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Abstract

Many negotiations (for instance, among political parties, part-
ners in a business) are characterised by dynamic accumulation:
current agreements affect future bargaining possibilities. We study
such situations by using repeated bargaining games in which two
parties can decide how much to invest and how to share the resid-
ual surplus for their own consumption. We show that there is a
unique (stationary) Markov Perfect Equilibrium characterised by
immediate agreement. Moreover, in equilibrium a relatively more
patient party invests more than his opponent. However, being
more patient can make a player worse off. In addition, we derive
the conditions under which we obtain the efficient investment
path. Our results are robust to different bargaining procedures,
different rates of time preferences and elasticities of substitution.
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1 Introduction

Several bargaining situations in the most diverse contexts can be rep-
resented as bargaining games with dynamic accumulation, that is, bar-
gaining games in which parties can invest part of the surplus and the
invested surplus affects the size of future surpluses. For instance, part-
ners in a business need to negotiate not only on how to split profits
among themselves at the end of each accounting year, but also on how
much profit should be re-invested for the following production period.
External relationships between a business and its suppliers can also be
characterised by dynamic accumulation: a supplier may agree to make
ongoing investments in new production techniques to meet the specific
product needs of his customer and the extent to which such investment
takes place will be affected by ongoing price and quality negotiations
between the two parties.
Bargaining games which allow parties to make both investment and

consumption decisions for a sequential number of times are almost unex-
plored (for a discussion of the related literature see below). We develop
a model where two risk-averse players attempt to agree on how to share
a surplus between consumption and investment and on how to split the
residual surplus among themselves. The level of investment affects the
future capital stock and consequently, the surplus available in the follow-
ing bargaining stage. The problem is complex. Not only do parties need
to solve a (potentially protracted) bargaining stage, but also a dynamic
accumulation problem since the agreement they reach at a specific stage
affects future bargaining possibilities. To address this problem, we focus
on linear strategies (we will then show that this is a weak restriction).
The most important results are, first of all, that there is a unique sta-
tionary Markov Perfect Equilibrium (MPE) characterised by immediate
agreement. The intuition is that, roughly speaking, a player can always
invest the entire surplus to avoid a costly rejection (see section 3 for
more details). Although the equilibrium is unique, there are three types
of outcomes that can arise. First, when players are sufficiently impatient
(or, alternatively, frictions in the bargaining process are relevant), both
parties invest little on future bargaining possibilities, and extract all the
residual surplus. Second, when parties are sufficiently asymmetric, such
extreme consumption paths, where one party can extracts all the surplus
not invested, can be obtained and the relatively impatient party makes
the concessions. Third, there is an MPE in which both parties are able
to consume a positive share of the current surplus even when they are
responders.
An interesting result related to the third MPE (typical when parties

are both fairly symmetric and patient), is that the investment plan is
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inefficient: as in the standard hold-up problem (described below), par-
ties underinvest. Only at the limit, when the frictions in the bargaining
stage tend to zero (or alternatively, parties are infinitely patient), does
the investment path tend to the socially optimal level. Moreover, play-
ers invest more if more patient. However, patience can make a player
worse off, in contrast to one of the lessons offered by classical bargaining
theory.1 In our dynamic set-up, this implies that bargaining parties can
obtain a more profitable outcome if less established and more prone to
dissolution.
Our results are based on a standard alternating-offer bargaining pro-

cedure. To make our analysis robust we modify the bargaining process
by allowing for a random-proposer procedure. Therefore, after a rejec-
tion a player can invest again with a positive probability. We show that
our results are robust. A more patient party invests more in the long-run
relationship. Moreover, patience can make a player worse off. In terms
of efficiency, again players that are both symmetric and infinitely patient
can invest the socially optimal level of surplus.
A novel result specific to the random-proposer procedure is that when

the more patient party is less likely to make a proposal, he reduces the
resources invested in the long-term relationship. It is intuitive that when
a party cannot control the relevant terms of the negotiations (i.e., mak-
ing a proposal) he will reduce the resources devoted to the relationship.
Interestingly, the opponent counteracts this trend (by increasing his in-
vestment).
Since we restrict our analysis to linear strategies, we provide a justifi-

cation of this by investigating an asymptotic game in which the number
of bargaining stages is finite but tends to infinity. We solve the game
numerically and we show that in this asymptotic game, the strategies
are linear and coincide with the ones we obtain when the game has an
infinite number of rounds.
There are two main strands of literature, namely, on the hold-up

problem and on the tragedy of the commons, which are related to the
problem considered in this paper, however, there are fundamental dif-
ferences between these models and our dynamic bargaining game with
investment. In the hold-up problem, parties have the ability to make
sunk investments that affect the size of a surplus, before bargaining over
the division of such a surplus. Since the investor, who bears all the costs
of the investment, cannot appropriate all the benefits, the resulting in-
vestment is lower than the efficient level. Typically, only one party is
involved in the investment problem, moreover, the investment is once

1Also Sorger (2006) and Houba et al. (2000) obtained this result in their frame-
works (discussed below).
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and for all (see, for instance, Gibbons 1992, Muthoo 1998, Gul 2001).2

Differently, the focus of this paper is on parties who jointly and repeat-
edly need to agree on how much to invest and consume.
The second strand of literature, on the tragedy of the commons, con-

siders different parties who can extract part of a surplus for their own
consumption and the remaining surplus will affect the size available in
the next period (see, for instance, Levhari and Mirman, 1980, Dutta and
Sandaram, 1993). The tragedy of the commons consists in the fact that
parties consume more than the efficient level and therefore the surplus
extinguishes quickly (over-exploitation of natural resources is a classic
example). Although, the typical framework analysing the problem of the
tragedy of the commons is a dynamic accumulation game, this does not
include any negotiation: everyone can consume as much as he wishes,
given the stock available. Bargaining has recently been introduced in
these dynamic accumulation games, however, in a simplified manner
(Houba et al., 2000 and Sorger, 2006). Indeed, in Houba et al. (2000)
parties can potentially bargain forever (á la Rubinstein), but they need
to agree once, since this agreement will be ever-lasting. Sorger (2006) is
closer to our paper, since parties in each period can reach an agreement
over the levels of consumption (Sorger (2006) also allows for endoge-
nous threat points), however, the bargaining process is simplified since
it is given by the solution of the Nash products. We consider different
non-cooperative bargaining procedures, and characterise (analytically
for some cases) the strategic behaviour that arises in equilibrium.
As far as we know the only paper with a focus on a repeated (non-

cooperative) bargaining game with investment decisions in addition to
the standard consumption decisions, is Muthoo (1999). However, the
most important difference with our paper is that in Muthoo (1999) the
focus is on steady-state stationary subgame perfect equilibria, while ours
is on MPE. This implies that in the former, the investment decisions are
strongly simplified since parties need to invest as much as it is necessary
so as to have surpluses of the same size. Indeed, Muthoo’s aim is to apply
his infinitely repeated game where parties share an infinite number of
cakes with the same size (Muthoo, 1995). In this sense the problem of
how much parties should invest remains open.
The paper is organised as follows. In the next section we present the

model. In section 3 we analyse the MPE. We show that there is a unique
MPE, although, according to the value of the parameters some equilibria
are at the corner (where parties consume all the surplus not invested).
We investigate the solution under a random-proposer procedure in sec-

2An exception is in Che and Sákovics (2004) where parties keep investing until an
agreement has been reached, however, once this is struck, the game ends.
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tion 5. In the following section, we provide a justification for the linear
strategies by analysing a game with a finite number of bargaining stages,
where the number of bargaining stages increases indefinitely. Some final
remarks are in section 7. Most of the proofs are in the Appendix.

