

Università
degli Studi di Urbino
"Carlo Bo"
Facoltà di Economia

WP-EMS
Working Papers Series in Economics, Mathematics and Statistics

"A generalization of Hukuhara difference for interval and fuzzy arithmetic"

- Luciano STEFANINI (University of Urbino)

A generalization of Hukuhara difference for interval and fuzzy arithmetic

Luciano Stefanini ${ }^{1}$
University of Urbino, Italy. e-mail:luciano.stefanini@uniurb.it

Abstract

We propose a generalization of the Hukuhara difference. First, the case of compact convex sets is examined; then, the results are applied to generalize the Hukuhara difference of fuzzy numbers, using their compact and convex level-cuts. Finally, a similar approach is suggested to attempt a generalization of division for real intervals.

1 General setting

We consider a metric vector space \mathbb{X} with the induced topology and in particular the space $\mathbb{X}=\mathbb{R}^{n}$, $n \geq 1$, of real vectors equipped with standard addition and scalar multiplication operations. Following Diamond and Kloeden (see [3]), denote by $\mathcal{K}(\mathbb{X})$ and $\mathcal{K}_{C}(\mathbb{X})$ the spaces of nonempty compact and compact convex sets of \mathbb{X}. Given two subsets $A, B \subseteq \mathbb{X}$ and $k \in \mathbb{R}$, Minkowski addition and scalar multiplication are defined by $A+B=\{a+b \mid a \in A, b \in B\}$ and $k A=\{k a \mid a \in A\}$ and it is well known that addition is associative and commutative and with neutral element $\{0\}$. If $k=-1$, scalar multiplication gives the opposite $-A=$ $(-1) A=\{-a \mid a \in A\}$ but, in general, $A+(-A) \neq\{0\}$, i.e. the opposite of A is not the inverse of A in Minkowski addition (unless $A=\{a\}$ is a singleton). Minkowski difference is $A-B=A+(-1) B=\{a-b \mid a \in A, b \in B\}$. A first implication of this fact is that, in general, even if it true that $(A+C=B+C) \Longleftrightarrow A=B$, addition/subtraction simplification is not valid, i.e. $(A+B)-B \neq A$.

To partially overcome this situation, Hukuhara [4] introduced the following H-difference:

$$
\begin{equation*}
A \oplus B=C \Longleftrightarrow A=B+C \tag{1}
\end{equation*}
$$

and an important property of Θ is that $A \ominus A=\{0\}, \forall A \in \mathbb{R}^{n}$ and $(A+B) \ominus B=$ $A, \forall A, B \in \mathbb{R}^{n} ;$ H-difference is unique, but a necessary condition for $A \ominus B$ to exist is that A contains a translate $\{c\}+B$ of B. In general, $A-B \neq A \oplus B$.

From an algebraic point of view, the difference of two sets A and B may be interpreted both in terms of addition as in (1) or in terms of negative addition, i.e.

$$
\begin{equation*}
A \boxminus B=C \Longleftrightarrow B=A+(-1) C \tag{2}
\end{equation*}
$$

where $(-1) C$ is the opposite set of C. Conditions (1) and (2) are compatible each other and this suggests a generalization of Hukuhara difference:

Definition 1. Let $A, B \in \mathcal{K}(\mathbb{X})$; we define the generalized difference of A and B as the set $C \in \mathcal{K}(\mathbb{X})$ such that

$$
A \Theta_{g} B=C \Longleftrightarrow\left\{\begin{array}{c}
(i) \quad A=B+C \tag{3}\\
\text { or }(i i) B=A+(-1) C
\end{array}\right.
$$

Proposition 1. (Unicity of $A \Theta_{g} B$)
If $C=A \Theta_{g} B$ exists, it is unique and if also $A \Theta B$ exists then $A \Theta_{g} B=A \Theta B$.

Proof. If $C=A \Theta_{g} B$ exists in case (i), we obtain $C=A \ominus B$ which is unique. Suppose that case (ii) is satisfied for C and D, i.e. $B=A+(-1) C$ and $B=$ $A+(-1) D$; then $A+(-1) C=A+(-1) D \Longrightarrow(-1) C=(-1) D \Longrightarrow C=D$. If case (i) is satisfied for C and case (ii) is satisfied for D, i.e. $A=B+C$ and $B=A+(-1) D$, then $B=B+C+(-1) D \Longrightarrow\{0\}=C-D$ and this is possible only if $C=D=\{c\}$ is a singleton.

The generalized Hukuhara difference $A \Theta_{g} B$ will be called the gH-difference of A and B.

Remark 1. A necessary condition for $A \Theta_{g} B$ to exist is that either A contains a translate of B (as for $A \ominus B$) or B contains a translate of A. In fact, for any given $c \in C$, we get $B+\{c\} \subseteq A$ from (i) or $A+\{-c\} \subseteq B$ from (ii).

Remark 2. It is possible that $A=B+C$ and $B=A+(-1) C$ hold simultaneously; in this case, A and B translate into each other and C is a singleton. In fact, $A=B+C$ implies $B+\{c\} \subseteq A \forall c \in C$ and $B=A+(-1) C$ implies $A-\{c\} \subseteq B$ $\forall c \in C$ i.e. $A \subseteq B+\{c\}$; it follows that $A=B+\{c\}$ and $B=A+\{-c\}$. On the other hand, if $c^{\prime}, c^{\prime \prime} \in C$ then $A=B+\left\{c^{\prime}\right\}=B+\left\{c^{\prime \prime}\right\}$ and this requires $c^{\prime}=c^{\prime \prime}$.

Remark 3. If $A \Theta_{g} B$ exists, then $B \Theta_{g} A$ exists and $B \Theta_{g} A=-\left(A \Theta_{g} B\right)$.
Proposition 2. If $A \Theta_{g} B$ exists, it has the following properties:

1) $A \Theta_{g} A=\{0\}$;
2) $(A+B) \Theta_{g} B=A$;
3) If $A \Theta_{g} B$ exists then also $(-B) \Theta_{g}(-A)$ does and $-\left(A \Theta_{g} B\right)=(-B) \Theta_{g}(-A)$; 4) $(A-B)+B=C \Longleftrightarrow A-B=C \Theta_{g} B$;
4) In general, $B-A=A-B$ does not imply $A=B$; but $\left(A \Theta_{g} B\right)=\left(B \Theta_{g} A\right)=C$ if and only if $C=\{0\}$ and $A=B$;
5) If $B \Theta_{g} A$ exists then either $A+\left(B \Theta_{g} A\right)=B$ or $B-\left(B \Theta_{g} A\right)=A$ and both equalities hold if and only if $B \Theta_{g} A$ is a singleton set.

