(m1x

∗
1 + 1−m1)

x∗4 = TR(x
∗
3) = m2

2(m1x
∗
1 + 1−m1)

...

x∗k = TR(x
∗
k−1) = m

(k−2)
2 (m1x

∗
1 + 1−m1)

Analogously, from the conditions in (7) we get:

x∗k =
m
(k−2)
2 (1−m1)

1−m1m
(k−1)
2

(11)

Similar arguments apply to find the condition of existence of a k−cycle with
periodic points x1, ..., xk having one point in the R side and (k − 1) points in the L
side (also called principal orbits) (see in Fig.4 a 3−cycle of this kind). We consider

Figure 4: Period-3 cycle with the symbol sequence RLL.

the critical point x = d1, and we apply the maps TR, TL, ..., TL, so we get:

p1 = d1 (12)

p2 = m2d1

p3 = m1m2d1 + 1−m1

p4 = m2
1m2d1 +m1(1−m1) + (1−m1)

...

pk+1 = m
(k−1)
1 m2d1 + (1−m

(k−1)
1 )
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and a k−cycle occurs when the following equality holds:
d1 = m

(k−1)
1 m2d1 + (1−m

(k−1)
1 )

Rearranging we obtain (for any k > 1):

ψka : m2 =
d1 − 1 +m

(k−1)
1

d1m
(k−1)
1

(13)

The cycle exists until the point x = d1 becomes a periodic point to which we apply, in

the sequence, the maps TL, TR, TL, ..., TL. Thus we obtain the following expressions:

p1 = d1 (14)

p2 = m1d1 + 1−m1

x3 = m2(m1d1 + 1−m1)

p4 = m1m2(m1d1 + 1−m1) + (1−m1)

...

pk+1 = m
(k−2)
1 m2(m1d1 + 1−m1) + (1−m

(k−2)
1 )

and the condition for a k−cycle pk+1 = p1 occurs when the following equality holds:

d1 = m
(k−2)
1 m2(m1d1 + 1−m1) + (1−m

(k−2)
1 )

which, rearranged, gives (for any k > 1):

ψkb : m2 =
d1 − 1 +m

(k−2)
1

m
(k−2)
1 (m1d1 + 1−m1)

(15)

Summarizing, the k−cycle (x∗1, x∗2, ..., x∗k) where x∗1 > d1 and x
∗
i < d1 for i > 1 exists

for m2 in the range

m2a :=
d1 − 1 +m

(k−1)
1

d1m
(k−1)
1

≤ m2 ≤ m2b =
d1 − 1 +m

(k−2)
1

m
(k−2)
1 (m1d1 + 1−m1)

The periodic points of the k−cycle, (x∗1, x∗2, ..., x∗k) where x∗1 > d1 and x∗i < d1 for

i > 1, can be obtained from the equations in (14)

x∗1 = m1x
∗
k + 1−m1 (16)

x∗2 = m2(m1x
∗
k + 1−m1)

x∗3 = m1m2(m1x
∗
k + 1−m1) + (1−m1)

...

x∗k−1 = m
(k−3)
1 m2(m1x

∗
k + 1−m1) + (1−m

(k−3)
1 )

x∗k =
m
(k−2)
1 m2(1−m1) + 1−m

(k−2)
1

1−m2m
(k−1)
1
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Also, from the conditions in (12) we get:

x∗1 =
1−m

(k−1)
1

1−m2m
(k−1)
1

(17)

The equations given above in (13) and (15) are the analytic expressions of the

bifurcation curves at which a ”border-collision” bifurcation occurs. That is, fixing

a value of m1, for values of the parameter m2 ∈ (m2a,m2b) the k−cycle exists, and
its periodic points are explicitly given in (16). If the slope m2 is decreased until

m2 = m2a, then the periodic point x
∗
1 collides with the boundary of its region of

periodicity (i.e. we have x∗1 = d1) and then it will disappear, that is, it is no longer a

periodic point for m2 < m2a. Vice-versa, increasing m2 until m2 = m2b the periodic

point x∗k collides with the boundary of its region (i.e. we have x
∗
k = d1) and the

cycle will disappear: it no longer exists for m2 > m2b.