2 The Model

We consider a two-player bargaining game in which bargaining and pro-
duction stages alternate (and each stage can start only after the other
has taken place). At the production stage, a surplus is generated accord-
ing to the production function F (kt) = Gkt, where kt is the capital stock
at period t, with t = 0, 1, ... and G is the constant gross rate of return.
Production takes place in an interval of time τ . Once the output is gen-
erated, F (kt), the bargaining stage begins and players attempt to divide
F (kt). The bargaining stage is a classic infinitely-repeated alternating-
offer bargaining game (Rubinstein, 1982). A proposal by player i is a
pair (ixt,i It), where iIt is the investment level proposed by i and ixt is
the share demanded by i over the remaining surplus. The subscript t
indicates the dependence of the proposal (ixt,i It) on capital at time t,
denoted by kt, that is the state variable in the model. If there is an accep-
tance, the bargaining stage ends and the proposer’s current per-period
utility is ui(ixt,i It) with

ui(ixt,i It) =

(
ic
1−η
t

1−η for η 6= 1
ln(ict) for η = 1

(1)

where3 ict = ixt(F (kt)− iIt) is the level of consumption. The output
available at the next bargaining stage (at t+1) is F (kt+1), where kt+1 is
the capital stock in the next period and it is given by the investment level
iIt and the capital remaining after depreciation, kt+1 = iIt + (1 − λ)kt,
where λ is the depreciation rate (0 < λ ≤ 1). Regardless of whether the
proposal at t has been successful the responder at t is the next proposer.
If there is a rejection, after an interval of time ∆, the rejecting player
can make a counter-offer. We assume that the capital stock remains
unchanged.4 In perpetual disagreement, parties consume ict = 0. For
the cases of η ≥ 1, we need to impose that players do not receive any
utility during a temporary disagreement but only once an agreement

3Sorger (2006) uses the same per-period utility forms while Muthoo (1995, 1999)
can assume linear per-period utilities, given that the investment problem is strongly
simplified.

4Alternatively, production takes place again and therefore the capital stock de-
preciates. In this case, the qualitatity results we show in the paper are unaffected,
since the equilibrium is characterised by no delays even when the capital stock does
not shrink after a rejection.
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has been reached or, alternatively, when the (perpetual) disagreement
outcome arises.5 Player i’s time preference is represented by his discount
rate hi (with i = 1, 2). Since intervals of time have different lengths, we
introduce in our model two distinct discount factors6: the between-cake
discount factor αi = exp(−hiτ) which takes into account that production
takes time and the between-cake discount factor δi = exp(−hi∆) that
takes into account that there is an interval of time between a rejection
and a new proposal. In the first period, at t = 0, a bargaining stage
starts and the surplus available is 1, by assumption. The time line in a
specific example of this game is represented in figure 1 below.

Figure 1. Time line for a game where the first two bargaining stages
are characterised by n rejections (with n ≥ 0) and immediate

agreement respectively.

The focus is on (stationary) MPE, where the Markov strategies spec-
ify players’ actions for each time period t as a function of the state of
the system at the beginning of that period, kt. Moreover, the aim of
our analysis is to define time-invariant linear rules which describe the
investment and consumption path as a linear function of the state kt. In
other words, the rules are identified by the share of the surplus invested,
ϕi, and the share of the residual surplus that is consumed by proposer i
(responder j), xi (1− xi, respectively).
Player i is willing to make an acceptable offer to player j if this is

5The case of η > 1 is empirically relevant according to recent macroeconomic
studies (see, for instance, Leith and Malley, 2005 where η is estimated to be 2).

6Muthoo (1995) considers the possibility of an interval of time between different
bargaining stages. In Flamini (2007) we study the effects of this complex discounting
structure within the agenda formation problem.
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profitable, that is, Vi(kt) ≥ δiWi(kt) where Vi(kt) is the optimal expected
utility to player i as a proposer, while Wi(kt) is the optimal expected
utility to player i as a responder. Then, the problem for player i can be
written in the following recursive form:

Vi(kt) = max
xi∈[0,1]

ϕi∈[−(1−λ),G]

[xi(G− ϕi)kt]
1−η

1− η
+ αiWi(kt+1) (2)

s.t.
[(1− xi)(G− ϕi)kt]

1−η

1− η
+ αjVi(kt+1) ≥ δjVj(kt) (3)

if the offer is accepted, otherwise

Vi(kt) = δiWi(kt) and Wj(kt) = δjVj(kt) (4)

with kt+1 =

½
(1− λ+ ϕi)kt if there is an acceptance

kt otherwise
(5)

with i, j = 1, 2 and i 6= j. Vi(kt) is also called the value function of the
Bellman equation (2). The equation of motion, (5), specifies whether
and how the capital stock is modified once a proposal is either accepted
or rejected.
Problem (2)-(5) is a recursive constrained problem with a complex

structure since not only does (2) have a recursive form, but the con-
straint (3) embodies another recursive problem (via the value function
Vj(kt)) Although, generally such problems cannot be solved (see Stokey
and Lucas, 1989, Ljungqvist and Sargent, 2000), we can characterise the
properties of the equilibrium outcome and we can also obtain an analyti-
cal solution under certain conditions. The crucial assumption is that the
Markov strategies are linear, that is, the surplus invested and consumed
by each player is a linear function of the capital stock. As explained in
the introduction, this assumption is not simply for tractability. In sec-
tion 6, we provide a justification for this choice, in particular, we focus
on a game with a finite number of bargaining stages (which asymptoti-
cally tends to infinity) and we show that in such a game the equilibrium
strategies are linear.

3 Linear MPE Strategies

In this section, we focus on the CES utility. Since in the model the capital
stock is unchanged (or non-increasing) after a rejection, in a stationary
Markov equilibrium delays cannot be sustained. The intuition is that
when the parameter η is smaller than 1, a player can always invest an
appropriate amount of surplus so that a rejection is unprofitable to the
responder. For the case of η larger than 1 instead, the stationarity of
the MPE strategies allows us to exclude temporary delays (note that
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temporary delays are not costly in our model for η > 1, see note 3).
This is formally proved in the following lemma.

Lemma 1. Delays are not sustainable in a stationary linear MPE.
Proof. In Appendix.

When the equilibrium strategies have a linear form, the value function is
linear as well. Therefore, we write the value function as a linear function
of the state variable with coefficients which are left undetermined, we
then derive the values of the coefficients that make the guess correct.
Since an MPE is characterised by no delays (Lemma 1), then players’
optimisation problem can be written as follows:

φi
k1−ηt

1− η
= max

xi∈[0,1]
ϕi∈[−(1−λ),G]

(xi(G− ϕi)kt)
1−η

1− η
+ αiμi

k1−ηt+1

1− η
(6)

[(1− xi)(G− ϕi)kt)]
1−η

1− η
+ αjφj

k1−ηt+1

1− η
≥ δjφj

k1−ηt

1− η
(7)

μi
k1−ηt

1− η
=
[(1− xj)(G− ϕj)kt)]

1−η

1− η
+ αiφi

k1−ηt+1

1− η
(8)

kt+1 = (1− λ+ ϕi)kt (9)

with i, j = 1, 2 and i 6= j. Let l = G + 1 − λ and bi = [α
η
i (αjl)

1−η]
2

2η−1

with bi ∈ (0, 1) and η 6= 1/2. The following proposition defines the first
type of MPE, which we call ultimatum-like, since a player can extract
all the surplus not invested as he does typically under an ultimatum
procedure.