Proof. Properties 1 and 5 are immediate. To prove 2) if $C=(A+B) \Theta_{g} B$ then either $A+B=C+B$ or $B=(A+B)+(-1) C=B+(A+(-1) C)$; in the first case it follows that $C=A$, in the second case $A+(-1) C=\{0\}$ and A and C are singleton sets so $A=C$. To prove the firat part of 3) let $C=A \Theta_{g} B$ i.e.
$A=B+C$ or $B=A+(-1) C$, then $-A=-B+(-C)$ or $-B=-A-(-C)$ and this means $(-B) \Theta_{g}(-A)=-C$; the second part is immediate. To see the first part of 5) consider for example the unidimensional case $A=\left[a^{-}, a^{+}\right]$, $B=\left[b^{-}, b^{+}\right]$; equality $A-B=B-A$ is valid if $a^{-}+a^{+}=b^{-}+b^{+}$and this does not require $A=B$ (unless A and B are singletons). For the second part of 5), from $\left(A \Theta_{g} B\right)=\left(B \Theta_{g} A\right)=C$, considering the four combinations derived from (3), one of the following four case is valid: $(A=B+C$ and $B=A+C)$ or $(A=B+C$ and $A=B-C)$ or $(B=A+(-1) C$ and $B=A+C)$ or $(B=A+(-1) C$ and $A=B+(-1) C)$; in all of them we deduce $C=\{0\}$. To see 6), consider that if $\left(B \Theta_{g} A\right)$ exists in the sense of (i) the first equality is valid and if it exists in the sense of (ii) the second one is valid.

If $\mathbb{X}=\mathbb{R}^{n}, n \geq 1$ is the real n-dimensional vector space with internal product $\langle x, y\rangle$ and corresponding norm $\|x\|=\sqrt{\langle x, x\rangle}$, we denote by \mathcal{K}^{n} and \mathcal{K}_{C}^{n} the spaces of (nonempty) compact and compact convex sets of \mathbb{R}^{n}, respectively. If $A \subseteq \mathbb{R}^{n}$ and $\mathcal{S}^{n-1}=\left\{u \mid u \in \mathbb{R}^{n},\|u\|=1\right\}$ is the unit sphere, the support function associated to A is

$$
\begin{aligned}
s_{A} & : \mathbb{R}^{n} \longrightarrow \mathbb{R} \text { defined by } \\
s_{A}(u) & =\sup \{\langle u, a\rangle \mid a \in A\}, u \in \mathbb{R}^{n} .
\end{aligned}
$$

If $A \neq \emptyset$ is compact, then $s_{A}(u) \in \mathbb{R}, \forall u \in \mathcal{S}^{n-1}$. The following properties are well known (see e.g. [3] or [5]):

- Any function $s: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ which is continuous, positively homogeneous $s(t u)=t s(u),), \forall t \geq 0, \forall u \in \mathbb{R}^{n}$ and subadditive $s\left(u^{\prime}+u^{\prime \prime}\right) \leq s\left(u^{\prime}\right)+s\left(u^{\prime \prime}\right)$, $\forall u^{\prime}, u^{\prime \prime} \in \mathbb{R}^{n}$ is a support function of a compact convex set; the restriction \widehat{s} of s to \mathcal{S}^{n-1} is such that $\widehat{s}\left(\frac{u}{\|u\|}\right)=\frac{1}{\|u\|} s(u), \forall u \in \mathbb{R}^{n}, u \neq 0$ and we can consider s restricted to \mathcal{S}^{n-1}. It also follows that $s: \mathcal{S}^{n-1} \longrightarrow \mathbb{R}$ is a convex function.
- If $A \in \mathcal{K}_{C}^{n}$ is a compact convex set, then it is characterized by its support function and

$$
A=\left\{x \in \mathbb{R}^{n} \mid\langle u, x\rangle \leq s_{A}(u), \forall u \in \mathbb{R}^{n}\right\}=\left\{x \in \mathbb{R}^{n} \mid\langle u, x\rangle \leq s_{A}(u), \forall u \in \mathcal{S}^{n-1}\right\}
$$

- For $A, B \in \mathcal{K}_{C}^{n}$ and $\forall u \in \mathcal{S}^{n-1}$ we have $s_{\{0\}}(u)=0$ and

$$
\begin{aligned}
A & \subseteq B \Longrightarrow s_{A}(u) \leq s_{B}(u) ; A=B \Longleftrightarrow s_{A}=s_{B} \\
s_{k A}(u) & =k s_{A}(u), \forall k \geq 0 ; s_{k A+h B}(u)=s_{k A}(u)+s_{h B}(u), \forall k, h \geq 0
\end{aligned}
$$

and in particular

$$
s_{A+B}(u)=s_{A}(u)+s_{B}(u)
$$

- If s_{A} is the support function of $A \in \mathcal{K}_{C}^{n}$ and s_{-A} is the support function of $-A \in \mathcal{K}_{C}^{n}$, then $\forall u \in \mathcal{S}^{n-1}, s_{-A}(u)=s_{A}(-u)$;
- If v is a measure on \mathbb{R}^{n} such that $v\left(\mathcal{S}^{n-1}\right)=\int_{\mathcal{S}^{n-1}} v(d u)=1$, a distance is defined by

$$
\rho_{2}(A, B)=\left\|s_{A}-s_{B}\right\|=\left(n \int_{\mathcal{S}^{n-1}}\left[s_{A}(u)-s_{B}(u)\right]^{2} v(d u)\right)^{\frac{1}{2}}
$$

- The Steiner point of $A \in \mathcal{K}_{C}^{n}$ is defined by $\sigma_{A}=n \int_{\mathcal{S}^{n-1}} u s_{A}(u) v(d u)$ and $\sigma_{A} \in A$.

We can express the generalized Hukuhara difference (gH-difference) of compact convex sets $A, B \in \mathcal{K}_{C}^{n}$ by the use of the support functions. Consider $A, B, C \in \mathcal{K}_{C}^{n}$ with $C=A \Theta_{g} B$ as defined in (3); let s_{A}, s_{B}, s_{C} and $s_{(-1) C}$ be the support functions of A, B, C, and $(-1) C$ respectively. In case (i) we have $s_{A}=s_{B}+s_{C}$ and in case ($i i$) we have $s_{B}=s_{A}+s_{(-1) C}$. So, $\forall u \in \mathcal{S}^{n-1}$

$$
s_{C}(u)=\left\langle\begin{array}{ll}
s_{A}(u)-s_{B}(u) & \text { in case }(i) \\
s_{B}(-u)-s_{A}(-u) \text { in case }(i i)
\end{array}\right.
$$

i.e.

$$
s_{C}(u)=\left\langle\begin{array}{ll}
s_{A}(u)-s_{B}(u) & \text { in case }(i) \tag{4}\\
s_{(-1) B}(u)-s_{(-1) A}(u) & \text { in case }(i i)
\end{array} .\right.
$$

Now, s_{C} in (4) is a correct support function if it is continuous, positively homogeneous and subadditive and this requires that, in the corresponding cases (i) and (ii), $s_{A}-s_{B}$ and/or $s_{-B}-s_{-A}$ be support functions, assuming that s_{A} and s_{B} are.