It is easy to see that for k = 2 the formulas in (6) and in (8) and those in (13)

and (15) give the same equations (and thus the same bifurcations curves). However

they are labelled symmetrically. That is: what is called initial (or starting curve)

and final (or closing curve) in the former case, is called final and first, respectively,

in the latter. In fact, they are obtained by naming the periodic points as x∗1 < d1
and x∗2 > d1 in the former case, while they are labelled as x

∗
1 > d1 and x∗2 < d1 in

the latter, but clearly we have a unique cycle of period 2, and the border collision

curves in the two cases are the same, that is x∗1 = d1 and x∗2 = d1 (although the

starting and closing labels are inverted).

However, the 2-cycle is the only exception: for any k > 2 we have two different

regions of existence of the k−cycles. By using the formulas in (13) and (15) with
k = 3, ..., 16, we obtain all the bifurcation curves of the principal tongues located

above the period-2 tongue in Fig.5a, and by the formulas in (13) and (15) we get all

the bifurcation curves of the principal tongues located below the period-2 tongue in

Fig.5a. Note that the formulas given in (6) and in (8) and those in (13) and (15)

are generic, and hold whichever is the position of the discontinuity point x = d1. A

three dimensional view of the bifurcations is shown in Fig.5b. It is worth noticing

that following similar arguments it is possible to find also the boundaries of the other

bifurcation curves. In fact, besides the regions associated with the ”tongues of first

degree” (Leonov,1959, 1962, Mira, 1978, 1987) there are infinitely many (countable)

periodicity tongues. The simplest well known mechanism to find the periods that

characterize these infinite sequence of periodicity tongues is that between any two

tongues having periods k1 and k2 there exists also a tongue having period k1+k2 (see

the numbers of the periods indicated in Fig.1 and Fig.5: between the tongues of

period 2 and 3 a tongue of period 5 exists, and between 5 and 2 we can see 7, and

so on...).

To be more specific, in the description of the periodicity tongues we can associate

a number to each region, which may be called ”rotation number”, in order to classify

all the periodicity tongues. In this notation a periodic orbit of period k is charac-
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Figure 5: In (a), parameter plane (m1,m2) at d1 = 0.4 fixed, bifurcation curves of first
degree of complexity for cycles of periods 2, ..., 16 obtained from the analytical expressions,

for the map T1. In (b) the bifurcation curves are shown in three sections of the three

dimensional parameter space (m1,m2, d1) at d1 fixed, with d1 = 0.1, d1 = 0.5 and
d1 = 0.9.

terized not only by the period but also by the number of points in the two branches

separated by the discontinuity point (denoted by TL and TR respectively). So, we

can say that a cycle has a rotation number p
k if a k-cycle has p points on the L side

and the other (k − p) on the R side. Then between any pair of periodicity regions

associated with the ”rotation number” p1
k1
and p2

k2
there exists also the periodicity

tongue associated with the ”rotation number” p1
k1
⊕ p2

k2
= p1+p2

k1+k2
(also called ”direct

sum”).

Then, following Leonov (1959, 1962) (see also Mira, 1978, 1987), between any

pair of contiguous ”tongues of first degree”, say 1
k1
and 1

k1+1
, we can construct

two infinite families of periodicity tongues, called ”tongues of second degree” by

the sequence obtained by adding with the Farey composition rule (see also in Hao-

Bai Lin, 1989) ⊕ iteratively the first one or the second one, i.e. 1
k1
⊕ 1

k1+1
=

2
2k1+1

, 2
2k1+1

⊕ 1
k1
= 3

3k1+1
, ...and so on, that is:

n

nk1 + 1
for any n > 1

and 1
k1
⊕ 1

k1+1
= 2

2k1+1
, 2
2k1+1

⊕ 1
k1+1

= 3
3k1+2

, 3
3k1+2

⊕ 1
k1+1

= 4
4k1+3

..., that is:

n

nk1 + n− 1 for any n > 1
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which give two sequences of tongues accumulating on the boundary of the two start-

ing tongues.

