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ABSTRACT 

Productivity growth is a major source of economic growth; thus, an 

understanding of how and why productivity measures change is of great interest 

to economists and policymakers. This paper explores the relationship between 

observed total factor productivity (TFP) growth, defined using an index number 

approach, and examines changes in returns to scale, cost efficiency, and 

technology. Several decompositions are developed, using alternatively 

production and cost frontiers. The last decomposition developed also allows 

for multiple outputs. 



DECOMPOSING TFP GROWTH IN THE PRESENCE OF COST INEFFICIENCY, 

NONCONSTANT RETURNS TO SCALE. AND TECHNOLOGICAL PROGRESS 

I. Introduction 

Measures of productivity have long enjoyed a great deal of interest among 

researchers analyzing firm performance and behavior. The observed growth in 

total factor productivity (TFP) is one of the most widely employed measures of 

overall productivity. The conventional Divisia index of TFP is defined as1 

(1) TFP = - F, where 

where y is observed output, F is an aggregate measure of observed input usage, 

w, is the price of the i-th input, xi is the observed use of the 

i-th input, and C is the observed cost.2 

Ohta (1974) and Denny, Fuss, and Waverman (1981), among others, have shown 

that in the single-product case, with constant returns to scale and cost 

efficiency, TFP growth equals technological progress. With nonconstant 

returns to scale and cost efficiency, TFP growth is equal to technological 

progress plus a term that adjusts for the degree of returns to scale: 

where f is the production function, x is the vector of inputs, t is a time 

index, and ecy is the cost elasticity with respect to output. 

This paper extends the decomposition of observed TFP growth by showing how 

changes in cost efficiency over time also affect the observed measure of TFP 



growth. The observed measure of TFP is decomposed into various components 

roughly stemming from changes in returns to scale, in cost efficiency, and in 

technological progress. Biased estimates of firm or industry performance will 

result if changes in cost efficiency are ignored. Furthermore, since these 

decompositions are derived from an observed quantity, the appropriate 

decomposition could be included in the estimation of the frontier as an 

additional equation, thus improving the statistical precision of the estimates 

by providing additional information and increasing the number of degrees of 

freedom. 

In section I1 of this paper, TFP growth is decomposed using a production 

function approach. Section I11 derives the decomposition using a cost 

function approach for both the single-product and multiproduct firm. Section 

IV presents some empirical examples of the use of some of these 

decompositions, and the conclusion appears in Section V. 

11. Production Function Approach 

Let the production frontier be defined as 

where y* is the maximum amount of output that can be produced with input 

vector x at time t. 

A Farrell-type, output-based measure of technical efficiency can be 

defined as follows : 

J T =- 

P f (x., t) ' 
where 0 < Tp 5 1. 



The first TFP decomposition can be derived as follows. First, take the 

natural log of both sides of (5) and totally differentiate it with respect to 

time : 

dlnTp dlny ( 6 )  - = - - alnf(x,t) dxi + alnf(x,t) C axi 
- 

dt dt dt at - 
i 

This can be rewritten as 

where Tp is the time rate of change of technical efficiency and &(x, t) 

is the time rate of change of technological progress as measured by shifts in 

the production frontier over time. 

Next, (7) can be rearranged using the definition of observed TFP in (1): 

The following substitutions can be made: 

( 9  ci(x,t) = 
af(x,t) Xi and ax, f(x,' 



where ci(x,t) is the output elasticity of the i-th input and si is the 

observed share of the i-th input. This yields the following decomposition: 

which decomposes observed TFP growth into change in technical efficiency, 

technological progress, and a term that depends on the degree of the input- 

specific returns to scale and cost inefficiency . This decomposition yields 

the intuitive result that advances in both technological progress and 

technical efficiency increase observed TFP growth. While the first two terms 

have straightfornard interpretations, the last term requires further 

explanation. 

This term has two informative properties. First, under cost efficiency, 

this term is equal to the last term in (3) , since cost minimization requires 

(12) af = 2, £or a11 i. 
axi 

Second, when the firm is cost inefficient, this last term is a bundle composed 

of nonconstant returns to scale and both technical and allocative 

inefficiency. One can further decompose this term using duality; however, the 

cost function approach developed in the next section does this in a much more 

straightforward manner. But first, consider the relation between this 

decomposition and that of Nishimizu and Page (1982). 



