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Abstract

In the traditional literature on the Lucas-Uzawa model, it is proved that in the
neighborhood of the long-run balanced growth path, human capital stock grows at
a rate greater than its long-run counterpart when the ratio physical to human capi-
tal is above its long run value if and only if the capital share in the production of
physical good is lower than the inverse of the elasticity of intertemporal substitution
in consumption. We first prove that the claim is true outside the neighborhood of
balanced growth paths. More importantly, we identify a crucial asymmetry: what-
ever the position of the capital share with respect to the inverse of the elasticity of
intertemporal substitution, physical capital stock always grows at a rate lower than
its long-run counterpart when the ratio physical to human capital is above its long
run value.
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1 Introduction

The Lucas-Uzawa model has been at the heart of macroeconomic research for many
decades, and it is still widely considered as a fundamental benchmark for ongoing re-
search programs in many fields, notably in economic development and growth theory (see
for example d’Albis and Le Van, 2006). Two characteristics of the model makes it, how-
ever, nontrivial mathematically speaking: it is a two-sector model (with two controls and
two state variables), which induces a much larger set of optimality conditions compared
to the typical Ramsey model, and it is an endogenous growth model. Such models have
the property of indeterminacy in the long-run variables’ levels. A substantial part of
the literature dealing with Lucas-Uzawa is precisely devoted to get through these prob-
lems. Important contributions in this topic are Caballé and Santos (1993), Xie (1994) and
Benhabib and Perli (1994). None of these papers solves the model completely but they
certainly allow to get an accurate picture of the mechanisms at work in the model. With
the exception of Xie who solves explicitly a very special parametric case of the model, the
other authors build on a transformed model with a lower dimension (3 against 4 in the
original model) to overcome the problem of indeterminacy in levels. Typically, the (three)
variables considered in the auxiliary models are the ratios physical to human capital and
consumption to physical capital, and the fraction of human capital devoted to the final
good sector. The same approach is taken in textbooks (see Barro and Sala-i-Martin, 1995,
chapter 5).

Boucekkine and Ruiz-Tamarit (2007) have proposed a new method inspired from math-
ematical physics. Precisely, they show that the Lucas-Uzawa model can be explicitly
solved for all variables in level using Gaussian hypergeometric functions. These solutions
paths in levels have been shown to exhibit some specific non-monotonicities, a feature let
in the dark in the traditional literature. However, the essential contribution of the paper
is to supply the solution paths in closed form for any further exploration of the global
dynamics of all the variables, a task which was considered as unrealistic for a long time.
In this note, we show how the new approach can be advantageously used to dig deeper in
the transition dynamics of the model, and notably in its imbalance effects.

Imbalance effects refer to the transition dynamics of a model when its state variables
start below or above the corresponding long-run equilibrium value (see Barro and Sala-i-
Martin, 1995, chapter 5, and Mulligan and Sala-i-Martin, 1993).The economy is initially
out of equilibrium, and if the adequate stability conditions are met, it has to come back
after a certain adjustment phase. Admittedly, such a topic is better appraised and more
interesting in a global framework, that is, by allowing the economy to start arbitrarily far
from equilibrium. Unfortunately, the traditional method is based on linearization around
steady-states, which disqualify it for any global inspection.

In the Lucas-Uzawa model, the imbalance effect story has been quickly reduced to the
transition dynamics of the model when the ratio physical to human capital stocks is
initially below or above the corresponding long-run value. This might make sense. On
the theoretical ground, however, very few papers have been devoted to clarify this point.
Caballé and Santos (1993) and Ortigueira (1998) are among the very few exceptions. In
such a literature, it is typically shown that in the so-called normal parametric case and