Clearly, this mechanisms can be repeated: between any pair of contiguous ”tongues

of second degree”, for example n
nk1+1

and n+1
(n+1)k1+1

, we can construct two infinite

families of periodicity tongues, called ”tongues of third degree” by the sequence ob-

tained by adding with the composition rule ⊕ iteratively the first one or the second
one. And so on. All the rational numbers are obtained in this way, giving all the

infinitely many periodicity tongues.

Clearly, this mechanisms can be repeated: between any pair of contiguous ”tongues

of second degree”, for example n
nk1+1

and n+1
(n+1)k1+1

, we can construct two infinite

families of periodicity tongues, called ”tongues of third degree” by the sequence ob-

tained by adding with ⊕ iteratively the first one or the second one. And so on.

All the rational numbers are obtained in this way, giving all the infinitely many

periodicity tongues.

Besides the notation used above, called method of the rotation numbers, we may

also follow a different approach, related with the symbolic sequence associated to a

cycle. In this notation, considering the principal tongue of a periodic orbit of period

k constituted by one point on the L side and (k − 1) on the R side, we associate

to the cycle the symbol sequence LR..(k − 1 times).R. Then the direct sum of two

consecutive cycles is given by:

LR..(k − 1 times).R⊕ LR..(k times).R = LR..(k − 1 times).RLR..(k times).R

that is, the two sequences are just put together in file (and indeed this sequence of

bifurcations is also called by Mira ”boxes in files” in Mira 1987), and the sequence of

maps to apply in order to get the cycle are listed from left to right. More generally,

it is true that given a periodicity tongue associated with a symbols’ sequence σ

(consisting of letters L and R, giving the cycle from left to right) and a second one

with a symbols’ sequence τ, then also the direct sum of the two sequences exists,

associated with a periodicity tongue with symbols’ sequence στ :

σ ⊕ τ = στ

It is worth to notice that these periodicity tongues never overlap, and this implies

that coexistence of different periodic cycles is not possible.

As we shall see in the next section, part of the bifurcation curves described above

is also present in the map T2 with two discontinuity points, whose study is the main

goal of this paper.

4 Bifurcation curves of the map T2.

Now let us introduce a second discontinuity point, by considering the map x0 =
T2(x).Our analysis starts from the description of the possible attractors of the map.

First of all we notice that for any values of the parameters all the initial conditions
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taken in the points x > d2 converge to the fixed point x = 1. This may be the unique

attractor or it may coexist with another attracting k−cycle C (with k > 1), existing

in the interval 0 < x < d2. This depends on the values of the four parameters: d1,

d2, m1 and m2. Moreover, when we have coexistence of two attractors, their basins

may consist in only one interval, or in the union of two or more intervals.

Fig. 6 Coexistence of two attractors, and related connected basins.

Fig.7 Coexistence of two attractors, and related non connected basins. In (a)B(1) is formed

by four disjoint intervals, while it is formed by three disjoint intervals in (b).

In figures 6 and 7 we show some examples. In Fig.6 we see the coexistence of two

attractors, the fixed point x = 1 and a cycle of period 3 respectively, and each of the

two basins of attraction, say B(1 ) (represented by a thicker line along the diagonal)

and B(C), consists in one interval. Instead in Fig.7 we show two cases in which the

fixed point x = 1 still coexist with a cycle of period 3, but their basins are made

up of several disjoint intervals: in Fig.7a B(1 ) is formed by four disjoint intervals,
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in Fig.7b by three disjoint intervals. The complementary set in the interval ]0, 1[

belongs to the basin B(C).