Proposition 1 If η ∈ (0, 1) but η 6= 1/2 and

δj³
α1−2η+2η

2

j α
2η(1−η)
i

´ 1
2η−1
≤ l

1−η
2η−1 <

Ã
1

αη
iα

1−η
j

! 1
2η−1

(10)

with

δj <

µ
αj

αi

¶η

(11)

there is a unique MPE in which a proposer consumes all the surplus not
invested (xi = 1) and invests a share given by

ϕi = (lbi − (1− λ)) =
¡
l(αη

iα
1−η
j )2

¢ 1
2η−1 − (1− λ) (12)

for i, j = 1, 2 with i 6= j.
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Proof. in Appendix.
In an ultimatum-like MPE a proposer can consume all the surplus

not invested as long as he makes an appropriate proposal over the in-
vestment path (so as to obtain an acceptance). An important feature of
this equilibrium is that patience can make a player worse off.7 Indeed, if
η < 1/2, the share invested by a player decreases when he (or his oppo-
nent) becomes more patient. Moreover, a proposer’s expected payoff is
also lowered by a higher discount factor. Instead, for η in (1/2, 1), the
investment increases with patience. When a player or his opponent be-
comes more patient, his investment increases. As a result, the expected
payoffs of both a proposer and a responder are higher.
It is known that in long-run relationships, when players share an

infinite number of cakes of the same size (see Muthoo, 1995), players
can have extreme forms of bargaining power where proposers consume
all the residual surplus. This is the case when simply∆ ≥ τ (see Muthoo
1995, p. 594). In our framework where parties can make decisions over
the investment level, an ultimatum-like MPE can be sustained when8

δj ≤ αj (lbi)
1−η

i, j = 1, 2 with i 6= j. Therefore, the ultimatum-like MPE can hold not
only when the production stage is relatively quick in comparison to the
length of a round (∆ ≥ τ) but also in the more interesting case in which
this is not true (αi ≤ δi, for any i) as long as the investment is sufficiently
large, that is, lbi ≥ (δj/αj)

1/(1−η). However, at the limit of the interval
∆ that tends to 0, condition (11) cannot hold for both i, j = 1, 2 with
i 6= j.
Assuming that the between-cake discount factor is lower than the

within-cake discount factor (∆ < τ), the equilibrium defined in propo-
sition 1 exists only for a given range of values of l (given by (10)). To
give an idea of how relevant this range can be, let’s consider the case of
symmetric players. Then Proposition 1 holds if

δ ≤ (αl1−η)
1

2η−1 < 1

For instance, if η = 0.3, δi = 0.9, αi = 0.8, condition (10) implies that
l = G+1−λ is in (1.38, 1.46].When the frictions in the bargaining stage
tend to disappear (δ increases), the relevant interval for the parameters
gets smaller and smaller. And, as already mentioned, at the limit for ∆
that tends to 0, proposition 1 does not hold.

7This is in accordance with the results obtained by Houba et al. (2000) and Sorger
(2006).

8Indeed, this condition, together with bi ∈ (0, 1), is equivalent to (10) and (11).
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The next two propositions define the MPE when proposition 1 does
not hold. In particular, in the next proposition we show that strongly
asymmetric demands can be sustained in equilibrium (only one player
is able to extract all the surplus not invested), while in proposition 3,
both players leave a positive share of consumption to the responder.

Proposition 2 For η < 1, assume that the conditions (10) and (11)
do not hold, instead, if there is a solution (ψi, ψj,mj) to the following
system

ψi = 1 +
αiδil

1/ηm
(1−η)/η
j

δiψ
1−η
j − αil1−η(ψj − 1−m

1/η
j )1−η

ψj =(
(αjl

1−η)2(ψi − 1)1−η

(ψiψj)
1−η − (αil1−η)2(ψi − 1)1−η(ψj − 1−m

1/η
j )1−η

+

+
αimjl

1−η

ψ1−ηi − αiδil1−η(ψi − 1)1−η
)1/η + 1 +m

1/η
j (13)

m
(1−η)/η
j

δiψ
1−η
j − αil1−η(ψj − 1−m

1/η
j )1−η

=
1

ψ1−ηi − αiδil1−η(ψi − 1)1−η

with ψi, ψj,mj > 0 and s.t.

δj
αjl

1−η ≤
µ
1− 1

ψi

¶1−η
<

1

l1−ηαiδi
(14)

0 <

Ã
1−

1 +m
1/η
j

ψj

!
<

δi
αil

1−η

then the MPE proposals are the following:

xi=1 and ϕi = G− l

ψi

(15)

xj =
1

1 +m
1/η
j

(16)

ϕj =G− l
1 +m

1/η
j

ψj

(17)

with i, j = 1, 2 and i 6= j.

Proof. in Appendix.
In general, we cannot solve analytically system 13, however, we can

solve it numerically and we found that the solution is unique when it
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exists. Moreover, the MPE in which player i is able to behave as in an
ultimatum can exist for

δj
αj
≤ 1

αiδi

see (14). This implies that such MPE are more common when player i
is sufficiently impatient. Indeed, if both αi and δi tend to 1, the MPE
can still exist but only for δj ≤ αj. For instance, for η = 2/3, αi = 0.8,
δi = 0.9, l = 1.8, there is an MPE for αj = 0.4 = δj (where mj = 0.292,
ψi = 3.675; ψj = 2.252). However, if the within-cake discount factor δj
increases (say to 0.45), then such an MPE does not exist. Generally, a
change in the within-cake discount factor δj may affect the inequality
(14), however, if this still holds, a change in δj will not affect players’
strategies (the system 13 does not depend on δj, the within-cake discount
factor of the weaker player). Indeed, player i will still be able to obtain
a share xi equal to 1, while player j0s proposal is such that player i is
indifferent between accepting and rejecting it.
The most aggressive player (i) not only consumes all the residual

surplus (after investment), but can also obtain a larger payoff both as
a proposer (using the previous example φi = 3.716 > φj = 1.114) and
as a responder (μi = 3.344 > μj = 0.488). Some numerical comparative
statics show that in general in the ultimatum-like MPE, patience makes
players better off (for any η < 1). In particular, if αi increases (say, using
the previous example, to 0.85), then all payoffs increases (φi = 5.225,
φj = 1.138, μi = 4.703 and μj = 0.512), mainly due to an increase
in player 1’s investment (ψi increases to 4.997). Instead, an increase
in the within-cake discount factor δi increases player i’s power only (in
the sense that his payoffs increase) and makes player j worse off (e.g.,
if δi = 0.95, then φi and μi increase to 4.978 and 4.729, respectively
while φj and μj decrease to 0.966 and 0.435, respectively). Finally, an
increase in αj increases player j’s power only but leaves player i’s payoffs
(almost) unaffected (e.g., if αj = 0.45, then φj and μj increase to 1.178
and 0.580, respectively while φj and μj are unchanged). Indeed, player
j is able to consume more for a given state kt (xj increases since the
multiplier decreases to 0.274) by investing a higher share.
Next, we assume that the propositions above do not hold, the follow-

ing proposition defines the MPE when the shares demanded are interior.
Let

Mi =

⎧⎨⎩(mi, ψi)|mi, ψi > 0, 0 < l1−η

Ã
1− (1 +m

1/η
i )

ψi

!1−η
< min

µ
δj
αj

,
1

αi

¶⎫⎬⎭
for i = 1, 2.
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Proposition 3 Assume that proposition 1 and 2 do not hold, instead,
if there is a solution (ψi,mi) ∈Mi to the following system:

gi = l1−η

⎛⎝ αiδim
1−η
η

j

ψ1−ηj δi − αil1−ηg
1−η
η

j

+
αjmi

ψ1−ηj − αiδil1−ηg
1−η
η

j

⎞⎠ (18)

m
1−η
η

j

ψ1−ηj δi − αil1−ηg
1−η
η

j

=
1

ψ1−ηi − αiδil1−ηg
1−η
η

i

(19)

where gi =
³
ψi − (1 +m

1/η
i )
´η

, then the MPE demands (xi, ϕi) are as
follows:

xi=
1

1 +m
1/η
i

(20)

ϕi=G− l(1 +m
1/η
i )

ψi

(21)

while the value of the (undetermined) coefficients are defined below:

φi =
l1−η

ψ1−ηi − αiδil1−ηg
1−η
η

i

and μi =
l1−ηδim

1−η
η

j

ψ1−ηj δi − αil1−ηg
1−η
η

j

(22)

with i, j = 1, 2 with i 6= j.

Proof. in Appendix.
The properties of the equilibrium can be highlighted in the following

remarks and corollaries.9

Remark 1. The most patient party invests more.