Nishimizu and Page derived their decomposition as follows. First, they 

define what might be called the "average" production function, g(x,t), as 

In contrast to the frontier production function, f(x,t), the observed 

production function yields what each firm actually produces. They transform 

(13) by taking the natural logarithm and totally differentiating with respect 

to time to obtain 

(14) $(x,t) = y - 1, eg,(x,t) xi, 

where egi(x,t) is the output elasticity of the i-th input with respect 

to the "average" production function. 

Nishimizu and Page then employ an alternative approach to defining TFP. 

Instead of defining TFP with respect to a Divisia index, they define TFP with 

respect to the rate of shift in the "average" production function, g(~,t).~ 

The next step in deriving their decomposition is to rewrite equation (7) 

(15 9 = '$ + f(x,t) + ri(x,t) i,. 

Substituting for y in (14) and simplifying yields 



This is the Nishimizu and Page decomposition; equation (16) separates observed 

TFP growth into technological progress, change in efficiency, and differences 

in output elasticities between the frontier and the interior for a firm 

operating in the interior. While (16) is quite similar in form to (ll), there 

are two important differences. 

First, it must be recalled that Nishimizu and Page employ a different 

definition of TFP than the one employed here. They define it to be the rate 

of shift in the "average" production function, whereas the decompositions 

derived here are based on a definition of observed TFP using the Divisia 

index. The potential advantage of the latter approach is that it creates the 

possibility of adding another equation to the system to be estimated (in 

addition to the cost and input share equations) since the left side of 

equation (11) is observed and the right side of equation (11) is a function of 

the parameters to be e~timated.~ Including the TFP equation in the 

regression increases the number of degrees of freedom (since no new parameters 

are added) and also provides information that is not found in the cost or 

input demand equations. 

Second, the use of an "average" production function, g(x,t), may be of use 

conceptually, given Nishimizu and Page's assumption that firms operating away 

from the frontier have a good reason for doing so. This is not useful 

empirically, however, because g(x,t) cannot be estimated simultaneously with 



the frontier production function unless the reason for the deviation from the 

frontier is also modeled. Without this type of modeling, the only possible 

definition of g(x, t) is 

(17) g(x,t) = f(x,t) - T,. 

This implies that their "average" production function models not only the 

frontier production function, but also inefficiency. In other words, it 

predicts the level of inefficiency--with the same arguments as the frontier 

production function. The cost function TFP decompositions are now derived. 

111. Cost Function Approach 

The TFP decomposition is first derived in the case of the single-product 

firm and is then generalized for the multiproduct firm. Let the single- 

product cost frontier be represented by 

where C* is the efficient cost given (y,w,t). Following Farrell (1957), an 

overall measure of cost efficiency may be defined as 

From these input-based measures of technical and allocative efficiency, one 

can derive 



(20) E = T . A , which implies 

(21) E = T + A, (which will be used later), 

where T and A are the Farrell measures of technical and allocative efficiency, 

respectively. 

The decomposition of TFP growth can now be derived using the cost function 

approach. Taking the natural logarithm of each side of (19), totally 

differentiating, and making a few minor substitutions yields 

where ~~~(y,w,t) = 
dlnC(y,w, t) 

a lny . Using the definition of observed TFP in equation 

(I), equation (22) can be simplified as follows: 

At this point, note the following: 



WiXi 
(26) c = 2 7 ki + c,, and 

i i 

Substituting (27) into (23) yields 

Substituting (21) into (28) and making some straightforward substitutions 

yields the single-product cost function decomposition of observed TFP: 

This expression decomposes TFP growth into terms related to returns to scale, 

changes in technical and allocative efficiency, technological progress, and a 

residual term (which will be discussed below). This decomposition is 

consistent with expectations; in particular, the expectation that increases in 

cost efficiency increase observed TFP. 

The last term clearly reflects the presence of allocative inefficiency. 

If the firm is allocatively efficient, then si=si(y,w,t), and this term is 

equal to zero. This term is also equal to zero when input prices change at 

the same rate, since ~[S~-S,(~,W, t)]=O. Some insight into this term 
i 



can be obtained by noting that in the presence of allocative inefficiency, 

since the observed input shares, si, are not equal to the efficient input 

shares, si(y,w,t), the aggregate index of input usage F (used to define 

observed TFP) does not weight the observed inputs according to the cost- 

minimizing input shares. The last term corrects for any bias this may have on 

observed TFP . 

A multiproduct version of the decomposition can also be derived. For the 

multiproduct firm, observed TFP is usually defined as6 

P P PjYj WiXi (30) TFP = 9 - I?, where jr = 1-9 and F = 1 - 
R .i 

c kip 
j i 

where 9 is a revenue-weighted index of output, F is a cost share index of 

aggregate input usage, wi is the price of the i-th input, xi is the 

observed use of the i-th input, and C is the observed cost. 

