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Abstract

This paper explores whether speculative activity can, in practice, generate the ARCH-
type behavior found in financial time series. Specifically, G7 equity market indices are
examined for evidence of a dynamic whereby speculative interest is self-sustaining – that
is, markets can become “hot”. A straightforward model, taken from Faruqee and Redding
[9], generates some testable implications of the idea. Tests of the model on the data show
that not only does the model offer an explanation for volatility clustering, but also can be
considered a statistical improvement on standard GARCH representations.

JEL Classifications: G12, F30, G15

1 Introduction

Recent years have seen crises in Asian and other developing markets, as well as what appears as

of this writing to be a bursting bubble in NASDAQ shares on the US market. Such events have

increased interest in understanding not only the phenomenon of the volatility of asset prices,

but also the importance of speculative dynamics in determining the fluctuations of asset prices.

This paper presents an empirical argument that the two questions are importantly related.

Following on a model from Faruqee and Redding [9], we look to test the hypothesis that con-

ditional volatility patterns can be understood from a microfoundation of speculative dynamics.

We then ask whether this provides a better description of market behavior than a straightfor-

ward GARCH specification.

The empirical strategy addresses the above question via a Monte Carlo technique. A model

is presented which describes speculative dynamics in a way which straightforwardly indicates
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the sort of volatility clustering found in GARCH specifications. Monte Carlos are then used to

compare G7 equity price behavior with random walks. These random walks are calibrated to

each of the G7 markets, and the speculative dynamics model fits the actual data better than

the GARCH random walks. In this way, we suggest that our speculative dynamics model offers

an interpretation of volatility in the financial markets which not only incorporates the GARCH

specification but also improves on it.

The outline of the paper is straightforward. Section two reviews the model from Faruqee

and Redding [9]. Section three then presents the empirical strategy, and results for the equity

markets are given in section four. Section five concludes.

2 Model

2.1 Model Description

The model to be used in this paper seeks to describe speculative dynamics by a simple “hot

markets” characteristic. This characteristic is one whereby markets which are already “hot” –

that is, currently holding a large amount of speculative attention – attract media and public

attention. The innovation to the level of speculative activity in period t + 1 therefore has a

high variance when the absolute level of such activity is high in period t. It might therefore

be thought of as related to the positive-feedback model of DeLong et al [6], except that it is

the variance, rather than the level, of the innovation to speculative interest that is driven by

previous price activity.

The model therefore assumes a self-sustaining nature to speculative interest, and in that way

draws a clear parallel to ARCH-style models, in which the innovation in period t+1 has a high

variance when the absolute value of the innovation is high in period t. An empirical test for our

“hot markets” specification will produce spuriously positive results if the true specification is

ARCH, and vice versa. If, on the other hand, the model presented here is driving volatility, tests
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for ARCH properties will clearly test positive, but the “hot markets” phenomenon should be

present to a greater degree in the actual price time series than it is in calibrated random walks

generated to have ARCH properties. The first part of this implication – that financial markets

have ARCH statistica properties – has been thoroughly verified in the existing literature. We

therefore focus on the second part – looking to see whether the hot markets phenomenon is

more important in actual data than in (G)ARCH random walks.

2.2 Model Specification

This section outlines a model of the behavior described above. The model is of the market for

a financial asset, and can be found in more detail in Faruqee and Redding [9]. The infintely

divisible asset exists in unit supply and is a claim on a (known) discrete cash flow stream {Ct},

which in the present context we would likely take to be dividend payments.

Speculative interest in the model is represented by uninformed noise traders. Their net

demand may be negative and is perfectly inelastic. There are informed but risk averse “smart

money” investors who act competitively and will be willing to accommodate this net demand

for a positive expected return.

The “hot markets” phenomenon is represented by taking the noise trader demand Nt (shown

in currency terms) to be mean-reverting but with a zero-mean innovation whose variance is

increasing in the absolute level of Nt−1:

Nt = αNt−1 + δt|Nt−1| (1)

where 0 < α < 1 and δt is normally distributed with zero mean and variance σ2
δ . This represen-

tation will generate ARCH-type activity since a large shock to speculative activity in period t

will tend to produce a high value of Nt and thus cause a large shock to speculative activity in

period t + 1.
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The aggregate demand for stock (in shares) of “smart money” investors depends only on

the expected return. For simplicity, it is taken to be linear in this return, as in Shiller [14]:

St =
(EtRt − ρ)

ϕ
(2)

where ρ can be interpreted as a normal rate of return (the shadow cost of capital to the smart

money traders) and ϕ a measure1 of the risk aversion of the smart money2.