Summarizing, here we have only two possibilities:

I) each of the two basins is made up of only one interval, separated by the

discontinuity point d2 (as in the case shown in Fig.6), so that the basin of the

attracting cycle is: B(C ) = [0, d2[ while the other points converge to the attracting

fixed point: B(1 ) =]d2, 1];

II) each of the two basins is made up of disjoint intervals as in the cases shown in

Fig.7, separated by the two discontinuity points d1 and d2 and their preimages. We

can consider as immediate basin of the fixed point x = 1 the interval ]d2, 1], hence

we have B(1) = ∪j≥1T−j2 (]d2, 1]), while the complementary region in [0, 1[ gives the

basin of the k−cycle. We can also notice that B(C ) = ∪j≥1T−j2 (]d1, d
−2
2 [).

From the description given above it is clear that the qualitative change in

the structure of the basins depends on a border-collision bifurcation: as shown in

Fig.6, in the simplest case (when the basins are two disjoint intervals) the interval

]TR(d1), TL(d1)[ is invariant, and this occurs as long as TL(d1) < d2, or, equiva-

lently, as long as d2 has no rank-1 preimage with T−1L . When we have TL(d1) > d2,

i.e. T−1L (d2) < d1, then each basin is made up of at least two intervals. At the

bifurcation value, TL(d1) = d2, we have an invariant set (]TR(d1), TL(d1)[ belonging

to the basin of a cycle C ) which is merging with a border (of another basin), and

this collision produces a qualitative change in the structure of the two basins (note

that for the attractors nothing changes: in this description they are not involved in

the border-collision bifurcation).

So the bifurcation between the two cases (I) and (II) occurs when

TL(d1) = d2

that is, when m1d1 + (1 −m1) = d2 or, equivalently, when m1 =
1−d2
1−d1 . So, let us

define

m∗1 =
1− d2
1− d1

(18)

then the following proposition is proved:

Proposition 1.

(I)When m1 > m∗1 then there are two coexisting attractors (the fixed point x = 1
and a k−cycle C for some integer k) and the two basins are made up of only one

interval:B(1) =]d2, 1] and B(C ) = [0, d2[.

(II) When m1 < m∗1 then either the fixed point is the only attractor in the whole
interval [0, 1] or there are two coexisting attractors (the fixed point and a k−cycle
C for some integer k > 1) and the two basins are made up of at least two pieces:

B(1) = ∪j≥1T−j2 (]d2, 1]) and B(C ) = ∪j≥1T−j2 (]d1, d2[).

As remarked above we have two different dynamic behaviors in our map. In the

simplest case (I) in the interval ]d2, 1] we have only convergence to the fixed point

x = 1, whereas what occurs in the interval [0, d2[, as a function of the parameters,
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has been already described in the previous section, because the restriction of the

map T2 to that interval reduces to the map T1. And in fact, for m1 > m∗1 the
bifurcation diagrams in the plane m1, m2 are the same as those in Fig.1 and 5. In

the case of two discontinuities the meaning of the colors in Fig.2 is that in the yellow

region the fixed point is the only attractor, while in the other regions the fixed point

coexists with a k−cycle, whose period k > 1 is different in the regions with different

colors. So we have proved that for m1 > m∗1 we know the bifurcation curves (those
of the principal tongues are given in Section 1), and what is left is to describe the

bifurcations occurring for m1 < m∗1. Moreover, from Fig.2 we may also argue that

different kinds of border-collision bifurcation occur in the periodicity tongues of the

family LR...R (see Fig.2a) with respect to those occurring to the family RL...L (see

Fig.2b) however we shall see that the two different bifurcations have something in

common, and clearly related with the second discontinuity point.