Using the same basic steps used in the single-product case above for 

handling cost inefficiency and in Denny, Fuss, and Waverman (1981) for 

handling multiple outputs, observed TFP for a multiproduct firm can be shown 

to be equal to the following: 

P c + 1 [si-si(y,w,z,t)] wi + (y -y ) ,  where y = 

i 



This expression decomposes TFP growth into terms related to ray returns to 

scale, changes in technical and allocative efficiency, and technological 

progress. The next-to-last term has the same properties as the last term in 

equation (25). The last term simply measures any effect that nonmarginal cost 

pricing may have on the observed measure of TFP. Denny, Fuss, and Waverman 

have shown that F=yc under marginal cost pricing and proportional markup 

pricing. 

These TFP decompositions provide useful conceptual and empirical tools for 

assigning the observed changes in TFP growth to the various root sources. 

Note that the cost function approach provides a more complete partitioning of 

the sources of observed TFP growth than the production approach did. 

IV. Empirical Application 

This section illustrates a use of one of the multiproduct TFP 

decompositions. The example is drawn from the U.S. airline industry, and 

these results are discussed more fully in Bauer (1988). First, the model that 

was estimated and the data set that was employed are briefly discussed; then 

the empirical results and the TFP decomposition are presented. 

The translog system of cost and input share equations that was estimated 

is presented below (omitting firm and time subscripts): 



where y is a vector of outputs, w is a vector of input prices, z is a vector 

of network characteristics, and t is a time index. The translog functional 

form was selected on the basis of its being a second-order approximation to 

any cost function about a point of expansion (here, the sample means) .' 

Note that the network and time variables were not interacted with input prices 

in order to reduce the number of parameters to a manageable level and to 

lessen the effects of multicollinearity. Symmetry and linear homogeneity in 

input prices impose the following restrictions on the cost system: 

By construction, lsi(y,w)=l, so that one input share equation must be 
i 

dropped before estimation to avoid singularity. Barten (1969) has 

shown that asymptotically, the parameter estimates are invariant as to which 

input share equation is dropped. 



The following distributional assumptions are imposed. The inefficiency 

term, %t, is assumed to follow a truncated-normal distribution with 

mode p and underlying variance oU2 such that I+, 2 0. The noise 

term, vnt, is assumed to be independent of xt and to follow a 
normal distribution with mean zero and variance ov2. The disturbances on 

the input share equations are assumed to follow a multivariate normal 

distribution: wnt = (wlnt7 . . . , +-l,nt) ' cv N(a, n) . 

The likelihood function for this system can be written as8 

(35) lnL = - - TNM ln(2n) - lno" - 2 T,N lnlnl 

- (TN) ln[l-F*((-a) (A-~+I)"~) ] - 1 (writ-a) ' n-l (writ-a). 
t n 

Maximum likelihood estimates can be obtained for all the parameters in (35), 

and these estimates will be asymptotically efficient. A number of 

specification tests can be performed using likelihood ratio tests similar to 

those proposed by Stevenson (1980). 

The data set employed in this paper was constructed by Robin Sickles using 

the AIMS 41 form that all interstate airlines were required to submit 

periodically as part of the Civil Aeronautics Board's regulation of the 

industry. Included are 12 firms and 48 quarters of data from 1970:IQ to 

1981:IVQ. The airline industry is considered to produce revenue passenger ton 

miles (y ) and revenue cargo ton miles (yc) using four inputs: labor (L), 
P 

capital (K), energy (E), and materials (M). Labor is an aggregate of 55 

separate labor accounts; capital is a combination of flight equipment, ground 



equipment, and landing fees; energy is the quantity of fuel used converted to 

BTU equivalents; and materials is an aggregate of 56 different accounts 

composed mainly of advertising, insurance, commissions, and passenger 

meals. 

The network through which airlines supply their outputs has an important 

influence on the cost of providing that output. The average load factor, 

zldf, for a given airline in a given time period is the proportion of an 

airline's capacity that is actually sold in that time period. The average 

stage length, zStgl, is the average distance of an airline's flights in 

a given quarter. These two network characteristics are incorporated into the 

two translog cost models as presented in equation (32). 

From table 1 it can be seen that all but two of the parameter estimates 

are statistically significant. The parameters reported here are from a model 

slightly more restricted than the one developed in section 111. Instead of 

the more general truncated-normal distribution, the half-normal distribution 

was assumed, which is equivalent to restricting p=0. This restriction could 

not be rejected using a t-test based on the results of the more general model. 