only in this case,! the human capital stock should always increase at a rate higher than
the long-run counterpart if the ratio physical to human capital stocks starts above the
corresponding long-run value. That is, the initially scarce factor should be accumulated
at a higher pace with respect to its long run balanced path. There are two important
aspects in this analysis that could be easily improved within the new methodological set-
up designed by Boucekkine and Ruiz-Tamarit. First of all, and at almost zero cost, the
properties can be established for all variables in level, and for arbitrary initial conditions,
which is a key advantage given the specific issue investigated. Second, one can have a
much more complete story of imbalance effects. Traditionally the analysis is restricted
to the dynamics of human capital accumulation. What about physical capital? Suppose
the economy starts with a ratio physical to human capital stocks above the corresponding
long-run value. Then even though this ratio decreases monotonically to its long-run
equilibrium value, physical capital can in principle either decrease or increase (at a rate
lower than human capital) at least for some bounded time interval. Moreover, in the case
the stock of physical grows from the beginning, there is no guarantee that it will grow at a
rate lower than its long-run counterpart. Therefore, it is not clear at all a priori whether
the stock of physical capital will have the same kind of behaviour as human capital,
specially because, as established by Boucekkine and Ruiz-Tamarit (2007), such variable
may exhibit non-monotonic paths in contrast to human capital stock. We will extend
the theoretical analysis of imbalance effects to physical capital, and we will highlight an
important asymmetry between physical and human capital. Precisely, we will show that
whatever the parametric case considered, physical capital stock always grows at a rate
lower than its long-run counterpart when the ratio physical to human capital is above its
long run value.

The next section reminds the main equations involved in the Lucas-Uzawa model and gives
the closed-form solutions detected by Boucekkine and Ruiz-Tamarit. Section 3 revisits
the imbalance effects properties with the new approach.

2 The optimal control problem and the Boucekkine-
Ruiz-Tamarit closed-form solution

2.1 The model

The problem is standard in economic growth (Lucas, 1988, for example). The economy is
populated with many identical, rational agents, choosing the controls ¢ (), consumption
per capita, and u (t) Vt > tg, the fraction of non-leisure time devoted to goods production,
which solve the dynamic optimization problem

max /00 MN (t) e Pdt (1)

l1—0

subject to

K (8) = AK () (u(t) N (£) b ()™ = 7K (t) = N (t) e (t),

1'We shall be very clear about the meaning of a normal parameterization in Section 3.



ho(t) =81 —u(t)h(t)—0h(t),
K (0) = Ko, h(0)=ho, N(0)=No,
>

c(t) =0, u)el0,1], K@) =0, h(t) =0

The considered instantaneous utility function is standard, with o=! > 0 representing the
constant elasticity of intertemporal substitution. Population at time ¢ is N (¢), which is
assumed to grow at a constant exogenously given rate n. Parameter p is the rate of time
preference or discount rate. We assume p > n. h(t) is the human capital level. The
output, Y (¢), which may be allocated to consumption or to physical capital accumula-
tion depends on the capital stock, K (t), and the effective work force, w () N (t) h ().
Parameter (3 is the elasticity of output with respect to physical capital. The efficiency pa-
rameter A represents the constant technological level in the goods sector of this economy.
The efficiency parameter § represents the constant technological level in the educational
sector. Both physical and human capital depreciate at constant rates, which are 7 > 0
and 6 > 0, respectively. We shall also assume that 6 +n > 6 4 p for positive (long run)
growth to arise, as it will be transparent later.

The current value Hamiltonian associated with the previous intertemporal optimization
problem is

HE(K, h,91,09,c,u; A0, 8,0,m,0,{N(t) : t > 0}) =

-0 1
- Cl—N+z91 [AK®(uNh)'™® — 7K — Ne| + 95 [6 (1 —u)h— 6h],  (2)
—0
where ¥; and 1), are the co-state variables for K and h, respectively.
The first order necessary conditions are

¢’ = 791, (3)
V1 (1= B) AK® (uNh) ™" N = 0,6, (4)
the Euler equations

= (p+m) 01 = hBAK (uNh)' ™7 (5)
Da= (p+0) 0 — 01 (1 — B) AKP (uN)Y P hP — 9,6 (1 — ) (6)

the dynamic constraints
K= AKP(uNh)'# — 1K — Ne, (7)
h=06(1—u)h— 0h, (8)

the boundary conditions Ky, hgy, and the transversality conditions

tlim V1 K exp{—pt} =0, (9)
tlim Uohexp {—pt} = 0. (10)