Expected return is, as usual, this period’s cash flow plus the expected capital gain:

EtRt =
Ct+1 + EtPt+1 − Pt

Pt
(3)

Since the asset exists in unit supply, the equilibrium condition that demand adds up to one unit

is given by:

1 = St +
Nt

Pt
(4)

There are, of course, an infinite number of solutions to the time series Pt characterized by

bubbles, but imposing the requirement that the present discounted value of Pt has an upper

bound yields (after some algebra) the unique solution:

Pt =
∞∑

i=0

Ct+i+1 + ϕEtNt+i

(1 + ρ+ ϕ)i+1
(5)

This price can be usefully decomposed into a “fundamental value” Vt representing the dis-

counted value of the cash flow and a residual term reflecting the price distortions caused by

noise trading:

Pt =
∞∑

i=0

Ct+i+1

(1 + ρ+ ϕ)i+1
+ ϕ

∞∑

i=0

EtNt+i

(1 + ρ+ ϕ)i+1
(6)

1The linear response of demand to expected return is a well-known property of constant absolute risk aversion
combined with normally distributed wealth. However, in this case, ϕ is not either of the standard Arrow-Pratt
measures of risk aversion, since wealth is not normally distributed due to the “hot markets” effect.

2To traders with finite horizons, the noise traders create price risk even if the asset has no fundamental risk.
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Computing expectations of Nt+i using (1), we can rewrite (6) as:

Pt = Vt +
ϕNt

(1 + ρ+ ϕ − α)
(7)

Put another way, the deviation of price can be seen as a linear function of the level of noise

trading:

(Pt − Vt) = Nt
ϕ

1 + ρ+ ϕ − α
(8)

where as would be expected, the price effects of a given level of noise trading Nt are greater the

more persistent noise trading is (α) and the more reluctant smart money is (ϕ) to accommodate

the noise demand.

Computing the variance of Pt+1 using equation (7) and then using (8) shows the empirical

implication that we wish to test:

V artPt+1 =
1 + ρ+ ϕ − α

ϕ
σ2

δ (Pt − Vt)2 (9)

This shows that a large (in absolute value) deviation from fundamentals in one period will cause

greater volatility going forward.

3 Empirical Methods

3.1 Data Description

We will test the above empirical implication using weekly equity index time series. The Morgan

Staley Capital Indices were collected for each Friday close from 1980 through 1998, in domestic

currencies for each of the G7 countries (Canada, France, (the Federal Republic of) Germany,

Italy, Japan, the United Kingdom, and the United States). In each case, logarithms have been

taken of the nominal exchange rate series.
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3.2 Two Empirical Challenges

Equation (9) predicts that a large deviation from fundamentals will cause an increase in volatil-

ity. There are therefore two empirical challenges to address. First, the concept of “fundamental

value” must be empirically estimated, and second, a working definition of “volatility” must be

formulated.

We have chosen to estimate fundamental value by the means of statistical filters. The likely

alternative – using a macroeconomic model, perhaps in a VAR context – would be problematic

at reasonably high frequencies. Further, it raises concerns about the joint test of two economic

hypotheses – the macroeconomic model and the “hot markets” hypothesis. Robustness of the

empirical technique is assessed by applying a second filter to the data and comparing results.

To estimate fundamentals, we have first used a Hodrick-Prescott [13] filter, and also used a

low-pass filter as suggested by Baxter and King [1], and the modification to this filter suggested

by Woitek [15]. The results shown have a the Hodrick-Prescott smoothing parameter λ set to

57,600, and the Baxter-King filter threshhold set to 26 weeks. However, robustness tests on

each of these parameters (not shown) indicates that these parameters can be altered without

affecting the qualitative results.