Consider $s_{1}=s_{A}-s_{B}$ and $s_{2}=s_{B}-s_{A}$. Continuity of s_{1} and s_{2} is obvious. To see their positive homogeneity let $t \geq 0$; we have $s_{1}(t u)=s_{A}(t u)-s_{B}(t u)$ $=t s_{A}(u)-t s_{B}(u)=t s_{1}(u)$ and similarly for s_{2}. But s_{1} and/or s_{2} may fail to be subadditive and the following four cases, related to the definition of gH difference, are possible.

Proposition 3. Let s_{A} and s_{B} be the support functions of $A, B \in \mathcal{K}_{C}^{n}$ and consider $s_{1}=s_{A}-s_{B}, s_{2}=s_{B}-s_{A}$; the following four cases apply:

1. If s_{1} and s_{2} are both subadditive, then $A \Theta_{g} B$ exists; (i) and (ii) are satisfied simultaneously and $A \Theta_{g} B=\{c\}$;
2. If s_{1} is subadditive and s_{2} is not, then $C=A \Theta_{g} B$ exists, (i) is satisfied and $s_{C}=s_{A}-s_{B}$;
3. If s_{1} is not subadditive and s_{2} is, then $C=A \Theta_{g} B$ exists, (ii) is satisfied and $s_{C}=s_{-B}-s_{-A}$;
4. If s_{1} and s_{2} are both not subadditive, then $A \Theta_{g} B$ does not exist.

Proof. In case 1. subadditivity of s_{1} and s_{2} means that, $\forall u^{\prime}, u^{\prime \prime} \in \mathcal{S}^{n-1}$

$$
\begin{aligned}
& s_{1}: s_{A}\left(u^{\prime}+u^{\prime \prime}\right)-s_{B}\left(u^{\prime}+u^{\prime \prime}\right) \leq s_{A}\left(u^{\prime}\right)+s_{A}\left(u^{\prime \prime}\right)-s_{B}\left(u^{\prime}\right)-s_{B}\left(u^{\prime \prime}\right) \text { and } \\
& s_{2}: s_{B}\left(u^{\prime}+u^{\prime \prime}\right)-s_{A}\left(u^{\prime}+u^{\prime \prime}\right) \leq s_{B}\left(u^{\prime}\right)+s_{B}\left(u^{\prime \prime}\right)-s_{A}\left(u^{\prime}\right)-s_{A}\left(u^{\prime \prime}\right) ;
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& s_{A}\left(u^{\prime}+u^{\prime \prime}\right)-s_{A}\left(u^{\prime}\right)-s_{A}\left(u^{\prime \prime}\right) \leq s_{B}\left(u^{\prime}+u^{\prime \prime}\right)-s_{B}\left(u^{\prime}\right)-s_{B}\left(u^{\prime \prime}\right) \text { and } \\
& s_{B}\left(u^{\prime}+u^{\prime \prime}\right)-s_{B}\left(u^{\prime}\right)-s_{B}\left(u^{\prime \prime}\right) \leq s_{A}\left(u^{\prime}+u^{\prime \prime}\right)-s_{A}\left(u^{\prime}\right)-s_{A}\left(u^{\prime \prime}\right)
\end{aligned}
$$

so that equality holds

$$
s_{B}\left(u^{\prime}+u^{\prime \prime}\right)-s_{A}\left(u^{\prime}+u^{\prime \prime}\right)=s_{B}\left(u^{\prime}\right)+s_{B}\left(u^{\prime \prime}\right)-s_{A}\left(u^{\prime}\right)-s_{A}\left(u^{\prime \prime}\right)
$$

Taking $u^{\prime}=-u^{\prime \prime}=u$ produces, $\forall u \in \mathcal{S}^{n-1}, s_{B}(u)+s_{B}(-u)=s_{A}(u)+s_{A}(-u)$ i.e. $s_{B}(u)+s_{-B}(u)=s_{A}(u)+s_{-A}(u)$ i.e. $s_{B-B}(u)=s_{A-A}(u)$ and $B-B=A-A$ (A and B translate into each other); it follows that $\exists c \in \mathbb{R}^{n}$ such that $A=B+\{c\}$ and $B=A+\{-c\}$ so that $A \Theta_{g} B=\{c\}$.
In case 2. we have that, being s_{1} a support function it characterizes a nonempty set $C \in \mathcal{K}_{C}^{n}$ and $s_{C}(u)=s_{1}(u)=s_{A}(u)-s_{B}(u), \forall u \in \mathcal{S}^{n-1}$; then $s_{A}=s_{B}+s_{C}=$ s_{B+C} and $A=B+C$ from which (i) is satisfied.
In case 3. we have that s_{2} the support function of a nonempty set $D \in \mathcal{K}_{C}^{n}$ and $s_{D}(u)=s_{B}(u)-s_{A}(u), \forall u \in \mathcal{S}^{n-1}$ so that $s_{B}=s_{A}+s_{D}=s_{A-D}$ and $B=A+D$. Defining $C=(-1) D$ (or $D=(-1) C$) we obtain $C \in \mathcal{K}_{C}^{n}$ with $s_{C}(u)=s_{-D}(u)=s_{D}(-u)=s_{B}(-u)-s_{A}(-u)=s_{-B}(u)-s_{-A}(u)$ and (ii) is satisfied.
In case 4. there is no $C \in \mathcal{K}_{C}^{n}$ such that $A=B+C$ (otherwise $s_{1}=s_{A}-s_{B}$ is a support function) and there is no $D \in \mathcal{K}_{C}^{n}$ such that $B=A+D$ (otherwise $s_{2}=s_{B}-s_{A}$ is a support function); it follows that (i) and (ii) cannot be satisfied and $A \Theta_{g} B$ does not exist.

Proposition 4. If $C=A \Theta_{g} B$ exists, then $\|C\|=\rho_{2}(A, B)$ and the Steiner points satisfy $\sigma_{C}=\sigma_{A}-\sigma_{B}$.