From (3) and (4) we can express the control functions, ¢ and w in terms of the other
variables. These conditions also imply that, at any finite date, ¥, # 0 and 5 # 0.
After substituting these expressions into equations (5)-(8), we obtain the following four
dimensional system, in terms of state and co-state variables only,

Vo= — (6 — p—0) Vs, (11)
= (04 m) 01— (1) 97, (12)
I.(Z o (1) K — 3 (t), (13)
h= (5 — ) h — by (t), (14)
where ‘s
a4 (U227 5007, (15
ba(t) = A (%) NS (%) R (16)
Vs(t) = N9, 7, (17)

1 1
balt) =6 (“_—B)A) N <ﬁ> K. (18)
4] Uy

These equations, together with the initial conditions, Ky and hg, and the transversality
conditions (9) and (10) constitute the dynamic system which drives the economy over
time. This dynamic system can be recursively solved in closed form. Boucekkine and
Ruiz-Tamarit (2007) show that such a system can be solved explicitly without resorting
to any dimension reduction.

2.2 Closed-form solutions

Boucekkine and Ruiz-Tamarit (2007) use Gaussian hypergeometric functions o F (a, b, ¢; 2)
in their closed-form solution. Some basic definitions and properties of such functions are
reported in the appendix. Precisely, they show that the solutions of the system (11)-
(14) can be written in terms of Gaussian hypergeometric functions in their Euler integral
representation.

More precisely, let us define the hypergeometric function

) F, <a,b’c; (1_5+ntw—e (g;ig;)‘lﬁﬁ>exp{_(l—ﬁ)(5gn+w—9)t}>’

_1-5
- E
2F1(0) =2 Fy (a,b,c;1—5+n+7r 4 (191(0)) ))

€




with -
€= A (—(1 _i) ANO) i )

a__((5+n+7r—0)(ﬁ—0)—ﬁ(p—i—ﬂ—na—ﬁa) e _ B—o
cd+n+m—0)(1-7p) ’ o(l—-75)
Then the optimal trajectory of physical capital is given by (See Boucekkine and Ruiz-

Tamarit, 2007, Proposition 4):

wno (58 ()
exp{GENTT DI 0~ Ho 4 —no),)

(1—6)(5+n+7r—0)t}+5+n+7r—9 (191(0))2,‘3]116' o)

c=1+a.

—1 +exp { 3 . 192(0)

Similarly, one can define the auxiliary hypergeometric function for the solution path of
human capital

Bt —h, <a,b,c; (1_ 5+n—1€—7r—9 (z:§8§>5ﬁ> exp{_(l—@)(5;n+ﬂ—9)t})7

_1=-B
~ — B
QFI(O):QFI (’d’b7c’1_5+n+ﬂ- 9<191(0)> )7

€ 192(0)
with

- 0+n+m—0)p(1l—0)—F(p+7—no—m0o)
a=a—1=— .
o(0+n+m—0)(1-7)
Then the optimal human capital trajectory should fulfill (See Proposition 5 in Boucekkine
and Ruiz-Tamarit, 2007):

h = ho 2@@) exp {wt} : (20)
g

2 F1(0)

It should be noted that (19) and (20) characterize completely the solution paths for both
stocks of capital provided that the shadow price values ¥,(0) and ¥2(0) be identified.
Boucekkine and Ruiz-Tamarit (2007) also show that in addition to some traditional para-
metric restrictions yielding, among others, a > 1, the transversality conditions impose the
following constraints on the initial shadow price values (Proposition 3 in Boucekkine and
Ruiz-Tamarit, 2007)

Ko (01(0)\7 - o 3Ng5(0)" = (w)ﬁ
2F1(0) (192(0)) B +n+m—0)(B—0)—B(p+7—no—mo)’ (21)
2F1(0) (1-PB)eo Ko (1(0) 5
JR(0) —((6=0)(1—0)+n—p)Bh (192(0)> : (22)



3 Global dynamics and imbalance effects

We start with a brief discussion of the concept of imbalance effects. For the sake of
simplicity, we assume constant population (n = 0), and Ny = 1.