The second challenge (estimating volatility) has been addressed by fitting the data to three

GARCH (conditional heteroskedasticity) models which provide an estimate of the time series

of volatility. The model to be estimated for the innovations to the asset price will be an AR(2)

model with GARCH(p,q) errors. Specifying the time series as st, this implies that the process

is given by:

∆st = a0 + a1∆st−1 + a2∆st−2 + εt (10)

where the variance ht of εt is given by:

ht = c+ p1ht−1 + p2ht−2 + . . . ppht−p + q1ε
2
t−1 + q2ε

2
t−2 + . . .+ qqε

2
t−q (11)
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An ARCH(q) model lacks the lagged variance terms of the GARCH model and can therefore

be thought of as a GARCH(0,q) specification. We have estimated conditional variance using

ARCH(2), ARCH(3), and GARCH(2,3) processes. Naturally, the entire data set is used to

estimate the parameters in equation (11). However, once these parameters have been chosen,

the fitted variance for each period depends only on lagged disturbance realizations. The present

model predicts that deviations from fundamentals impact future volatility. This effect therefore

will not appear fully in the ARCH and GARCH specifications for several periods. A lag of 4

periods has been chosen to test whether the deviation (Pt−4−Vt−4) (which will be squared in the

estimation to fit equation (9) and eliminate the sign) influences volatility. Shorter lags than this

actually improve the results, but this is somewhat spurious – with an ARCH(3) specification a

shock in one period automatically increases measured volatility for the next three periods, so

if the lag is three or less, even i.i.d. white noise would provide some apparent support for the

“hot markets” phenomenon.

3.3 Monte Carlo Estimation

As described above, we will seek to determine whether a large deviation from fundamentals

causes a subsequent increase in volatility. This has the potential to provide strong support for

the hot markets interpretation of conditional volatility, but it must be shown that the tests

we perform would not spuriously produce the same results given white noise innovations to

financial asset prices.

In particular, as described above, if asset prices are inherently GARCH for some reason

other than the present hypothesis, we will still likely find that a large deviation from measured

fundamentals in one period appears to cause a high volatility a few periods forward. To con-

trol for this possibility, we run Monte Carlo simulations whereby the GARCH parameters are

estimated from the actual data, and these parameters are used to generate calibrated GARCH

random walks. By performing the same analysis that was done with the actual data on these
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random walks, we can discover whether (as the hypothesis requires) the “hot markets” phe-

nomenon of deviations from fundamentals increasing volatility is a more prominent feature of

the actual data than it is of the random walks. This will be done, as equation (9) dictates,

by regressing measured volatility on the (lagged) square of deviations from fundamentals. The

resulting coefficient β should be significantly positive if the model is correct. Further, we would

look for the estimated β from looking at actual financial market data to be greater than the

mean value βMC generated by running regressions on calibrated random walks.

4 Empirical Results

As stated above, the goal is to test equation (9) by regressing variance on lagged deviations

from fundamentals. To show robustness, differing GARCH specifications for fitted variance and

differing filter specifications for fundamentals are used. In each case, the results are compared

with the results of a Monte Carlo simulation with 1,000 repetitions run to generate a mean

value βMC against which the regression coefficient from the actual data can be compared.

The first conditional variance specification, ARCH(2), has results presented in Table 1.

The top section of this table shows the Hodrick-Prescott results. The Hodrick-Prescott filter

separates the series into a permanent and transitory component, and we therefore use this

transitory component as a measure of the deviation from fundamentals. As (9) requires, this

deviation is then squared before being used as an independent variable in a regression of fitted

variance. The fitted variance is generated by fitting the innovations of each series to an ARCH(2)

process, which generates ARCH parameters q1 and q2 as in equation (11). These parameters are

shown in the first two rows of Table 1 and can be used to generate a fitted conditional variance

series as required. To eliminate serial correlation, twelve lagged values of the fitted conditional

variance are included in the regression but to save space the coefficients are not reported. The

regression coefficent β on the deviation from fundamentals is then shown for each country. In

each case it can be seen that the coefficient is significantly positive at the 1% level.
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Monte Carlos are then run to test an alternative, necessarily imprecise hypothesis: that

some other force is generating ARCH properties in the data, which then can provide spurious

support for our test of equation (9). To control for this hypothesis, the random walks have been

generated with the same ARCH parameters found for the actual data and then each random

walk is subjected to the same treatment as the actual data. The mean coefficient on deviation

from “fundamentals” in these random walks is presented in Table 1 as βMC . As the Table

shows, in each case the evidence for hot markets is greater than what would be expected from

simple ARCH data, and in five of the seven cases this is significant at the 1% level.