Proof. In fact $\rho_{2}(A, B)=\left\|s_{A}-s_{B}\right\|$ and, if $A \Theta_{g} B$ exists, then either $s_{C}=$ $s_{A}-s_{B}$ or $s_{C}=s_{-B}-s_{-A}$; but $\left\|s_{A}-s_{B}\right\|=\left\|s_{-A}-s_{-B}\right\|$ as, changing variable u into $-v$ and recalling that $s_{-A}(u)=s_{A}(-u)$, we have

$$
\begin{align*}
\left\|s_{-A}-s_{-B}\right\| & =\int_{\mathcal{S}^{n-1}}\left[s_{-A}(u)-s_{-B}(u)\right]^{2} v(d u) \tag{5}\\
& =\int_{\mathcal{S}^{n-1}}\left[s_{A}(-u)-s_{B}(-u)\right]^{2} v(d u) \\
& =\int_{\mathcal{S}^{n-1}}\left[s_{A}(v)-s_{B}(v)\right]^{2} v(-d v)=\left\|s_{A}-s_{B}\right\|
\end{align*}
$$

For the Steiner points, we proceed in a similar manner:

$$
\sigma_{C}=\left\{\begin{array}{l}
n \int_{\mathcal{S}^{n-1}} u\left[s_{A}(u)-s_{B}(u)\right] v(d u), \text { or } \tag{6}\\
n \int_{\mathcal{S}^{n-1}} u\left[s_{-B}(u)-s_{-A}(u)\right] v(d u)=n \int_{\mathcal{S}^{n-1}} v\left[s_{A}(v)-s_{B}(v)\right] v(-d v)
\end{array}\right.
$$

and the result follows from the additivity of the integral.

2 The case of compact intervals in \mathbb{R}^{n}

In this section we consider the gH -difference of compact intervals in \mathbb{R}^{n}. If $n=1$, i.e. for unidimensional compact intervals, the gH-difference always exists. In fact, let $A=\left[a^{-}, a^{+}\right]$and $B=\left[b^{-}, b^{+}\right]$be two intervals; the gH -difference is

$$
\left[a^{-}, a^{+}\right] \Theta_{g}\left[b^{-}, b^{+}\right]=\left[c^{-}, c^{+}\right] \Longleftrightarrow\left\{\begin{array}{r}
\text { (i) }\left\{\begin{array}{l}
a^{-}=b^{-}+c^{-} \\
a^{+}=b^{+}+c^{+} \\
b^{-}=a^{-}-c^{+} \\
b^{+}=a^{+}-c^{-}
\end{array}\right. \text {or (ii)}
\end{array}\right.
$$

so that $\left[a^{-}, a^{+}\right] \Theta_{g}\left[b^{-}, b^{+}\right]=\left[c^{-}, c^{+}\right]$is always defined by

$$
c^{-}=\min \left\{a^{-}-b^{-}, a^{+}-b^{+}\right\}, c^{+}=\max \left\{a^{-}-b^{-}, a^{+}-b^{+}\right\}
$$

i.e.

$$
[a, b] \Theta_{g}[c, d]=[\min \{a-c, b-d\}, \max \{a-c, b-d\}]
$$

Conditions (i) and (ii) are satisfied simultaneously if and only if the two intervals have the same length and $c^{-}=c^{+}$. Also, the result is $\{0\}$ if and only if $a^{-}=b^{-}$ and $a^{+}=b^{+}$.

Two simple examples on real compact intervals illustrate the generalization (from $[3]$, p. 8$) ;[-1,1] \Theta[-1,0]=[0,1]$ as in fact (i) is $[-1,0]+[0,1]=[-1,1]$ but $[0,0] \Theta_{g}[0,1]=[-1,0]$ and $[0,1] \Theta_{g}\left[-\frac{1}{2}, 1\right]=\left[0, \frac{1}{2}\right]$ satisfy (ii).

Of interest are the symmetric intervals $A=[-a, a]$ and $B=[-b, b]$ with $a, b \geq 0$; it is well known that Minkowski operations with symmetric intervals are such that $A-B=B-A=A+B$ and, in particular, $A-A=A+A=2 A$. We have $[-a, a] \Theta_{g}[-b, b]=[-|a-b|,|a-b|]$.

As $\mathcal{S}^{0}=\{-1,1\}$ and the support functions satisfy $s_{A}(-1)=-a^{-}, s_{A}(1)=$ $a^{+}, s_{B}(-1)=-b^{-}, s_{B}(1)=b^{+}$, the same results as before can be deduced by definition (4).

Remark 4. An alternative representation of an interval $A=\left[a^{-}, a^{+}\right]$is by the use of the midpoint $\widehat{a}=\frac{a^{-}+a^{+}}{2}$ and the (semi)width $\bar{a}=\frac{a^{+}-a^{-}}{2}$ and we can write $A=(\widehat{a}, \bar{a}), \bar{a} \geq 0$, so that $a^{-}=\widehat{a}-\bar{a}$ and $a^{+}=\widehat{a}+\bar{a}$. If $B=(\widehat{b}, \bar{b})$, $\bar{b} \geq 0$ is a second interval, the Minkowski addition is $A+B=(\widehat{a}+\widehat{b}, \bar{a}+\bar{b})$ and the gH-difference is obtained by $A \Theta_{g} B=(\widehat{a}-\widehat{b},|\bar{a}-\bar{b}|)$. We see immediately that $A \Theta_{g} A=\{0\}, A=B \Longleftrightarrow A \Theta_{g} B=\{0\},(A+B) \Theta_{g} B=A$, but $A+\left(B \Theta_{g} A\right)=B$ only if $\bar{a} \leq \bar{b}$.

Let now $A=\times{ }_{i=1}^{n} A_{i}$ and $B=\times{ }_{i=1}^{n} B_{i}$ where $A_{i}=\left[a_{i}^{-}, a_{i}^{+}\right], B_{i}=\left[b_{i}^{-}, b_{i}^{+}\right]$ are real compact intervals ($\times_{i=1}^{n}$ denotes the cartesian product).

In general, considering $D=\times_{i=1}^{n}\left(A_{i} \Theta_{g} B_{i}\right)$, we may have $A \Theta_{g} B \neq D$ e.g. $A \Theta_{g} B$ may not exist as for the example $A_{1}=[3,6], A_{2}=[2,6], B_{1}=[5,10]$, $B_{2}=[7,9]$ for which $\left(A_{1} \Theta_{g} B_{1}\right)=[-4,-2],\left(A_{2} \Theta_{g} B_{2}\right)=[-5,-3], D=$ $[-4,-2] \times[-5,-3]$ and $B+D=[1,8] \times[2,6] \neq A, A+(-1) D=[5,10] \times[5,11] \neq$ B.