Consider m1 = m∗1 and let us decrease m1 starting in the region of cycles of the

family LR...R (i.e. above the periodicity region of the 2-cycle). Then, no curves of

type φka (of the ”starting” cycles) can exist for m1 < m∗1, while if a k−cycle already
exists then

i) either it ends to exist in the usual way, by border collision with the disconti-

nuity point d1, that is x
∗
k = d1 and this is represented in the portion of curves of the

family φkb existing for m1 < m∗1,
ii) or the cycle ends to exist by border-collision with the basin of attraction of

the fixed point, and this occurs when the periodic point of the k−cycle closest to
d1 from the left is merging with T−1L (d2), that belongs to the boundary of B(1)

(see Fig.7a), and from the expression reported in (9) we obtain the condition of the

contact bifurcation by using:

x∗1 = T−1L (d2) (19)

that is:
m
(k−1)
2 (1−m1)

1−m1m
(k−1)
2

=
d2 − 1 +m1

m1

which, rearranged, may be rewritten as:

φkc : m1 =
1− d2

1− d2m
(k−1)
2

(20)

Similarly (or better, symmetrically) we can reason for the other family, RL...L, of

principal tongues. In this case the periodic points of the k−cycle (x∗1, x∗2, ..., x∗k) are
x∗1 > d1 and x

∗
i < d1 for i > 1. In particular x

∗
k is the one closest to d1 from the left.

Then decreasing m1 from m∗1 some portion of curves of type ψka (of the ”starting”
cycles) form1 < m∗1 can still exist (see Fig.7b), while if a k−cycle already exists then
for m1 < m∗1 it cannot end to exist because of the collision of the periodic point x∗k
with the border d1 (because of the structure of the basins, (see Fig.7b). So that for

m1 < m∗1 no curves of type ψkb (of the ”closing” cycles) can exist. Thus an existing
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cycle can end to exist only by collision of the periodic point of the cycle closest to

d1 with the point T
−1
L (d2) (i.e. the collision of the cycle with the basin of attraction

of the fixed point). For the main tongues in this region the periodic point x∗k is the
one involved in the contact.

x∗k = T−1L (d2)

Equivalently, we can say that the periodic point on the right of the discontinuity d1,

closest to d2, has a collision with the discontinuity point d2. That is, in our case:

x∗1 = d2

¿From both conditions we obtain the same bifurcation curve, which may be written

as:

ψkc : m2 =
−1 + d2 +m

(k−1)
1

d2m
(k−1)
1

(21)

So, the border-collision bifurcation curves existing for the second family form1 < m∗1
are the curves ψka and ψkc.

So far we have considered a generic k−cycle in a main tongue, and we remark
that the result holds also for the 2-cycle: in the family LR...R the bifurcation curve

is given by φ2c and in the RL...L family the bifurcation curve is given by ψ2c.Which

is obvious: for m1 < m∗1 a 2−cycle either exists or it cannot appear any longer, and
an existing one either ends to exist when x∗2 = d2 or when x∗1 = d2.

We have so proved the following proposition:

Proposition 2.

(I )When m1 > m∗1 the border-collision bifurcation curves of the k−cycles of the
map T2 are the same as those of the map T1.

(II) When m1 < m∗1 then an existing cycle may end to exist either by collision
with the border d1 or with the border d2.

The explicit analytic expression of the bifurcation curves of the principal tongues

(or tongues of first degree) has been determined above, and with similar reasoning

also the analytic expressions of the bifurcation curves of second or higher degree of

complexity can be determined.

By using the curves of the family φkb and φkc for k = 2, ..., 16 we have drown

all the bifurcations curves of of the principal tongues of the family LR...R reported

in figures.8 and 9, and with the curves of the family ψka and ψkc, k = 2, ..., 16, we

have drown all the bifurcations curves of the principal tongues of the family RL...L

reported in figures 8,9.

In the figures 8b and 9b only a few periodicity tongues are visible, even if an

infinite countable set of tongues are nested inside every couple of tongues of first

degree. Of course, more and more regions can be seen by proper enlargement of the

figures.
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Fig.8 In (a), parameter plane (m1,m2) at d1 = 0.4 and d2 = 0.7 fixed, bifurcation curves

of first degree of complexity for cycles of periods 2, ..., 16 obtained from the analytical

expressions, for the map T2. In (b) the same bifurcation curves are shown with colors

associated with the different periodicity.