3.1 Imbalance effects: revisiting the concept

The imbalance effects have been so far deeply studied in two-sector endogenous growth
models, especially thanks to the contributions of Sala-i-Martin and his co-authors. Nonethe-
less, the analysis has been so far mostly computational, with some few exceptions like
Caballé and Santos (1993) and Ortigueira (1998). Using the 3-dimensional transformed
Lucas-Uzawa model, and linearizing around the corresponding steady state, these authors
have noticed that the transition dynamics depend strongly on the value of the capital share
in the final good production function, 3, and on the inverse of the intertemporal elasticity
of substitution, o. Ortigueira, in page 330, defines the normal case as follows:

Definition 1 If the economy starts with a higher physical-human capital ratio than that
of the stationary solution, then the (short-run) rate of human capital accumulation is
higher than that of the long-run equilibrium. That is,

Ko K :h>
ho h h

Then, he proves that the economy belongs to the normal case if and only if 8 < o
(Corollary 1, page 332). The same result was obtained by Caballé and Santos (1993).
The proof of such a property within the traditional approach is definitely easy since
the growth rate of human capital is exclusively driven by 1 — u (i.e., the fraction of
human capital channeled into the education sector), and the variable u is one of the three
variables considered in the 3-dimensional auxiliary model. The transition dynamics of
physical capital are then supplied numerically.

As argued in the introduction, we do believe that a more global appraisal of imbalance
effects should take into account the two state variables, physical and human capital.
The fact that the short-run rate of human capital accumulation is higher than that of
the long-run equilibrium does not guarantee that the short-run rate of physical capital
accumulation is lower than that of the long-run equilibrium. We shall therefore consider
a more general definition of the normal case as follows:

SIS

Definition 2 If the economy starts with a higher physical-human capital ratio than that
of the stationary solution, then the short-run rate of human capital accumulation is higher
than that of the long-run equilibrium, and the short-run rate of physical capital accumu-
lation is lower than that of the long-run equilibrium. That 1s,

ho \B) T h

’

SIS



and

We are simply stating that in case of initial imbalance, the relatively scarce variable
should grow at a higher rate than in the long-run, while the variable relatively in excess
should have the opposite behaviour. The next section is first devoted to show that the
parametric characterization of Caballé and Santos (1993) and Ortigueira (1998) can be
extended to any initial conditions (global dynamics). Then, we will analyze the imbalance
effects in the light of the stricter concept defined just above and identify the announced
asymmetry.

3.2 Human capital dynamics

First, using equations (19) and (20) respectively, one can identify the long-run balanced
growth paths of physical and human capital stocks. Indeed:

i () b))

PR exp{wt}, (24)
2F1(0) o

and

(1-B)eo _ 91(0)
5—0)(1-0)—p)B> ' = 52(0)

Under the constant population assumption, we set © = — € =

1-8
BA (%) ’ ,and A = W. Then, one can rewrite the balanced growth paths as

Ko a1 {5—9—pt}

_ A _9—
h= NO exp{—5 pt} .
2F1(0) a

This allows to write the long-run ratio physical to human capital as

(E)Zﬁﬁl@) L (25)

Therefore, if the economy starts from above, that is 72 >(

JF(0) 1
2F1(0) AT

1> n% (26)

=

or, using the transversality condition (22),

K, 1 1
— > = —.
ho O AT

\]



We shall now study the growth rate of human capital using the closed-form solution of
this variable. Comparing equation (20) with (24), one gets immediately h as a function

of i, and zﬁ 1(t), which is very useful for the inspection of imbalance effects,

h=sF(t)h. (28)
Indeed, it follows immediately that
b WFi(t) R
h_oh b (20)
ho aRi(t)
and finally we may conclude
h_ h Fut
n f_L 211(1)
ho 2P (t)