But if $A \Theta_{g} B$ exists, then equality will hold. In fact, consider the support function of A (and similarly for B), defined by

$$
\begin{equation*}
s_{A}(u)=\max _{x}\left\{\langle u, x\rangle \mid a_{i}^{-} \leq x_{i} \leq a_{i}^{+}\right\}, u \in \mathcal{S}^{n-1} \tag{7}
\end{equation*}
$$

it can be obtained simply by $s_{A}(u)=\sum_{u_{i}>0} u_{i} a_{i}^{+}+\sum_{u_{i}<0} u_{i} a_{i}^{-}$as the box-constrained maxima of the linear objective functions $\langle u, x\rangle$ above are attained at vertices $\widehat{x}(u)=\left(\widehat{x}_{1}(u), \ldots, \widehat{x}_{i}(u), \ldots, \widehat{x}_{n}(u)\right)$ of A, i.e. $\widehat{x}_{i}(u) \in\left\{a_{i}^{-}, a_{i}^{+}\right\}, i=1,2, \ldots, n$. Then

$$
\begin{equation*}
s_{A}(u)-s_{B}(u)=\sum_{u_{i}>0} u_{i}\left(a_{i}^{+}-b_{i}^{+}\right)+\sum_{u_{i}<0} u_{i}\left(a_{i}^{-}-b_{i}^{-}\right) \tag{8}
\end{equation*}
$$

and, being $s_{-A}(u)=s_{A}(-u)=-\sum_{u_{i}<0} u_{i} a_{i}^{+}-\sum_{u_{i}>0} u_{i} a_{i}^{-}$,

$$
\begin{equation*}
s_{-B}(u)-s_{-A}(u)=\sum_{u_{i}>0} u_{i}\left(a_{i}^{-}-b_{i}^{-}\right)+\sum_{u_{i}<0} u_{i}\left(a_{i}^{+}-b_{i}^{+}\right) . \tag{9}
\end{equation*}
$$

From the relations above, we deduce that

$$
A \Theta_{g} B=C \Longleftrightarrow\left\{\begin{array}{c}
\text { (i) }\left\{\begin{array}{l}
C=\times_{i=1}^{n}\left[a_{i}^{-}-b_{i}^{-}, a_{i}^{+}-b_{i}^{+}\right] \\
\text {provided that } a_{i}^{-}-b_{i}^{-} \leq a_{i}^{+}-b_{i}^{+}, \forall i
\end{array}\right. \\
\text { or }(i i)\left\{\begin{array}{l}
C=\times_{i=1}^{n}\left[a_{i}^{+}-b_{i}^{+}, a_{i}^{-}-b_{i}^{-}\right] \\
\text {provided that } a_{i}^{-}-b_{i}^{-} \geq a_{i}^{+}-b_{i}^{+}, \forall i
\end{array}\right.
\end{array}\right.
$$

and the gH-difference $A \Theta_{g} B$ exists if and only if one of the two conditions are satisfied:
case (i) $a_{i}^{-}-b_{i}^{-} \leq a_{i}^{+}-b_{i}^{+}, i=1,2, \ldots, n$
case (ii) $a_{i}^{-}-b_{i}^{-} \geq a_{i}^{+}-b_{i}^{+}, i=1,2, \ldots, n$

Examples:

1. case $(i): A_{1}=[5,10], A_{2}=[1,3], B_{1}=[3,6], B_{2}=[2,3]$ for which $\left(A_{1} \Theta_{g} B_{1}\right)=[2,4],\left(A_{2} \Theta_{g} B_{2}\right)=[-1,0]$ and $A \Theta_{g} B=C=[2,4] \times[-1,0]$ exists with $B+C=A, A+(-1) C \neq B$.
2. case $(i i): A_{1}=[3,6], A_{2}=[2,3], B_{1}=[5,10], B_{2}=[1,3]$ for which
 exists with $B+C \neq A, A+(-1) C=B$.
3. case $(i)+(i i): A_{1}=[3,6], A_{2}=[2,3], B_{1}=[5,8], B_{2}=[3,4]$ for which $\left(A_{1} \frac{\left.\Theta_{g} B_{1}\right)=[-2,-2]=\{-2\},\left(A_{2} \Theta_{g} B_{2}\right)=[-1,-1]=\{-1\} \text { and } A \Theta_{g} B=}{n}\right.$ $C=\{(-2,-1)\}$ exists with $B+C=A$ and $A+(-1) C=B$.

We end this section with a comment on the simple interval equation

$$
\begin{equation*}
A+X=B \tag{10}
\end{equation*}
$$

where $A=\left[a^{-}, a^{+}\right], B=\left[b^{-}, b^{+}\right]$are given intervals and $X=\left[x^{-}, x^{+}\right]$is an interval to be determined satisfying (10). We have seen that, for unidimensional intervals, the gH-difference always exists. Denote by $l(A)=a^{+}-a^{-}$the length of interval A. It is well known from classical interval arithmetic that an interval
X satisfying (10) exists only if $l(B) \geq l(A)$ (in Minkowski arithmetic we have $l(A+X) \geq \max \{l(A), l(X)\})$; in fact, no X exists with $x^{-} \leq x^{+}$if $l(B)<l(A)$ and we cannot solve (10) unless we interpret it as $B-X=A$. If we do so, we get

$$
\begin{aligned}
& \text { case } l(B) \leq l(A):\left\{\begin{array}{l}
a^{-}+x^{-}=b^{-} \\
a^{+}+x^{+}=b^{+}
\end{array} \text {i.e. } \begin{array}{l}
x^{-}=b^{-}-a^{-} \\
x^{-}=b^{-}-a^{-}
\end{array}\right. \\
& \text {case } l(B) \geq l(A):\left\{\begin{array}{l}
b^{-}-x^{+}=a^{-} \\
b^{+}-x^{-}=a^{+}
\end{array} \text {i.e. } \begin{array}{l}
x^{-}=b^{+}-a^{+} \\
x^{+}=b^{-}-a^{-}
\end{array}\right.
\end{aligned}
$$

We then obtain that $X=B \Theta_{g} A$ is the unique solution to (10) and it always exists, i.e.

Proposition 5. Let $A, B \in \mathcal{K}_{C}(\mathbb{R})$; the $g H$-difference $X=B \Theta_{g} A$ always exists and either $A+\left(B \Theta_{g} A\right)=B$ or $B-\left(B \Theta_{g} A\right)=A$.

From property 6) of Proposition 7, a similar result is true for equation $A+$ $X=B$ with $A, B \in \mathcal{K}_{C}\left(\mathbb{R}^{n}\right)$ but for $n>1$ the gH -difference may non exist.