The next two panels of Table 1 re-examine the ARCH(2) specification where a Baxter-King

low-pass filter. Dynamics having a frequency higher than 26 weeks are separated from those

having a lower frequency, toa gain enable the asset price series to be separated into its transitory

and fundamental components.

Again, the data provides coefficients that are consistently significantly greater than zero,

generally at well above the 1% level and always at least the 5% level. When testing against the

Monte Carlo random walks, five of the seven countries still show significantly (at 1%) stronger

hot markets effects than ARCH alone would suggest, although the case of Japan is somewhat

problematic, having a very statistically insignificant difference between the β and βMC . These

results are largely repeated when Woitek’s modifications to the Baxter-King filter are included.

Tables 2 and 3 test the robustness of the above results by using ARCH(3) and GARCH(2,3)

specifications to provide estimates for conditional volatility. The results are qualitatively similar

to the ARCH(2) case, and perhaps even more supportive of the model than the results in Table

1. For each of the filters and for each of the seven countries, the data generates a value of β

which is significantly positive at the 0.1% level of significance. Further, again for each of the

filters and each of the G7 countries, the β generated from the data is greater than the βMC

which would result from straightforward (G)ARCH behavior. For each filter used, six of the

seven countries show this difference as significant at the 5% level, and more often than not at
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the 1% level.

5 Conclusion

This paper has further evaluated the “hot markets” hypothesis introduced in Faruqee and

Redding [9] – that speculative activity is self-sustaining because it draws attention of other

speculators to the market. This method of describing speculative activity offers an opportunity

to provide an economic interpretation for the conditional volatility patterns observed in financial

markets.

Such an economic interpretation requires empirical testing, of course, and while Faruqee

and Redding [9] tested this hypothesis on foreign exchange data, the present paper has shown

that the results are robust to equity index data in the G7 countries. Indeed, a comparison of

the statistical significance of the results between the two papers suggests that the model fits

equity price data even better than it fits exchange rate data. This is consistent with an idea

that speculative activity is more important for share prices than it is for foreign exchange where

trade flows may have a moderating influence.
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ARCH(2) Parameters
Canada Germany France Italy Japan Britain USA

Q1 0.2151 0.1148 0.0893 0.1992 0.1751 0.2454 0.1742
Q2 0.2031 0.3187 0.2309 0.1345 0.1280 0.0229 0.1538

Hodrick-Prescott Filter
Canada Germany France Italy Japan Britain USA

β 0.0142 0.0132 0.0093 0.0090 0.0059 0.0499 0.0175
(0.0023) (0.0019) (0.0028) (0.0020) (0.0019) (0.0048) (0.0020)

p(β = 0) 0.000 0.000 0.001 0.0000 0.002 0.000 0.000
βMC 0.0051 0.0074 0.0044 0.0035 0.0032 0.0042 0.0035

p(β = βMC) 0.000 0.002 0.080 0.006 0.162 0.000 0.000
Baxter-King Filter

Canada Germany France Italy Japan Britain USA
β 0.0649 0.0572 0.0378 0.0376 0.0124 0.2338 0.0657

(0.0081) (0.0068) (0.0098) (0.0063) (0.0057) (0.0142) (0.0059)
p(β = 0) 0.000 0.000 0.000 0.000 0.030 0.000 0.000

βMC 0.0190 0.0277 0.0187 0.0145 0.0136 0.0180 0.0142
p(β = βMC) 0.000 0.000 0.051 0.000 0.840 0.000 0.000

Baxter-King-Woitek Filter
Canada Germany France Italy Japan Britain USA

β 0.0687 0.0696 0.0381 0.0282 0.0125 0.2480 0.0693
(0.0085) (0.0072) (0.0104) (0.0066) (0.0060) (0.0149) (0.0062

p(β = 0) 0.000 0.000 0.000 0.000 0.037 0.000 0.000
βMC 0.0197 0.0389 0.0196 0.0151 0.0142 0.0189 0.0148

p(β = βMC) 0.000 0.000 0.075 0.046 0.783 0.000 0.000

Table 1: ARCH(2) Results
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ARCH(3) Parameters
Canada Germany France Italy Japan Britain USA