It is then almost trivial to obtain a global counterpart of the traditional local result on
the parametric characterization of the normal case:

Proposition 1 If the economy is characterized by o > (3, and only in this case, we have

Ky (K h
_ > J— J—
ho h h
Proof: The proof is somewhat immediate after the computation of the growth rate of

the hypergeometric function oF (t). The algebra needed for such a computation is trivial
for special functions users and it is reported in the Appendix. We get

D‘\ID‘\-

2}31(75) S0 e b(a— 1)2’ " 2F1(b—|— 1,a7a—|—2;z(t))
2 I (1) a+1 oF1(bya —1,a+ 1;2(1))

>0,

with z(t) = 2 exp{—%t}, and zp = (1 — An_%) Boucekkine and Ruiz-

Tamarit (2007) prove that z; < 0 if [}f—g >(£), and 0 < 2o < 1 if ]}f—g <(%), while if

@_(K

e =7 ), we have zp = 0 (See Lemma 2, Lemma 3 and Proposition 7 in Boucekkine and

Ruiz-Tamarit, 2007). Therefore, in the case studied in this proposition, zy < 0. Because

o (=0 G+r=0) [ (-5 @F+T-0)
5(t) = : : p{ z t},

and 6 + 7 > 0, since § > 6 + p for positive growth,? it follows that 2(t) is strictly

2F1 ()
Fi(t)
result. Since a > 1, and the involved hypergeometric functlons oF1(b+ 1,a,a + 2;2(t))

21()
2F1 (1)

positive. Now, it is sufficient to look at the expression of 2212 just above to get the

and o Fy(b,a—1,a+1; 2(t)) are strictly positive,® the sign of
U

is the sign of b = o

2See for example equation (20).
3This is because they admit the Euler integral representation.



3.3 The dynamics of physical capital

We now move to the dynamics of physical capital, and provide a similar global analysis
as for human capital in accordance with our interpretation of imbalance effects. Not
surprisingly, the task proves more difficult than for human capital. However the algebra

needed is by no way intractable. Recall the closed-form solution for physical capital given
in (19),

= (1) = D) o (4700 0) Pl ),

. {—z0+exp{(1_m<(;+ﬂ_9)t}}11ﬁ .

Comparing with its balanced growth path, we can rewrite K into a more manageable
form:

K(t) =K (t) 2F3(t) G(1),

where

G(t) = exp {Wt} [—zo + exp { (1= ﬁ)((;ﬂr — e)tH ﬁ .

Then, the growth rate of physical capital is given by

K_R Bt G(t)
K~ tnm o (30)

Accordingly, forphysical capital to behave inaccordance with the normal case defined in
Section 3.1, we need to assess the inequality

JF(t) | G(t)
2F1(t)+m b

when the economy starts with a physical to human capital ratio above its long-run coun-
terpart. We shall first prove that if we are in the normal parametric case identified by
Caballé and Santos, then such an inequality is indeed fulfilled.

Proposition 2 When the economy starts with a higher physical-human capital ratio than
that of the stationary solution and the condition 3 < o is checked, the short-run rate of
physical capital accumulation is lower than that of the long-run equilibrium.

Proof: Using the Euler integral representation of the hypergeometric function o F}(¢) one
finds, after some trivial algebra,

zFl(t):_bZ (1—ﬂ)(5+ﬁ—9)exp{_(1—ﬁ)(5+7r—0)t} a oF\(b+1l,a+1,a+2;2(t))
2Fi(t) " 3 5 a+1l  oR(baatliz(t)



(1—8)(6+7—0)

t} as before. Note that QFlg g is a positive function that

when t — 0, and tends to 0 when ¢t — oo.

where z (t) = zp exp{—

bZ (A-p)(6+m—0) a 2F1(b+1,a+1,a+2520)

tends to — atl oF (b,a,a+1;20)