3 gH-difference of fuzzy numbers

A general fuzzy set over a given set (or space) \mathbb{X} of elements (the universe) is usually defined by its membership function $\mu: \mathbb{X} \longrightarrow \mathbb{T} \subseteq[0,1]$ and a fuzzy (sub)set u of \mathbb{X} is uniquely characterized by the pairs $\left(x, \mu_{u}(x)\right)$ for each $x \in \mathbb{X}$; the value $\mu_{u}(x) \in[0,1]$ is the membership grade of x to the fuzzy set u. We will consider particular fuzzy sets, called fuzzy numbers, defined over $\mathbb{X}=\mathbb{R}$ having a particular form of the membership function. Let μ_{u} be the membership function of a fuzzy set u over \mathbb{X}. The support of u is the (crisp) subset of points of \mathbb{X} at which the membership grade $\mu_{u}(x)$ is positive: $\operatorname{supp}(u)=\{x \mid x \in \mathbb{X}$, $\left.\mu_{u}(x)>0\right\}$. For $\left.\left.\alpha \in\right] 0,1\right]$, the α-level cut of u (or simply the $\alpha-c u t$) is defined by $[u]_{\alpha}=\left\{x \mid x \in \mathbb{X}, \mu_{u}(x) \geq \alpha\right\}$ and for $\alpha=0$ (or $\alpha \rightarrow+0$) by the closure of the support $[u]_{0}=\operatorname{cl}\left\{x \mid x \in \mathbb{X}, \mu_{u}(x)>0\right\}$.

A well-known property of the level - cuts is $[u]_{\alpha} \subseteq[u]_{\beta}$ for $\alpha>\beta$ (i.e. they are nested).

A particular class of fuzzy sets u is when the support is a convex set and the membership function is quasi-concave i.e. $\mu_{u}\left((1-t) x^{\prime}+t x^{\prime \prime}\right) \geq \min \left\{\mu_{u}\left(x^{\prime}\right), \mu_{u}\left(x^{\prime \prime}\right)\right\}$ for every $x^{\prime}, x^{\prime \prime} \in \operatorname{supp}(u)$ and $t \in[0,1]$. Equivalently, μ_{u} is quasi-concave if the level sets $[u]_{\alpha}$ are convex sets for all $\alpha \in[0,1]$. A third property of the fuzzy numbers is that the level-cuts $[u]_{\alpha}$ are closed sets for all $\alpha \in[0,1]$.

By using these properties, the space \mathcal{F} of (real unidimensional) fuzzy numbers is structured by an addition and a scalar multiplication, defined either by the level sets or, equivalently, by the Zadeh extension principle. Let $u, v \in \mathcal{F}$ have membership functions μ_{u}, μ_{v} and α-cuts $[u]_{\alpha},[v]_{\alpha}, \alpha \in[0,1]$ respectively. The addition $u+v \in \mathcal{F}$ and the scalar multiplication $k u \in \mathcal{F}$ have level cuts

$$
\begin{align*}
{[u+v]_{\alpha} } & =[u]_{\alpha}+[v]_{\alpha}=\left\{x+y \mid x \in[u]_{\alpha}, y \in[v]_{\alpha}\right\} \tag{11}\\
{[k u]_{\alpha} } & =k[u]_{\alpha}=\left\{k x \mid x \in[u]_{\alpha}\right\} \tag{12}
\end{align*}
$$

In the fuzzy or in the interval arithmetic contexts, equation $u=v+w$ is not equivalent to $w=u-v=u+(-1) v$ or to $v=u-w=u+(-1) w$ and this has motivated the introduction of the following Hukuhara difference ([3], [5]). The generalized Hukuhara difference is (implicitly) used by Bede and Gal (see [1]) in their definition of generalized differentiability of a fuzzy-valued function.

Definition 2. Given $u, v \in \mathcal{F}$, the H-difference is defined by $u \ominus v=w \Longleftrightarrow u=$ $v+w$; if $u \Theta v$ exists, it is unique and its $\alpha-$ cuts are $[u \Theta v]_{\alpha}=\left[u_{\alpha}^{-}-v_{\alpha}^{-}, u_{\alpha}^{+}-v_{\alpha}^{+}\right]$. Clearly, $u \ominus u=\{0\}$.

The Hukuhara difference is also motivated by the problem of inverting the addition: if x, y are crisp numbers then $(x+y)-y=x$ but this is not true if x, y are fuzzy. It is possible to see that (see [2]), if u and v are fuzzy numbers (and not in general fuzzy sets), then $(u+v) \Theta v=u$ i.e. the H-difference inverts the addition of fuzzy numbers.

The gH-difference for fuzzy numbers can be defined as follows:
Definition 3. Given $u, v \in \mathcal{F}$, the $g H$-difference is the fuzzy number w, if it exists, such that

$$
u \Theta_{g} v=w \Longleftrightarrow\left\{\begin{align*}
(i) \quad u & =v+w \tag{13}\\
\text { or (ii) } v & =u+(-1) w
\end{align*}\right.
$$

If $u \Theta_{g} v$ exists, its $\alpha-$ cuts are given by $\left[u \Theta_{g} v\right]_{\alpha}=\left[\min \left\{u_{\alpha}^{-}-v_{\alpha}^{-}, u_{\alpha}^{+}-\right.\right.$ $\left.\left.v_{\alpha}^{+}\right\}, \max \left\{u_{\alpha}^{-}-v_{\alpha}^{-}, u_{\alpha}^{+}-v_{\alpha}^{+}\right\}\right]$and $u \Theta v=u \Theta_{g} v$ if $u \Theta v$ exists. If (i) and (ii) are satisfied simultaneously, then w is a crisp number. Also, $u \Theta_{g} u=u \Theta u=\{0\}$.

A definition of $w=u \Theta_{g} v$ for multidimensional fuzzy numbers can be obtained in terms of support functions in a way similar to (4)

$$
s_{w}(p ; \alpha)=\left\langle\begin{array}{ll}
s_{u}(p ; \alpha)-s_{v}(p ; \alpha) & \text { in case }(i) \tag{14}\\
s_{(-1) v}(p ; \alpha)-s_{(-1) u}(p ; \alpha) \text { in case }(i i)
\end{array}, \alpha \in[0,1]\right.
$$

where, for a fuzzy number u, the support functions are considered for each $\alpha-$ cut and defined to characterize the (compact) $\alpha-$ cuts $[u]_{\alpha}$:

$$
\begin{aligned}
s_{u} & : \mathbb{R}^{n} \times[0,1] \longrightarrow \mathbb{R} \text { defined by } \\
s_{u}(p ; \alpha) & =\sup \left\{\langle p, x\rangle \mid x \in[u]_{\alpha}\right\} \text { for each } p \in \mathbb{R}^{n}, \alpha \in[0,1]
\end{aligned}
$$

In the unidimensional fuzzy numbers, the conditions for the definition of $w=u \Theta_{g} v$ are

$$
[w]_{\alpha}=\left[w_{\alpha}^{-}, w_{\alpha}^{+}\right]=[u]_{\alpha} \Theta_{g}[v]_{\alpha}:\left\{\begin{array}{l}
w_{\alpha}^{-}=\min \left\{u_{\alpha}^{-}-v_{\alpha}^{-}, u_{\alpha}^{+}-v_{\alpha}^{+}\right\} \tag{15}\\
w_{\alpha}^{+}=\max \left\{u_{\alpha}^{-}-v_{\alpha}^{-}, u_{\alpha}^{+}-v_{\alpha}^{+}\right\}
\end{array} .\right.
$$

provided that w_{α}^{-}is nondecreasing, w_{α}^{+}is nonincreasing and $w_{\alpha}^{-} \leq w_{\alpha}^{+}$.
If $u \Theta_{g} v$ is a proper fuzzy number, it has the same properties illustrated in section 1. for intervals.