Let’s assume that player 2 is more patient than 1 (for instance, α1 = 0.8,
α2 = 0.85, δ1 = 0.9 and δ2 = 0.95 with η = 1/4 and l = 1), then
player 2 consumes less than player 1 (m2 = 0.789 < 1.095 = m1, see
(20)) but invests more (the gross investment is ri = 1 + λ + ϕi and
r1 = 0.4766 < r2 = 0.4787) and his discounted payoffs are larger than
his opponent (μ2 =0.851 > μ1 = 0.483, φ1 =0.537< φ2 = 0.896).

Remark 2. Patience can make players worse off.

We first consider the effects of a change in players’ between-cake dis-
count factors and show the remark above then we study the effects of

9We obtain unique numerical solutions to the system (18) and (19). when it exists.
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a change in the within-cake discount factors and show that the effect
on payoff is positive (patience makes a player better off). Let’s assume
that player 2 is the most patient party, for instance, α1 = 0.7, α2 = 0.8,
δ1 = 0.8 and δ2 = 0.9, with l = 1.1 and η = 2. Since η > 1, then the opti-
mal expected utility of a proposer (responder) is a decreasing function of
the guessed parameters φ (μ). The impatient party obtains less than his
rival (in this example φ1 = 131.9 > 116.8 = φ2 and μ1 = 105.5 > 105.1 =
μ2). However, if player 1 becomes more patient, in particular, α1 in-
creases to 0.72 (note that he is still more impatient than 2), then player
1 is worse off (φ1 increases to 176.8 and μ1 increases to 141.5) while
player 2 is better off (φ2 decreases to 112.3 and μ2 to 101.1).
If the most patient party (player 2 in this example) becomes even

more patient, then not only he is worse off (his payoffs decrease) but his
expected discounted payoffs become lower than his rival’s. For instance,
if player 2’s between-cake discount factor increases to α2 = 0.82 (fixing
α1 = 0.7, δ1 = 0.8 and δ2 = 0.9), then φ1 decreases to 124.37 and μ1
to 99.5, while φ2 increases to 152.1 and μ2 increases to 136.9 (therefore,
φ1 < φ2 and μ1 < μ2). This is due to the fact that while both players
increase their investment shares, player 2’s consumption decreases while
player 1’s increases (for a given kt). Therefore, patience can make a
player worse off.
The effect of an increase in the within-cake discount factor on play-

ers’ payoffs is more straightforward. Indeed, if the within-cake discount
factor δi increases, player i is better off while player j is worse off. For
instance, using the example above (α1 = 0.7, α2 = 0.8, δ1 = 0.8 and
δ2 = 0.9, with l = 1.1 and η = 2) if δ2 increases to 0.92, then player
2’s payoffs decrease (μ2 = 84.5 and φ2 = 91.8) while player 1’s payoffs
increase (μ1 = 120.2 and φ1 = 150.3) and the most patient party obtains
the largest payoffs.

Corollary 1. For η = 1/2, hi = h (i.e., δi = δ, αi = α for i = 1, 2),
if α2l < 1, there is a unique symmetric equilibrium in which the each
player proposes the following division:

x=
1

1 +m2
(23)

ϕ=G− l(1 +m2)

ψ
(24)

where the auxiliary variable ψ and the multiplier m are the following:

ψ =
(1 +m2)(1− δm)2α2l

α2l(1− δm)2 − (δ −m)2
(25)

m =
−(1− δ2)(1 + α2l) +∆

1
2

2δ(1− α2l)
(26)
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with
∆ = (1 + δ4)(1 + α2l)2 + 2δ2(1− α2l)2 − 8α2δ2l

Proof. When η = 1/2 and hi = h, it is straightforward to solve system
(18)-(19).

Corollary 2. For h1 = h2, at the limit for ∆ that tends to 0, the
stationary MPE is socially optimal:

lim
∆→0

x=
1

2
(27)

lim
∆→0

ϕ=(αl)1/η − (1− λ) (28)

Proof. At the limit for∆ that tends to 0, (19) implies that the multiplier
is 1, therefore the share consumed x is 1/2. Moreover, from (18) we
obtain that ψ is 2(1 − αl1−η)−1/η. The latter, together with m = 1 in
(21), implies (28). It can be shown that when players are symmetric,
a social planner, who maximises the sum of players’ discounted payoffs,
would set x = 1/2 and ϕ as in (28).
That is, players with the same rate of time preference consume half

of the residual surplus and invest a non-negative amount of surplus if
sufficiently patient (i.e., α ≥ (1− λ)1/2/l) otherwise players disinvest as
a social planner would efficiently choose to do.10

Remark 3. Bargaining can lead to underinvestment.

Using (25) and (26), we can show that the investment strategy in (24)
is smaller than the investment in (28) when players have some degree
of impatience (i.e., δ < 1, with η = 1/2, and α2l < 1). Only infinitely
patient players behave efficiently.

4 Logarithmic utility

A general result obtained in the previous section is that players with
a CES utility agree on how to share a surplus immediately. Moreover,
when the frictions in bargaining stage get smaller (i.e., ∆ → 0), sym-
metric players invest efficiently and split the residual surplus equally. In
this section, we investigate linear MPE without delays for players with
logarithmic utilities, and show that such equilibria are not as pervasive
as for the case of the general CES per-period utilities. These can exist

10This result is in accordance with Lockwood and Thomas (2002), which shows
that the level of cooperation among players tends to the efficient level in the limit as
players become patient, although their framework is quite different from ours: players
are symmetric, cannot bargain and cannot reverse their actions (while in our model,
parties are allowed to underinvest, ϕ < 0, for instance).
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only under two regimes: either at the steady-state or at the limit for the
interval∆ that tends to zero. Moreover, as for the CES utility, we obtain
that symmetric players invest efficiently in frictionless negotiations.
Suppose that there is a linear MPE with no delays, where player i

demands a share equal to x∗i and invests a share ϕ
∗
i . Let ri = 1−λ+ϕi.

Then the sum of the expected payoff of a proposer in equilibrium is

Vi(kt) =
∞X
s=0

α2si lnx
∗
i (G−ϕ∗i )kt(rirj)s+αi

∞X
s=0

α2si ln(1−x∗j)(G−ϕ∗j)ktrs+1i rsjkt

that is

Vi(kt) =
ln (x∗i (G− ϕ∗i )kt) + αi ln

¡
(1− x∗j)(G− ϕ∗j)ktri

¢
1− α2i

+
α2i ln(rirj)

(1− α2i )(1− αi)

Similarly the optimal expected payoff of a responder in this candidate
equilibrium is

Wi(kt) =
ln
¡
(1− x∗j)(G− ϕ∗j)kt

¢
+ αi ln (x

∗
i (G− ϕ∗i )ktrj)

1− α2i
+

α2i ln(rirj)

(1− α2i )(1− αi)

If such a pair (x∗i , ϕ
∗
i ) exists then it maximise the following Lagrangian:

Li(kt) = max
xi∈[0,1]

ϕi∈[−(1−λ),G]

Vi(kt)−mi(δjVj −Wj)

where mi ≥ 0 is the Kuhn-Tucker multiplier. The first order conditions
of Li(kt) with respect to xi and ϕi are as follows:

x∗i =
1

1 +mi
(29)

ϕ∗i = G− l
a(mi)

a(mi) + b(mi)
(30)

where a(mi) =
1

1−α2i
+ mi

1−α2j
while b(mi) =

αi
(1−α2i )(1−αi)

+
αjmi

(1−α2j )(1−αj)
, with

i, j = 1, 2 and i 6= j. Note that in the case of symmetry (hi = h) the
share invested becomes

ϕ∗ = lα− (1− λ) (31)

The investment plan (31) is consistent with the investment in the ultimatum-
like MPE, (12), for η = 1 and the socially optimal level (see (28), again
for η = 1).
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The first order condition of Li(kt) with respect tomi, is the constraint
Wj(kt) = δjVj(kt), or using (29) and (30):

(1−αiδi)

∙
ln

µ
mj

1 +mj

la(mj)

a(mj) + b(mj)

¶
+

αi

1− αi
ln

µ
lb(mj)

a(mj) + b(mj)

¶¸
+

−(δi−αi)

∙
ln

µ
1

1 +mi

la(mi)

a(mi) + b(mi)

¶
+

αi

1− αi
ln

µ
lb(mi)

a(mi) + b(mi)

¶¸
+

+(1− δi)(1 + αi) ln(kt) = 0 (32)

for i, j = 1, 2 and i 6= j. This is a system in two unknown variables
mi with i = 1, 2. In general, the constraint is binding, otherwise by
the complementary slackness conditions, mi must be zero (and xi = 1),
however an offer where a proposer does not leave any current positive
consumption to a responder is always rejected (since the right-hand side
of (32) is negative or Wj(kt) < δjVj(kt)). This implies that generally
the solution to (32) is a function of the state kt. If the multiplier mi

is time-dependent, then the share consumed x∗i and invested ϕ∗i are are
also time-dependent in contradiction with our assumption (the guessed
parameters would also be wrong since are based on the time-invariant
linear rules of the consumption and investment paths). However, under
certain conditions we can obtain an analytical solution to the problem
as shown below.