Q1 0.2214 0.1065 0.1063 0.1738 0.1437 0.2473 0.1656
Q2 0.1831 0.3068 0.1620 0.0713 0.0505 0.0221 0.1177
Q3 0.1342 0.0880 0.2063 0.2345 0.2233 0.0604 0.0753

Hodrick-Prescott Filter
Canada Germany France Italy Japan Britain USA

β 0.0125 0.0113 0.0094 0.0148 0.0108 0.0502 0.0162
(0.0023) (0.0016) (0.0026) (0.0023) (0.0024) (0.0048) (0.0019)

p(β = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
βMC 0.0054 0.0069 0.0046 0.0052 0.0046 0.0044 0.0031

p(β = βMC) 0.002 0.007 0.062 0.000 0.012 0.000 0.000
Baxter-King Filter

Canada Germany France Italy Japan Britain USA
β 0.0552 0.0486 0.0800 0.0569 0.0370 0.2355 0.0601

(0.0082) (0.0058) (0.0086) (0.0069) (0.0072) (0.0142) (0.0055)
p(β = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

βMC 0.0178 0.0246 0.0187 0.0226 0.0222 0.0178 0.0122
p(β = βMC) 0.000 0.000 0.000 0.000 0.038 0.000 0.000

Baxter-King-Woitek Filter
Canada Germany France Italy Japan Britain USA

β 0.0583 0.0515 0.0857 0.0593 0.0390 0.2499 0.0634
(0.0086) (0.0061) (0.0091) (0.0072) (0.0075) (0.0150) (0.0058)

p(β = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
βMC 0.0184 0.0257 0.0197 0.0238 0.0235 0.0185 0.0127

p(β = βMC) 0.000 0.000 0.000 0.000 0.039 0.000 0.000

Table 2: ARCH(3) Results
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GARCH(2,3) Parameters
Canada Germany France Italy Japan Britain USA

Q1 0.1932 0.0397 0.0990 0.1148 0.0488 0.2279 0.1581
Q2 0.0433 0.1420 0.1432 0.0000 0.0125 0.0560 0.0000
Q3 0.0000 0.0000 0.0387 0.0721 0.1578 0.0000 0.0047
P1 0.4693 0.0000 0.0000 0.3513 0.5785 0.0000 0.6010
P2 0.1971 0.6555 0.5279 0.4090 0.0954 0.3247 0.1404

Hodrick-Prescott Filter
Canada Germany France Italy Japan Britain USA

β 0.0109 0.0045 0.0047 0.0054 0.0101 0.0466 0.0153
(0.0020) (0.0007) (0.0013) (0.0012) (0.0017) (0.0044) (0.0018)

p(β = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
βMC 0.0042 0.0026 0.0023 0.0026 0.0037 0.0043 0.0029

p(β = βMC) 0.001 0.010 0.064 0.018 0.000 0.000 0.000
Baxter-King Filter

Canada Germany France Italy Japan Britain USA
β 0.0478 0.0189 0.0278 0.0161 0.0423 0.2176 0.0575

(0.0071) (0.0026) (0.0046) (0.0037) (0.0048) (0.0131) (0.0053)
p(β = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

βMC 0.0140 0.0107 0.0083 0.0099 0.0201 0.0168 0.0105
p(β = βMC) 0.000 0.002 0.000 0.093 0.000 0.000 0.000

Baxter-King-Woitek Filter
Canada Germany France Italy Japan Britain USA

β 0.0505 0.0200 0.0282 0.0165 0.0452 0.2307 0.0606
(0.0075) (0.0028) (0.0049) (0.0038) (0.0051) (0.0137) (0.0055)

p(β = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
βMC 0.0145 0.0113 0.0086 0.0104 0.0217 0.0175 0.0109

p(β = βMC) 0.000 0.002 0.000 0.108 0.000 0.000 0.000

Table 3: GARCH(2,3) Results
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