Proposition 6. If $u \Theta_{g} v$ exists, it is unique and has the following properties:

1) $u \Theta_{g} u=0$;
2) $(u+v) \Theta_{g} v=u$;
3) If $u \Theta_{g} v$ exists then also $(-v) \Theta_{g}(-u)$ does and $\{0\} \Theta_{g}\left(u \Theta_{g} v\right)=(-v) \Theta_{g}(-u)$;
4) $(u-v)+v=w \Longleftrightarrow u-v=w \Theta_{g} v$;
5) $\left(u \Theta_{g} v\right)=\left(v \Theta_{g} u\right)=w$ if and only if $(w=\{0\}$ and $u=v)$;
6) If $v \Theta_{g} u$ exists then either $u+\left(v \Theta_{g} u\right)=u$ or $v-\left(v \Theta_{g} u\right)=u$ and if both equalities hold then $v \Theta_{g} u$ is a crisp set.

If the gH -differences $[u]_{\alpha} \Theta_{g}[v]_{\alpha}$ do not define a proper fuzzy number, we can use the nested property and obtain a proper fuzzy number by

$$
\begin{equation*}
\left[u \widetilde{\Theta}_{g} v\right]_{\alpha}:=\bigcup_{\beta \geq \alpha}\left([u]_{\beta} \Theta_{g}[v]_{\beta}\right) \tag{16}
\end{equation*}
$$

As each gH-difference $[u]_{\beta} \Theta_{g}[v]_{\beta}$ exists for $\beta \in[0,1]$ and (16) defines a proper fuzzy number, it follows that $u \widetilde{\Theta}_{g} v$ can be considered as a generalization of Hukuhara difference for fuzzy numbers, existing for any u, v. A second possibility for a gH-difference of fuzzy numbers may be obtained following a suggestion by Kloeden and Diamond ([3]) and defining $z=u \widetilde{\Theta}_{g} v$ to be the fuzzy number whose α-cuts are as near as possible to the gH -differences $[u]_{\alpha} \Theta_{g}[v]_{\alpha}$, for example by minimizing the functional ($\omega_{\alpha} \geq 0$ and $\gamma_{\alpha} \geq 0$ are weighting functions)

$$
G(z \mid u, v)=\int_{0}^{1}\left(\omega_{\alpha}\left[z_{\alpha}^{-}-\left(u \Theta_{g} v\right)_{\alpha}^{-}\right]^{2}+\gamma_{\alpha}\left[z_{\alpha}^{+}-\left(u \Theta_{g} v\right)_{\alpha}^{+}\right]^{2}\right) d \alpha
$$

such that $z_{\alpha}^{-} \uparrow, z_{\alpha}^{+} \downarrow, z_{\alpha}^{-} \leq z_{\alpha}^{+} \forall \alpha \in[0,1]$.
A discretized version of $G(z \mid u, v)$ can be obtained by choosing a partition $0=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{N}=1$ of $[0,1]$ and defining the discretized $G(z \mid u, v)$ as

$$
G_{N}(z \mid u, v)=\sum_{i=0}^{N} \omega_{i}\left[z_{i}^{-}-\left(u \Theta_{g} v\right)_{i}^{-}\right]^{2}+\gamma_{i}\left[z_{i}^{+}-\left(u \Theta_{g} v\right)_{i}^{+}\right]^{2}
$$

we minimize $G_{N}(z \mid u, v)$ with the given data $\left(u \Theta_{g} v\right)_{i}^{-}=\min \left\{u_{\alpha_{i}}^{-}-v_{\alpha_{i}}^{-}, u_{\alpha_{i}}^{+}-v_{\alpha_{i}}^{+}\right\}$ and $\left(u \Theta_{g} v\right)_{i}^{+}=\max \left\{u_{\alpha_{i}}^{-}-v_{\alpha_{i}}^{-}, u_{\alpha_{i}}^{+}-v_{\alpha_{i}}^{+}\right\}$, subject to the constraints $z_{0}^{-} \leq z_{1}^{-} \leq$ $\ldots \leq z_{N}^{-} \leq z_{N}^{+} \leq z_{N-1}^{+} \leq \ldots \leq z_{0}^{+}$. We obtain a linearly constrained least squares minimization of the form

$$
\min _{z \in \mathbb{R}^{2 N+2}}(z-w)^{T} D^{2}(z-w) \text { s.t. } E z \geq 0
$$

where $z=\left(z_{0}^{-}, z_{1}^{-}, \ldots, z_{N}^{-}, z_{N}^{+}, z_{N-1}^{+}, \ldots, z_{0}^{+}\right), w_{i}^{-}=\left(u \Theta_{g} v\right)_{i}^{-}, w_{i}^{+}=\left(u \Theta_{g} v\right)_{i}^{+}$, $w=\left(w_{0}^{-}, w_{1}^{-}, \ldots, w_{N}^{-}, w_{N}^{+}, w_{N-1}^{+}, \ldots, w_{0}^{+}\right), D=\operatorname{diag}\left\{\sqrt{\omega_{0}}, \ldots, \sqrt{\omega_{N}}, \sqrt{\gamma_{N}}, \ldots, \sqrt{\gamma_{0}}\right\}$ and E is the $(N, N+1)$ matrix

$$
E=\left[\begin{array}{llllll}
-1 & 1 & 0 & \ldots & \ldots & 0 \\
0 & -1 & 1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \ldots & -1 & 1
\end{array}\right]
$$

which can be solved by standard efficient procedures (see the classical book [6], ch. 23). If, at solution z^{*}, we have $z^{*}=w$, then we obtain the gH -difference as defined in (13).

4 Generalized division

An idea silmilar to the gH -difference can be used to introduce a division of real intervals and fuzzy numbers. We consider here only the case of real compact intervals $A=\left[a^{-}, a^{+}\right]$and $B=\left[b^{-}, b^{+}\right]$with $b^{-}>0$ or $b^{+}<0$ (i.e. $0 \notin B$).