Proposition 4 There is a steady-state MPE for hi = h, ∆ = τ and
lα = 1, where players invest only to maintain the same capital stock k0
(ϕi = λ) and demand to consume a share

x∗i = 1−
1

(1− α)lk0
= 1− 1

(l − 1)k0
(33)

with i = 1, 2. Alternatively, at the limit for ∆ → 0, symmetric players
(i.e., hi = h) invest the efficient level ϕ∗ = lα− (1− λ) and consume a
share equal to

x∗ =
1

2
(34)

with i = 1, 2.

Proof. in Appendix.
For the first case considered in this proposition, we obtain an MPE

where players invest more and decrease the share x∗i if they become
more patient (α increases), while for the second case, we obtain that
bargaining can be efficient in a frictionless bargaining game (as in section
3).
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5 Random Proposer Procedure

To establish the robustness of our result we relax the assumption of the
alternating-offer bargaining procedure and assume a random-proposer
procedure. That is, both after a rejection and after an acceptance (and
production), there is a positive (constant) probability that a player be-
comes a proposer. Let pi be the probability that player i becomes a
proposer, with i = 1, 2 and p1 = 1 − p2. We will now show that most
of our qualitative results are robust to this change. First of all, we can
establish the following result.

Remark 4. Delays are not sustainable in a stationary linear MPE.

The proof follow the same argument as the proof of Lemma 1 and it is
therefore omitted. The intuition is that since for the alternating-offer
bargaining procedure the stationary MPE is characterised by immediate
agreement, a fortiori, in an game where there is a positive probabil-
ity that a player will become again the proposer in the next period, a
stationary MPE must be characterised by immediate agreement.
Given the linearity of the MPE strategies, we can assume that the

value function has the same form as the per-period utility function.
Then, a proposer’s recursive problem is as follow:

φik
1−η
t

1− η
= max

xi∈[0,1]
ϕi∈[−(1−λ),G]

(xi(G− ϕi)kt)
1−η

1− η
+ αiβi

k1−ηt+1

1− η
(35)

βi= piφi + (1− pi)μi (36)

μj ≥ δjβj (37)

kt+1= kt(1− λ+ ϕi) (38)

As for the case of the alternating-offer bargaining procedure, ultimatum-
like MPE can be sustainable when parties are sufficiently impatient
and/or asymmetric (see proposition 1 and 2). However, when players
are sufficiently patient and symmetric, they do have some bargaining
power in equilibrium, in the following proposition, we focus on the case
where the indifference conditions are binding. Let ci = 1− (1−pi)δi and

Mi =

(
(mi, ψi)|mi, ψi > 0, 0 < l1−η

µ
1− (1 + (cjmi)

1/η)

ψi

¶1−η
< min

µ
δj
αj

,
1

αi

¶)

for i = 1, 2.
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Proposition 5 There is a linear MPE characterised by the following
proposal by player i :

xi=
1

1 + (cjmi)
1
η

(39)

ϕi=G− l(1 + (cjmi)
1/η)

ψi

(40)

where (ψi,mi) ∈Mi is the solution to the following system11:

ψi=(αiβi + αjβjcjmi)
1/η + 1 + (cjmi)

1/η (41)

(cimj)
1−η
η

ψ1−ηj δi − αil1−ηgj
=

pi

ciψ
1−η
i

Ã
1 +

αil
1−ηgi(cimj)

1−η
η

ψ1−ηj δi − αil1−ηgj

!
(42)

with

μi =
l1−ηδi(cimj)

1−η
η

ψ1−ηj δi − αil1−ηgj
, βi =

pi
ci
φi (43)

φi =
l1−η

ψ1−ηi

Ã
1 +

αil
1−ηgi(cimj)

1−η
η

ψ1−ηj δi − αil1−ηgj

!
with gj = (ψj − 1− (cimj)

1
η )1−η, i, j = 1, 2 and i 6= j.

Proof. We omit the proof12 since the argument is as in the proof of
proposition 3.
The proposition shows that the change in the bargaining procedure from
alternating-offer to random-proposer does not change the nature of the
equilibrium (the structure of the MPE proposal is similar). In the fol-
lowing, we first highlight some of the similarities with the alternating-
offer procedure and then the properties which are instead typical only
under the random-proposer procedure. As in the previous section we
can show that, a more patient player invests more than his rival (e.g.,
let η = 3/2, α1=0.8, δ1=0.95, α2=0.8, δ2=0.99, p1=1/2, l=1.1, then
r1 = 1 + λ + ϕ1 =0.922, while r2 =0.926). Moreover, as shown in the
following corollary, we can re-establish the efficiency of bargaining.

Corollary 3. For h1 = h2, pi = 1/2, η = 1/2, the MPE strategies are
characterised by the following unique solution:

ψ =
(1 +m2)(1− δm)2α2l

α2l(1− δm)2 − (δ −m)2
(44)

11A pair (mi, ψi) in Mi characterises a real and positive MPE proposal. Moreover
the tranversality condition is satisfied. There is a weaker condition for the tranver-
sality condition, that is, αi(pir

1−η
i + pjr

1−η
j ) < 1, where ri is the gross investment

(1 + λ+ ϕi), with i, j = 1, 2 and i 6= j.
12This is available upon request.
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m = 2
−2(1− δ) +∆

1
2

(2− δ)(δ − α2l − δ(1− δ))
(45)

with
∆ = 4[(1− δ3)− 2δ(1− δ)] + (δ2 + α2l)2 − 4α2δl

Therefore, at the limit for ∆ that tends to 0, the MPE strategies are
efficient, that is:

lim
∆→0

x=
1

2
limϕ
∆→0

=(αl)2 − (1− λ)

By comparing the multiplier m in the corollary above with the cor-
responding solution under the alternating-offer procedure (see (26)), we
can show that a player is able to extract a larger share under the random-
proposer procedure (cm is smaller than the multiplier in (26)). It is
intuitive that if there is a probability that a proposer will be again in
power and propose again, then he will be able to extract a larger sur-
plus. Finally, an additional feature of the random-proposer procedure is
highlighted in the following remark.

Remark 5. If player i is more impatient than player j, then he invests
less (for a given kt) but if the probability that player i proposes increases
then player j0s level of investment decreases while player i0s increases.