On the other hand,

G(t) (047 —0) 20

G(t) p _ZO%XP{%* ’
which is a negative function that tends to ‘Hg’e 120% when t — 0, and tends to 0 when
t — oo. So unfortunately, the sign of 2F1 ; + Ggg is undetermined at this stage, and we

have to dig deeper. Using the two prev1ous expressions we find that*

(1) G (047 =0)z [ba(l1-p)1(b+Lat1a+2;2) 1
()G B l ] o

a+1 oF1(b,a,a+1; 2) 1—2
Applying formula (15.2.1) from Abramowitz and Stegun (1972), we can rewrite the pre-
vious expression in a more advantageous way

Fi) GO @rm-0)(-p)e | fAegeEl 1 %
(D) TG 5 Fbaatts) T-pi-z| @

Given that d+m > 6, and z < 0 because zy < 0 when the initial physical to human capital
ratio is above its long-run value (see Proof of Proposition 1), it follows that the short-run
rate of physical capital accumulation is lower than that of the long-run equilibrium if and

only 1
Y f d[2 F (b,a,a+1;2)] 1 1

dz
- <0, Vz<0. 33
oFi(bya,a+1;2) 1—p1—2z2 : (33)
Integrating the previous inequality between z (< 0) and 0, we obtain that the latter
inequality is indeed equivalent to

JFi(ba,a+1:2)—(1—2) 77 >0, Vz<D0. (34)

We denote by H(z) the function defined as the expression on the left hand side of the
previous inequality. Then, the short-run rate of physical capital accumulation is lower
than that of the long-run equilibrium if and only if H(z) is positive ¥ z < 0.

Suppose o > [ or b > 0. We shall prove that in such a parametric case: (i) H (0) = 0,
H'(0) < 0, and the limit of H (z) when z tends to —oc is zero, and (i) H'(z) has a
unique root. These conditions are sufficient for H (z) positive Vz < 0.

Note that H (0) = 2F1(b,a,a+1;0) —1 = 0. By continuity, H (z) — 0 when z — 0. This

result implies, in our dynamical model, that % tends to £ when ¢ tends to co. Moreover,
K

ab 1 2—
F 1, 1, 2; — (1 —2) -8
[T a? b+ 1la+1a+2;2) — 1—5( z) 18, (35)

4For the sake of simplicity, from now on we have removed the temporal index corresponding to the
variable z.

H'(2) =

10



which implies that

b 1 1 a o—pf
Ho)=-2" _ - ~1) <o
O =172 "1-3 1—ﬁ(a+1 - )<0

In order to prove that H(z) goes to zero when z goes to —oo, we use the Euler integral
representation of the hypergeometric function oF} (b, a,a + 1;z) to find an upper bound
going to zero when z goes to —oo. This will be enough to conclude since o F (.) is positive

Vz < 0 and the limit of (1 — z)fﬁ is zero when z tends to —oo. Indeed,

Pla+1) [+ . —b /1 —b a a(l- Z)kb
Fi(b 1;2) = ———-= (1= dv < 1— dv = — .
o F1 (b, a,a+1; 2) F(a)F(l)/OU (1—vz)dv < a 0( vz) " dv A-0: (10>
The limit of the first term on the right hand side when z tends to —oc is zero, but it is
also zero the limit of the second term when b > 0. The latter being obvious if b > 1, and
immediate if 1 > b > 0 after application of the I’ Hopital’s rule. This allows already to
conclude that H(z) goes to zero when z goes to —oo under b > 0.

Now, recall (35) denoting hi(z) = ﬁ—ba 2Fi(b+1,a+1,a+2;2) and ho(z) = ﬁ(l -

z)_% so that H'(z) = hi(2) — ha(2). It can be easily shown that both functions h;(.)
and ho(.) are both strictly increasing and strictly convex for z < 0. Moreover, one can
readily see that both functions cannot intersect in more than 2 points if any intersection.
We shall show that the two functions do always intersect in a single point. Because of
H'(0) < 0, we know that hy(0) < ho(0). We now show that this inequality should be
reverted for z big enough (in absolute value). Indeed, one can straightforwardly find a
lower bound for hq(z) because

oFi(b+1l,a+1,a+2;2) =

1 1
(1+ a)/ 4 (1 —v2) "ty > (1+a)(1 — 2)"1 / vidv = (1 —2)7"7L,
0 0
Using this result we can see that
hy (2) - ab
hg (Z) “1l+a
Then, omitting the constant terms, it follows that the ratio hi(z) to hy(z) behaves like
the function (1 —2)?, with ¢ = —b—1+ % = ﬁ —b > 0 as shown above. Hence, hy(z)

is necessarily above function hs(z) for z large enough (in absolute value). This implies
not only that H’(z) = 0 has a root but also that it can not have two. [J