The interval $C=\left[c^{-}, c^{+}\right]$defining the multiplication $C=A B$ is given by

$$
c^{-}=\min \left\{a^{-} b^{-}, a^{-} b^{+}, a^{+} b^{-}, a^{+} b^{+}\right\}, c^{+}=\max \left\{a^{-} b^{-}, a^{-} b^{+}, a^{+} b^{-}, a^{+} b^{+}\right\}
$$

and the multiplicative "inverse" (it is not the inverse in the algebraic sense) of an interval B is defined by $B^{-1}=\left[\frac{1}{b^{+}}, \frac{1}{b^{-}}\right]$; we define the generalized division (g-division) $\div g$ as follows:

$$
A \div{ }_{g} B=C \Longleftrightarrow\left\{\begin{array}{c}
(i) A=B C \\
\text { or }(i i) B=A C^{-1} .
\end{array}\right.
$$

If both cases (i) and (ii) are valid, we have $C C^{-1}=C^{-1} C=\{1\}$, i.e. $C=\{\widehat{c}\}$, $C^{-1}=\left\{\frac{1}{\hat{c}}\right\}$ with $\widehat{c} \neq 0$. It is easy to see that $A \div{ }_{g} B$ always exists and is unique for given $A=\left[a^{-}, a^{+}\right]$and $B=\left[b^{-}, b^{+}\right]$with $0 \notin B$. It is easy to see that it can be obtained by the following rules:

Case 1. If $\left(a^{-} \leq a^{+}<0\right.$ and $\left.b^{-} \leq b^{+}<0\right)$ or $\left(0<a^{-} \leq a^{+}\right.$and $\left.0<b^{-} \leq b^{+}\right)$then

$$
c^{-}=\min \left\{\frac{a^{-}}{b^{-}}, \frac{a^{+}}{b^{+}}\right\} \geq 0, c^{+}=\max \left\{\frac{a^{-}}{b^{-}}, \frac{a^{+}}{b^{+}}\right\} \geq 0
$$

Case 2. If $\left(a^{-} \leq a^{+}<0\right.$ and $\left.0<b^{-} \leq b^{+}\right)$or $\left(0<a^{-} \leq a^{+}\right.$and $b^{-} \leq b^{+}<0$) then

$$
c^{-}=\min \left\{\frac{a^{-}}{b^{+}}, \frac{a^{+}}{b^{-}}\right\} \leq 0, c^{+}=\max \left\{\frac{a^{-}}{b^{+}}, \frac{a^{+}}{b^{-}}\right\} \leq 0
$$

Case 3. If $\left(a^{-} \leq 0, a^{+} \geq 0\right.$ and $\left.b^{-} \leq b^{+}<0\right)$ then

$$
c^{-}=\frac{a^{-}}{b^{-}} \leq 0, \quad c^{+}=\frac{a^{+}}{b^{-}} \geq 0
$$

Case 4. If $\left(a^{-} \leq 0, a^{+} \geq 0\right.$ and $\left.0<b^{-} \leq b^{+}\right)$then

$$
c^{-}=\frac{a^{-}}{b^{+}} \leq 0, \quad c^{+}=\frac{a^{+}}{b^{+}} \geq 0
$$

Remark 5. If $0 \in] b^{-}, b^{+}$[the g-division is undefined; for intervals $B=\left[0, b^{+}\right]$or $B=\left[b^{-}, 0\right]$ the division is possible but obtaining unbounded results C of the form $\left.C=]-\infty, c^{+}\right]$or $C=\left[c^{-},+\infty\left[\right.\right.$: we work with $B=\left[\varepsilon, b^{+}\right]$or $B=\left[b^{-}, \varepsilon\right]$ and we obtain the result by the limit for $\varepsilon \longrightarrow 0^{+}$. Example: for $[-2,-1] \div g[0,3]$ we consider $[-2,-1] \div{ }_{g}[\varepsilon, 3]=\left[c_{\varepsilon}^{-}, c_{\varepsilon}^{+}\right]$with (case 2.) $c_{\varepsilon}^{-}=\min \left\{\frac{-2}{3}, \frac{-1}{\varepsilon}\right\}$ and $c_{\varepsilon}^{+}=\max \left\{\frac{-2}{\varepsilon}, \frac{-1}{3}\right\}$ and obtain the result $C=\left[-\infty,-\frac{1}{3}\right]$ at the limit $\varepsilon \xrightarrow{\varepsilon} 0^{+}$.

The following properties are immediate.
Proposition 7. For any $A=\left[a^{-}, a^{+}\right]$and $B=\left[b^{-}, b^{+}\right]$with $0 \notin B$, we have (here 1 is the same as $\{1\}$):

1. $B \div{ }_{g} B=1, B \div{ }_{g} B^{-1}=\left\{b^{-} b^{+}\right\}\left(=\left\{\widehat{b}^{2}\right\}\right.$ if $\left.b^{-}=b^{+}=\widehat{b}\right)$;
2. $(A B) \div{ }_{g} B=A$;
3. $1 \div{ }_{g} B=B^{-1}$ and $1 \div{ }_{g} B^{-1}=B$.

In the case of fuzzy numbers $u, v \in \mathcal{F}$ having membership functions μ_{u}, μ_{v} and α-cuts $[u]_{\alpha}=\left[u_{\alpha}^{-}, u_{\alpha}^{+}\right],[v]_{\alpha}=\left[v_{\alpha}^{-}, v_{\alpha}^{+}\right], 0 \notin[v]_{\alpha} \forall \alpha \in[0,1]$, the g-division $\div{ }_{g}$ can be defined as the operation that calculates the fuzzy number $w=u \div{ }_{g} v \in$ $\dot{\mathcal{F}}$ having level cuts $[w]_{\alpha}=\left[w_{\alpha}^{-}, w_{\alpha}^{+}\right]\left(\right.$here $\left.[w]_{\alpha}^{-1}=\left[\frac{1}{w_{\alpha}^{+}}, \frac{1}{w_{\alpha}^{-}}\right]\right)$:

$$
[u]_{\alpha} \div{ }_{g}[v]_{\alpha}=[w]_{\alpha} \Longleftrightarrow\left\{\begin{array}{c}
\text { (i) }[u]_{\alpha}=[v]_{\alpha}[w]_{\alpha} \\
\text { or (ii) }[v]_{\alpha}=[u]_{\alpha}[w]_{\alpha}^{-1}
\end{array}\right.
$$

provided that w is a proper fuzzy number.

References

1. B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151 (2005) 581-599.
2. B. Bouchon-Meunier, O. Kosheleva, V. Kreinovich, H. T. Nguyen, Fuzzy numbers are the only fuzzy sets that keep invertible operations invertible, Fuzzy Sets and Systems, 91 (1997) 155-163.
3. P. Diamond, P. Klöden, Metric Spaces of Fuzzy Sets, World Scientific, Singapore, 1994.
4. M. Hukuhara, Integration des applications measurables dont la valeur est un compact convexe, Funkcialaj Ekvacioj, 10 (1967), 205-223.
5. V. Laksmikantham, R. N. Mohapatra, Theory of fuzzy differential equations and inclusions, Taylor and Francis, New York, 2003.
6. C. L. Lawson, R.J. Hanson, Solving Least Squares Problems, PenticeHall, 1974.