Fig.9 In (a), parameter plane (m1,m2) at d1 = 0.6 and d2 = 0.7 fixed, bifurcation curves

of first degree of complexity for cycles of periods 2, ..., 16 obtained from the analytical

expressions, for the map T2. In (b) the same bifurcation curves are shown with colors

associated with the different periodicity.

This can be also seen in the one-dimensional bifurcation diagram (or orbit dia-

gram, as it is also called) shown in Fig.10, obtained with the same set of parameters
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as in Fig.8 but with a fixed value of the parameter m2 = 0.5 and bifurcation para-

meter m1 varying in the range [0.4, 1]. It clearly shows how infinitely many intervals

(”boxes in files”) associated with the bifurcation of periodic orbits exist, one close

to the other.

Fig.10 One-dimensional orbit diagram of the map T2 as a function of m1 at m2 = 0.5,

d1 = 0.4 and d2 = 0.7 fixed.

5 Reduction of the map T to T2

In this section we show that all the dynamic properties of the map T3 are independent

of the third slope m3, so that its study is immediately reduced to the one of the

map T2 considered in the previous section. In order to prove this statement, let us

first consider the map x0 = T (x) with a given slope m3 in the third branch of the

map, and let us start with the description of the possible attractors.

Clearly x = 1 is a fixed point of the map T , and it is always locally asymptotically

stable, because the slope associated with the third branch of the function is m3 ∈
]0, 1[. It follows that all the points (initial conditions) x > d2 generate trajectories

which are converging to this stable fixed point of T . In other words, the interval

]d2, 1[ is the so-called immediate basin of the fixed point x = 1. As argued in the

previous section, this stable fixed point may be the unique attractor or it may coexist

with a stable cycle.

In the latter case, its basin of attraction may be made up of the unique interval

]d2, 1[ or it may include also other intervals, whose union forms the total basin of

attraction. However, whichever is the value of the third slope m3 ∈]0, 1[, the dy-
namic behavior of the map T is determined from the values of the other parameters,
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as it can be easily deduced from the qualitative picture in Fig.11, where it is quite

evident that for any value m3 ∈ (0, 1) the map has the same coexisting attractors as
well as the same basins of attraction. This is a simple consequence of the property

noticed above, i.e. that the fixed point x = 1 is always stable with immediate basin

the interval ]d2, 1[. Moreover the presence of a possible coexistent attractor depends

only on the values of the other parameters, as well as the possible preimages of

the immediate basin. So, the value of the parameter m3 only influences the rate of

convergence to the fixed point x = 1.

Fig.11 Coexistence of attractors of the map T, with connected basins in (a), and discon-

nected basins in (b).

6 Conclusions.

The main goal of this paper was the analytic description of the bifurcations occurring

in a piecewise linear map T : [0, 1] → [0, 1] formed by three portions of different

slopes, mi ∈ [0, 1], i = 1, 2, 3, separated by two discontinuity points 0 ≤ d1 < d2 ≤ 1.
For this piecewise continuous map that depends on these five parameters we have

first recalled how some border-collision bifurcations occur in the benchmark case

in which d2 = 1, i.e. the map has only one discontinuity point. In this case we

have obtained the analytic expression of the border collision bifurcation curves that

bound the periodicity tongues of first degree in the plane of parameters (m1,m2).

On the basis of this result obtained for the simpler benchmark case by using methods

already known in the literature, we have then studied the effects, on the structure

of the border collision bifurcation curves, induced by the introduction of the second

discontinuity point. This was investigated in Section 4 keeping a fixed value of the
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third slope m3. Then we have shown that the value of the third slope does not

influence the results obtained, as the global dynamic properties of the map T are

independent of the values of m3.

The analytic results obtained in this paper for the construction of the whole

structure of the periodicity tongues of first degree constitute a generalization of the

studies given in the literature on one-dimensional maps with only one discontinuity

point. Moreover, the methods followed in this paper to obtain such analytic expres-

sions are quite general and can be easily generalized to cases with more than two

discontinuities and with slopes of different values with respect to the ones considered

in this paper.
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