We first show this result numerically. Let’s assume that player 2 is
more patient than player 1, for instance, α1 = 0.7, α2 = 0.8, δ1 = 0.8
and δ2 = 0.9, with l = 1 and η = 1/2. If the probability of proposing
increases from p1 = 1/2 to 2/3 then the patient party decreases his gross
investment from a share of r2 = 0.630 to 0.572, while the impatient party
increases his investment from r1 = 0.545 to 0.550. The intuition is that
a more patient player always prefers to invest more than his opponent.
However, if his opponent is more likely to make an offer, then it is
more likely that the total share of the surplus consumed increases (since
the less impatient player will reduce the share invested as soon as he
can make an offer), and the high investment made by a patient player
is partially lost. For this reason, when the probability of becoming a
proposer increases for the impatient player, the patient player reduces his
investment plan. On the other hand, the impatient player has to increase
the investment level to compensate for the fact that the investment made
by his opponent is not only lower but also less likely. Additionally,
the incentive to make an acceptable offer gives the impatient player an
additional reason to invest more. Therefore, the incentive to increase
current consumption, typical of an impatient player, is mitigated by his
higher probability to propose in such a dynamic set-up.
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6 An Asymptotic Case

Often the linearity of the strategies is assumed for tractability (see Houba
et al., 2000 and Sorger, 2006). In this section, we provide an additional
reason to limit the analysis to linear strategies. We show that in an
asymptotic game in which the number of bargaining stages n is finite,
but tends to infinity, the equilibrium strategies are linear. To simplify the
analysis we assume that η < 1, the depreciation rate is at its maximum,
λ = 1, and the gross rate G is 1. Moreover, we assume that players have
the same rate of time preference and we focus on symmetric equilibria.
If n is finite the game can be solved backwards. Assume first that

n = 2. At the last stage, players should invest nothing (or disinvest if the
depreciation rate is less than 1) and divide the surplus as in the classic
Rubinsteinian game (Rubinstein, 1982), with CES utilities. Therefore
at the beginning of the game the problem of a proposer, say i, is given
by the Lagrangian function Li :

Li =max
xi ,Ii

[xi(kt − Ii)]
1−η

1− η
+

α

1− η

Ã
δ1/η

1 + δ1/η
Ii

!1−η
+

−λi

Ã
[(1− xi)(kt − Ii)]

1−η

1− η
+

α

1− η

µ
Ii

1 + δ1/η

¶1−η!
+ (46)

+λiδ

Ã
[xj(kt − Ij)]

1−η

1− η
+

α

1− η

µ
Ij

1 + δ1/η

¶1−η!

where λi is the (non-positive) multiplier. The first order conditions imply
that

xi =
1

1 + (−λi)
1
η

(47)

Ii = ϕikt where ϕi =
1

1 +

µ
1+(−λi)

1
η

¶
(1+δ1/η)

1−η
η

α
1
η (δ(1−η)/η−λi)

1
η

(48)

If the acceptance condition is not binding the multiplier λi is zero and
a player consumes the entire surplus not invested and invests a share
equal to

ϕi =
1

1 + 1

α
1
η

³
1+δ1/η

δ1/η

´ 1−η
η

(49)

which is increasing in players’ discount factors. Since the focus is on
symmetric solutions, let λi = λ and ϕi = ϕ. Using the first order
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conditions, the immediate agreement conditions,Ã
[(1− xi)(kt − Ii)]

1−η

1− η
+

α

1− η

µ
Ii

1 + δ1/η

¶1−η!
= δ
[xj(kt − Ij)]

1−η

1− η
+

+δ
α

1− η

µ
Ij

1 + δ1/η

¶1−η
can be written as

(1 + δ1/η)
1−η
η

³
(−λ)

1−η
η − δ

´
+ α

1
η (1− δ)(δ(1−η)/η − λ)

1−η
η = 0 (50)

The inequality (−λ)
1−η
η ≥ δ cannot be satisfied, otherwise the right-

hand side of (50) is always positive and therefore by the principle of
complementary slackness, the multiplier λ must be zero and clearly this
is in contradiction with (−λ)

1−η
η ≥ δ > 0. For (−λ)

1−η
η < δ, then (50)

becomes

(1 + δ1/η)
1−η
η

³
δ − (−λ)

1−η
η

´
= α

1
η (1− δ)(δ(1−η)/η − λ)

1−η
η (51)

Remark 6. The investment and consumption levels in equilibrium are
a linear function of the capital stock.
Proof. The first order conditions, (47) and (48), and the indifference
condition, (51), imply that the multiplier, the consumption and invest-
ment shares are independent of the capital stock. By iteration, this can
be proved also for n > 2 (see (58) below).
In the next proposition we derive an algorithm to solve the iteration

process when the number of bargaining stages tends to infinity. To
obtain a simple analytical solution for the multiplier, we will focus on
the case in which η = 1/2.

Proposition 6 When the number of bargaining rounds is n (with n ≥
3), the equilibrium proposal is given by the following shares:

xns=
1

1 + (−λns)
1
η

(52)

ϕns=
ans

ans + bns
(53)

where

ans=
¡
α(c(n−1)s − d(n−1)sλns)

¢ 1
η (54)

bns=1 + (−λns)
1
η (55)

cns=((1− xns)(1− ϕns))
1−η + αϕ1−ηns d(n−1)s (56)

dns=(xns(1− ϕns))
1−η + αϕ1−ηns c(n−1)s (57)
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and the multiplier λns is the solution of the following equation

(−λns)
1−η
η − δ

b1−ηns

(1− ϕns)
1−η + αϕ1−ηns (d(n−1)s − c(n−1)s) = 0 (58)

with

c2s=((1− x2s)(1− ϕ2s))
1−η + α

µ
1

1 + δ1/η
ϕ2s

¶1−η
(59)

d2s=(x2s(1− ϕ2s))
1−η + α

Ã
δ1/η

1 + δ1/η
ϕ2s

!1−η
(60)

Moreover, for η = 1/2, at the limit of ∆ that tends to zero, players invest
and consume efficiently.

Proof. in Appendix.
In the finite-horizon game, we did not impose that the share in-

vested and consumed are time-invariant, however, when we consider the
limit for n that tends to infinity we obtain a unique solution x and ϕ.
Moreover, such solution coincide with the MPE shares obtained in the
previous section.

7 Final Remarks

We showed that in a dynamic set-up, under an alternating bargaining
procedure there is a unique stationary linear MPE. Under certain condi-
tions, proposers have all the bargaining power and consume all the sur-
plus not invested. Interestingly, this type of MPE can also be sustained
in a game with little frictions, as long as there is at least a party who
is sufficiently impatient. Often in non-cooperative games of bargaining
to simplify parties are assumed to be symmetric, however asymmetries
among players are pervasive in many negotiations and our analysis also
demonstrates that asymmetries matter.
We also established that bargaining can lead to underinvestment.

Only symmetric players who are infinitely patient bargain efficiently
(both under random-proposer and alternating-offer bargaining proce-
dures). However, if parties could commit to share all the surplus not
invested equally, then, even if impatient, players with similar rates of
time preference can behave efficiently (regardless of the bargaining pro-
cedure adopted). Suppose for instance that before entering a business
two partners could sign a contract that specifies that each will obtain
half of the profits not re-invested. Then, since the players have the same
rate of time preference and consume the same share of the residual sur-
plus, it is intuitive that even if they can make a proposal with different

22



probabilities, their investment plan is unaffected by these probabilities.
An implication of this result for policy makers is therefore to guarantee
an equal division of mutual gains to encourage efficient investment paths
for impatient players.