(1=5) (1= 2) "

It should be noted that the statement of Proposition 2 is a sufficient condition for normal
dynamics in K: b > 0 is such a condition. Instead, for human capital Proposition 1 shows
that normal dynamics are obtained if and only if b > 0. Actually, one can go a step
further and show that whatever the value of b, we get always normal dynamics for K.
This features a kind of asymmetry between the two capital stocks, which is hidden in the
theoretical literature taking the traditional approach.® We prove this property next.

5Tt is fair to recognize that this feature is neatly pointed out in the computational literature a la
Sala-i-Martin.

11



Proposition 3 When the economy starts with a higher physical-human capital ratio than
that of the stationary solution, the short-run rate of physical capital accumulation is lower
than that of the long-run equilibrium whatever the sign of o — [3.

Proof: The proof is trivial using the previous proposition and equation (35). If b < 0,
then H'(z) < 0 for all z < 0. Since H(0) = 0, this means that H(z) is always positive for
z negative.[]

As announced, we have thus shown that in contrast to human capital, physical capital
stock grows at a rate greater than its long-run counterpart when the ratio physical to
human capital is below its long run value whatever the position of the capital share in the
production of physical good with respect to the inverse of the elasticity of intertemporal
substitution in consumption.
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Appendix
The Gaussian hypergeometric function: definitions and the Euler
integral representation

Recall that the Gauss hypergeometric function (see Abramowitz and Stegun, 1972, or
Temme, 1996), o F}(a, b, ¢; z), with complex arguments a, b, ¢ and z, is given by the series

oFi(a,b,c;z) = Z % Z—T ,

where (x),, is the so-called Pochhammer symbol, defined by

[(x +n)

(T)n = T(2) )

where I'(.) is the special function Gamma. One of the main properties of the Gauss
hypergeometric function is that its circle of convergence is the unit circle. Fortunately,
there are some ways to define it outside the unit circle, the Euler integral representation
being the most practical continuation formula

2F1(a,b,c;z):$<cc)_b) /0 L (1 — £t (1= )

when Re(c) > Re(b) > 0 (see Abramowitz and Stegun, 15.3.1, page 558).

Computation of the growth rate of the hypergeometric function
9F1 (t) in Proposition 1

Using the symmetry property in the arguments a and b, and taking into account that
a=a—1and c=a+ 1, we can rewrite o F(t) as

2Fi(t) = 21 (@b, ¢; 2 (1) = 2 Fi(a — Lb,a+1;2(t) = oFi(b,a — 1a+ 1; 2 (¢)).

Since the previous hypergeometric function checks conditions under which the Euler in-
tegral representation holds (a +1 > a — 1 > 0), we can rewrite it as

ala — 1)/0 v (1 — v) (1 — vz (1)) bdv.

The derivative of the previous expression with respect to t is

2F1(Zi7 ba Gz (t)) = 2F1(b7a_1aa'+1;z (t)) =

2F1 (1) = ala — 1)b (1) /0 V(1 = v)(1 = vz (£)) " Ld,
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Since

o o1, T(@)(2) , B
/Ov (1= 0)(1 = vz () o = F LR b+ Lo +2:2(1) -

1
= F 1 2:
a(a—|—1)2 b+ 1,a,a+2;2(t)),

then
~ L a—1

+1

2F1(b+ La,a+2;2(t)).

Finally, we get

21 (1) bt a—13F(b+1a,a+22(t)
— 2 :
o (1) a+1 oFi(bja—1,a+1;2(t))
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