Table 2 reports the results of the TFP decomposition technique. Observed 

TFP grew on average for all of the firms, although there was a great deal of 

variation across firms. Much of this increase is the result of technological 

progress that ran at a rate of 0.274 percent per quarter, as reported earlier. 

The scale effect was a significant source of TFP gains for the smaller 

airlines, which were free to grow under the regulatcry reform process, but not 

for the four largest airlines. The inefficiency effects varied consider'ably 

from airline to airline, but were generally small. Over time, changes in the 

airlines' networks have generally boosted productivity. The average load 



factors and stage lengths of the airlines have risen (although unevenly across 

airlines), each resulting in increases in observed TFP of about the same order 

of magnitude as those stemming from technological progress. 

The biases in the observed measure of TFP as a result of nonrnarginal cost 

pricing (the output effect) and observed input shares not being equal to the 

least-cost input shares (the price effect) are found to have a small effect on 

observed TFP. A "pure" measure of TFP growth could be constructed by summing 

the scale, cost efficiency, technological change, and network effects. In 

general, these estimates indicate that the observed measure of TFP is a biased 

estimate of technological progress, not just because of the scale and output 

effects (as Denny, Fuss, and Waverman have shown), but also because of the 

efficiency, network, and input price effects. 

V . Conclus ion 
Observed TFP growth has been decomposed into scale, change in efficiency, 

and technological progress effects using both production and cost function 

approaches for both single-product and multiproduct firms. The production 

function approach was compared to the decomposition of Nishimizu and Page 

(1982) and was found to have at least the possible advantage that the observed 

TFP equation might be added to the system of equations to be estimated. In 

addition, the decomposition derived here does not depend on the artificial 

construction of an "average" production function. In this respect, the 

decomposition proposed here seems to be more firmly based in cost theory and 

efficiency measurement. 

The decompositions of TFP developed here will have at least two uses in 

empirical work. First, there is the potential that the TFP equation could be 



added to the system of equations to be estimated. Since this equation 

provides information not contained in the others and increases the number of 

degrees of freedom, better estimates of technology (as embodied in the 

production or cost function) and the level of cost efficiency will be 

obtained. Second, it will also be of use in interpreting and explaining 

empirical results. For example, TFP growth has been negative in some 

industries in recent years--a fact that is sometimes difficult to explain in a 

framework that does not allow for cost inefficiency (see Gollop and Roberts 

[1981]). Using this decomposition, negative TFP growth could turn out to be a 

result of declines in cost efficiency, both technical and allocative. 



Footnotes 

dlnz Variables with a dot over them are defined as follows: i = - dt . 
See Jorgenson and Griliches (1967), Richter (1966), Hulten (1973), 
Diewert (1976), and Denny, Fuss, and Waverman (1981), among others, for 
uses of this definition. 

Returns to scale can be defined as follows : RTS = 1 ei (x, t) . 
i 

For a discussion of the various approaches to defining TFP growth, see 
Diewert (1981). 

Exactly how to implement this potential advantage both econometrically 
and practically has not yet been solved. 

See Denny, Fuss, and Waverman (1981). 

' Though the translog functional form is a second-order approximation of 
the cost function at a point, it is generally only a first-order 
approximation of the economic measures of technology derived from the cost 
function. For example, note that the observed input shares are only a 
linear function of the regressors, being the first derivative of the log of 
the cost function. 

Strictly speaking, it is incorrect to model the disturbances in the cost 
and input share equations as being independent, given the interdependence 
of alnAJalnwint and %,. However, as Schmidt (1984) pointed out, these 
terms will tend to be uncorrelated, since both negative and positive 
deviations from efficient shares raise costs. 

For a more detailed description of this data set see Sickles (1985). 



Table 1 

MLE Parameter Estimates 

Parameters Estimate Asymptotic Standard Error 

*Not statistically significant at the 0.01 level of significance. 

Source: Author's calculations. 



Table 2 

TFP Decomposition 
(Average quarterly rate of change, in percent) 

Scale Output Eff. Technical Price Load Stage 
Airline TFP Effect Effect Effect Change Effect Factor Length 

AA 
AL 
BR 
co 
DL 
EA 
F'L 
NC 
oz 
PI 
UA 
WA 

Source: Author's calculations. 

The key to the carrier abbreviations are as follows: 

American AA Continental CO Frontier FL Piedmont PI 
USAir AL Delta DL North Central NC United UA 
Branif f BR Eastern EA Ozark OZ Western WA 
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