APPENDIX

Proof of Lemma 113

The proof first focuses on the case in which η < 1 and then on the case
of η > 1.
Consider any subgame where player i proposes first. Let kt be the state
variable and Vi(kt) (Wj(kt)), the optimal expected discounted utility to
player i (j), with i, j = 1, 2 and i 6= j.
a) The case of η < 1. The optimal expected utilities Vi(kt) (Wi(kt))
are lower bounded (for instance, in the case of disagreement) and can
be upper bounded:

Vi(kt),Wi(kt) ∈

⎡⎣0, k1−ηt

1− η

l1−η³
1− (αil1−η)

1/η
´η
⎤⎦

if αil
1−η < 1. The upper bound has been derived by assuming that the

investment and consumption paths are to maximise player i’ payoff as in
a standard growth model with no bargaining. Using the value function
iteration method it can be shown that the per-period consumption for
player i is given by

l
³
1−

¡
αil

1−η¢1/η´ kt
and all the surplus not consumed by player i is invested. The condition
αil

1−η < 1 must hold to satisfy the transversality condition.
Let’s now focus on the case in which the strategies are linear. Then

if player j accepts a proposal (xi, ϕi) he gets

[(1− xi)(G− ϕi)kt)]
1−η

1− η
+ αjVj(kt+1)

while if he rejects it he obtains δjVj(kt). Therefore, the proposal is ac-
cepted if and only if

[(1− xi)(G− ϕi)kt]
1−η

1− η
≥ δjVj(kt)− αjVj(kt+1) (61)

13The proof generalises the arguments in Muthoo (1995) to the case of dynamic
accumulation and CES per-period utility.
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If the RHS of (61) is non-positive for i, j = 1, 2 and i 6= j, player i
can consume all the surplus not invested (xi = 1) without facing a
rejection. Instead, if the RHS of (61) is positive, there are two cases.
A proposer could prefer either to make an acceptable offer or to make
an unacceptable one. In the former, a proposer must ask for a share xi
strictly smaller than 1, although he would be better off in asking for a
share as large as possible so as to obtain an acceptance. Then, the two
cases can be represented as follows. Either the proposal (xi, ϕi) is such
that the following holds

[(1− xi)(G− ϕi)]
1−η k

1−η
t

1− η
= δjVj(kt)− αjVj(kt+1) (62)

and this is the case when

[xi(G− ϕi)]
1−η k

1−η
t

1− η
+ αiWi(kt+1) ≥ δiWi(kt)

or the proposal is such that

[(1− xi)(G− ϕi)]
1−η k

1−η
t

1− η
< δjVj(kt)− αjVj(kt+1) (63)

and this is the case when

[xi(G− ϕi)]
1−η k

1−η
t

1− η
+ αiWi(kt+1) < δiWi(kt) (64)

We now show that (62) must hold. Suppose, by contradiction, that
it does not, then there are 2 cases. First, assume that (63) holds for
both players. Then, there is no acceptable offer when the state is kt
(therefore, the state kt+1 is never reached) and Vj(kt) = Vj(kt+1) =
Wi(kt) =Wi(kt+1) = 0 for any i, j = 1, 2, which lead to a contradiction.
Assume that (63) holds only for one player, without loss of generality,
say 1. Then, player 1 makes an unacceptable offer, that is, (64) holds
for i = 1 and j = 2 while player 2 makes an acceptable offer, that
is (62) holds for i = 2 and j = 1. As a result, V1(kt) = δ1W1(kt),
W2(kt) = δ2V2(kt),

V2(kt)= (x2(G− ϕ2))
1−η k

1−η
t

1− η
+ α2W2(kt+1)

W1(kt)= [(1− x2)(G− ϕ2)]
1−η k

1−η
t

1− η
+ α1V1(kt+1)

The latter is also equivalent to W1(kt) = δ1V1(kt). Then it must be
W1(kt) = 0 = V1(kt) and therefore there is a contradiction. In conclu-
sion, for any state kt, a proposal (xi, ϕi) is part of an MPE if immediately
accepted.
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b) The case of η > 1. In this case the optimal expected values Vi(kt)
and Wi(kt) assume negative values and are not lower bound. Indeed, in
case of disagreement Vi(kt) = Wi(kt) = −∞ for any i = 1, 2. When the
state variable is kt, player j accepts a proposal (xi, ϕi) if and only if

− 1

(η − 1)[(1− xi)(G− ϕi)kt]
η−1 ≥ δjVj(kt)− αjVj(kt+1) (65)

When the RHS of this inequality is negative (δjVj(kt) < αjVj(kt+1)),
there are two cases: either player i prefers to make an acceptable offer
or not. This is as for the case of η < 1 (and a positive RHS) and since
the proof follows a similar argument we omit it (the only differences are
thatWi(kt) and Vi(kt) are negative numbers and in case of disagreement
are equal to −∞ rather than 0).
When the RHS of (65) is non-negative, there is no offer (xi, ϕi) which

player j can accept. Again there are two cases: either this holds for both
players or only for one player. In the former, no offer is ever accepted,
and therefore Vj(kt) = Wj(kt) = −∞ but if player j rejects an offer,
then it must be that Wj(kt) < δjVj(kt) and therefore a contradiction.
In the latter, without loss of generality, assume that for the state kt,
player 2 could make an acceptable offer (i.e., RHS of (65) is negative for
j = 1), while player 1’s offer is rejected (i.e., RHS of (65) is non-negative
for j = 2). In this scenario, V1(kt) = δ1W1(kt), W2(kt) = δ2V2(kt),
W1(kt) = δ1V1(kt) and

V2(kt) = −
1

η − 1
1

[x2(G− ϕ2)kt]
η−1 + α2W2(kt+1)

This implies that V1(kt) = W1(kt) = −∞. Then it must be that player
1 accepts x2 = 1 when the state variable is kt (note that δ1V1(kt) <
α1V1(kt+1)). However, the condition δ1V1(kt) = −∞ < α1V1(kt+1) im-
plies that a demand of x2 = 1 could not be accepted for kt+j for any
j = 1, 2...(because otherwise V1(kt+1) = −∞, leading to a contradic-
tion). The stationarity of the MPE requires that player 2 still demand
x2 = 1 at kt+j but this must be rejected. Using the arguments above we
can show that there is a contradiction. Indeed, if player 1’s proposal is
still unacceptable then any proposal is always rejected and therefore we
have a contradiction. If player 1’s proposal becomes acceptable, we can
repeat the same arguments as for the case in which only a player can
obtain an acceptable offer, with player i replaced by j (with i, j = 1, 2
and i 6= j). Then, x1 must be equal to 1 but this proposal cannot be
accepted for more than one bargaining stage, therefore a contradiction.
To conclude also for the case of η > 1, for any state kt, a proposal (xi, ϕi)
is part of an MPE if immediately accepted.
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Proof of Proposition 1
We show that each proposer can consume the entire residual surplus and
his investment level will make such offer acceptable to the responder
(indeed, the responder is strictly better off in accepting rather than
rejecting the offer). The first order condition of the Bellman equation
(6) with respect of ϕi implies that

ϕi =
(αiμi)

1/ηG− (1− λ)

(αiμi)
1/η + 1

(66)

while the first order condition with respect to xi implies that the share
demanded should be as high as possible. We now input the first order
condition in the Bellman equation (6) and after simplifying we obtain
that φi = ψη

i l
1−η with ψi = 1+(αiμi)

1/η. The rate of investment (66) can
now be written as ϕi = G − l

ψi
. Consequently, the unknown coefficient

related to the responder’s payoff is

μj ≡ αjφj(1− λ+ ϕi)
1−η = αjφjl

1−η
µ
1− 1

ψi

¶1−η
since η < 1. This and the definition of ψi, that is (ψi − 1)η = αiμi,
implies the following system:

α2j l
2(1−η)

µ
ψi − 1
ψi

¶1−η
=

µ
ψj − 1
ψj

¶η

For14 η 6= 1/2, there is a unique solution given by

ψi =
1

1− bi

with bi ∈ (0, 1). This defines an acceptable offer if the responder is better
off in accepting rather than rejecting the offer:

αjφjl
1−η
µ
1− 1

ψi

¶1−η
≥ δjφj

that is, αj(lbi)
1−η ≥ δj for i, j = 1, 2 with i 6= j. The latter, together

with bi ∈ (0, 1), implies the conditions set in (10) and (11).
14For η = 1/2 the solution is given by ψi = 1 for any i. Therefore the ultimatum-

like MPE cannot be sustained since no responder would accept a proposal where
capital is fully disinvested and no surplus is offered (i.e., ϕi = −(1− λ), xi = 1)
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Proof of Proposition 2
The proof consists in constructing a set of strategies in which player i0s
demand is xi = 1 while player j0s is xj < 1. Then we show under what
conditions these strategies can be sustained as an MPE.
The Bellman equations are given by (6) with xi = 1 for player i and

with xj < 1 for player j. Therefore, the constraint of the acceptance
condition (7) is not binding for player j (so that xi = 1), while it must
be binding for player i. Therefore, player j’s Lagrangian is as follows:

Lj (kt) = max
xj∈[0,1]

ϕj∈[−(1−λ),G]

Vj(kt)−mj(δiVi −Wi) (67)

where mj is the (non-negative) Kuhn-Tucker multiplier. We focus on
mj > 0, otherwise proposition 1 must hold. The first order conditions of
the lagrangian Lj (kt) with respect to xj and ϕj can be written as (16)
and (17) respectively, with

ψj = (αjμj +mjαiφi)
1/η + 1 +m

1/η
j (68)

Similarly, the first order conditions for the Bellman (6), in which the
constraint is not binding can be written as (16) and (17) where the
multiplier is 0, that is (15), where

ψi = 1 + (αiμi)
1/η (69)

We input the first order conditions in the Lagrangian Lj (kt) and the
Bellman equation Vi(kt) and after some manipulations we obtain

φi =

µ
l

ψi

¶1−η
(1 + αiμi (ψi − 1)1−η)

μi =

µ
l

ψj

¶1−η µ
m
(1−η)/η
j + αiφi

³
ψj − 1−m

1/η
j

´1−η¶
φj =

µ
l

ψj

¶1−η
(1 + αjμj

³
ψj − 1−m

1/η
j

´1−η
)

μj =

µ
l

ψi

¶1−η ¡
αjφj (ψi − 1)1−η

¢
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Using the first order condition of the Lagrangian Lj (kt) with respect to
mj (i.e., μi = δiφi), the system can be re-written as a function of the
auxiliary variables ψ1 and ψ2 :

φi =
l1−η

ψ1−ηi − αiδil1−η (ψi − 1)1−η

μi =
m
(1−η)/η
j δil

1−η

ψ1−ηj δi − αil1−η
³
ψj − 1−m

1/η
j

´1−η
φj =

l1−ηψ1−ηi

(ψiψj)
1−η − (αjl1−η)

2
³
ψj − 1−m

1/η
j

´1−η
(ψi − 1)1−η

μj =
αjl

2(1−η) (ψi − 1)1−η

(ψiψj)
1−η − (αjl1−η)

2
³
ψj − 1−m

1/η
j

´1−η
(ψi − 1)1−η

It must be that μj ≥ δjφj and μz, φz ≥ 0 with z = 1, 2. Such inequalities
are equivalent to the constraints in the proposition. Moreover, given the
definition of the auxiliary variables (68) and (69) and the indifference
condition μi = δiφi, we can derive the system in the proposition. A
solution to the system, (ψi, ψj,mj), satisfying the constraints above,
uniquely defines the MPE strategies and payoffs. The conditions (10)
and (11) cannot hold. Suppose by contradiction that (10) and (11) held,
then proposer j would not optimise by leaving a positive consumption
to player i. He could have consumed all the surplus not invested without
facing any rejection.

Proof of Proposition 3
The Lagrangian for the constraint problem in (6) is as follows:

Li(kt) = max
xi∈[0,1]

ϕi∈[−(1−λ),G]

Vi(kt)−mi(δjVj −Wj) (70)

where mi is the (non-negative) Kuhn-Tucker multiplier, with i, j = 1, 2
and i 6= j. The first order condition of (70) with respect of ϕi is as
follows:

ϕi =
(αiμi +miαjφj)

1/ηG− (1 +m
1/η
i )(1− λ)

(αiμi +miαjφj)
1/η + 1 +m

1/η
i

(71)

while the first order condition with respect to xi is (20). By the comple-
mentary slackness condition, if the constraint Wj ≥ δjVj is not binding,
the multiplier mi is zero and the share ϕi in (71), coincides with (66).
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The first order condition with respect of the multiplier implies Wj =
δjVj. Using (71), the Bellman equation can be re-written as

φi = l1−η
1 + αiμigi

(1−η)/η

ψ1−ηi

(72)

where gi = αiμi +miαjφj and ψi = g
1/η
i + 1 +m

1/η
i as in (68) while the

coefficient related to the responder is

μj = l1−η
m

1−η
η

i + αjφjg
(1−η)/η
i

ψ1−ηi

Using the constraint μj=δjφj, the undetermined coefficients μj,φj can be
written as in (22). This implies that, the indifference condition μj=δjφj
can be written as in (19), while from the definition for the auxiliary
variable, that is,

ψi = (αiμi +miαjφj)
1/η + 1 +m

1/η
i

we obtain (18). Therefore, a solution (ψi,mi) to system (19) and (18)
defines the undetermined coefficients, μi,φi in (22), the share consumed
(20) and invested (21). Moreover, the solution is (ψi,mi) must belong
to Mi to obtain a positive equilibrium (in which the undetermined coef-
ficients are real and positive), additionally, the transversality condition
is satisfied. Finally, it must be that proposition 1 and 2 do not hold,
otherwise, at least a multiplier mi with i = 1,2 must be zero.

Proof of Proposition 4
First, when lαi = 1, then kt+1 = kt, and the system (32) is only affected
by the initial capital stock k0, which is a constant. Assuming that hi = h,
∆ = τ and lα = 1, then (32) becomes:

(1− α2)

µ
ln(k0) + ln

µ
ml

1 +m
(1− α)

¶
+

α

1− α
ln (lα)

¶
= 0 (73)

This implies that there is a symmetric solution for

m = (k0l(1− α)− 1)−1

Therefore, using (29), we obtain (33).
For the second part of the proposition, we consider the limit for ∆

that tends to 0. Then, the indifference conditions in (32) become

(1− α) ln(m) = 0
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or m = 1, from which we obtain (34).

Proof of Proposition 6
To solve (51), let η = 1/2. Then, the multiplier is:

λ = −δ[(1 + δ2)− α2(1− δ)]

(1 + δ2) + α2(1− δ)

Moreover, at the limit for ∆ that tends to 0, the multiplier λ tends to -1
and therefore parties share equally the surplus not invested and invest
a share equal to

ϕ =
α2

1 + α2

We add a subscript 2s to ϕ and x to indicate the solution related to the
game for n = 2. Let j be the first mover at t = 0 when n = 3. Then the
problem is

max
xj ,Ij

[xj(Gk0 − Ij)]
1−η

1− η
+

α

1− η
I1−ηj c2s

where c2s is defined in (59). The immediate agreement condition implies
that the expression below must be zero:

[(1− xj)(k0 − Ij)]
1−η

1− η
+

α

1− η
I1−ηj d2s−δ

µ
[xj(k0 − Ii)]

1−η

1− η
+

α

1− η
I1−ηj c2s

¶
where d2s is defined in (60). Then the first order condition implies that
xj and Ij have the same structure as in (47) and (48) where the multiplier
now is referred to as λ3s and ϕ3s, a3s and b3s are as in (53)-(57) with
n = 3.
For η = 1/2 and at the limit for δ that tends to 1 it can be shown that

−λ3s tends to 1 and therefore x3s tends to 1/2 while the share invested
tend to

lϕ3s =
α2

1 + 2α2

Similarly, for a game with n bargaining stages (with n ≥ 3) xj and Ij
have the same structure as in (47) and (48), that is,

xns=
1

1 + (−λns)
1
η

ϕns=
ans

ans + bns

with ans and b3s as in (54)-(57). Then, the indifference condition can
be written as in (58). Condition (58) is an equation in one unknown,
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the multiplier λns. A solution to (58) defines the solution to (xns, ϕns).
At this stage we can solve the problem numerically. We obtain that for
η = 1/2 with δ = 0.9, α = 0.8 the share invested is 0.62 and a proposer
obtains a share equal to 0.63.15 When patience increases, for instance,
δ = 0.99 and α = 0.9, the share invested increases to 0.81, and a proposer
obtains a share equal to 0.52. Finally for δ = 0.9999 and α = 0.9, the
share consumed decreases to 0.5 and the share invested increases to 0.81.
Since the social planner would set x = 1/2 and ϕ = (αl)2 − (1 − λ) =
0.81, we can conclude that at the limit for δ → 1, parties invest and
consume efficiently.
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