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EXTENSION OF GRANGER CAUSALITY 

IN MULTI.VARIATE TIME SERIES MODELS 

Abstract 

This paper presents an examp,le of a situation where Granger causality 

does not exist but an extended definition of causality does. The 

extended definition of causality is discussed, along with methods to 

determine its existence in multivariate time series models. 

Key words: Granger causality, multivariate time series. 

I. Introduction 

The concept of Granger causality (Granger 1969) has become widely 

used in discussing relationships among variables. Some relevant 

references to Granger causal ity are Sims (1972), Haugh (1972), Pierce 

(1977), and Pierce and Haugh (1977). Generally, Granger causal ity has 

been discussed in terms of bivariate models. 

This paper proposes an extension of Granger causality when more than 

two variables are used in a multivariate time series model and it is 

necessary to consider more than one-period-ahead forecasts. 

Granger causality more appropriately may be called one-period-ahead 

forecasting ability. Variable z is said to "Granger cause" variable y, 

with respect to a given information set that includes z and y, if 
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forecasts of present y are more accurate when using past values of z than 

when not doing so, all other available information being used in either 

case. The measure of accliracy usually used in the definition of Granger 

causality is the mean square error of one-period-ahead forecasts. 

This idea can be expressed as follows: Let At be the given informa- 
tion set (including at least zt and yt), it =(AS: s < t), u ~ ( ~ ~ B )  

be the minimum mean square error from forecasting y (one period ahead) 

given the information set El, and At-zt be the set it without z. Then 

z is said to Granger cause y if 

Thus, Granger causality refers to only one-period-ahead forecasts. 

When forecasting for more than one period ahead, it is necessary to 

know whether Granger causal i ty would include a1 1 possible causal i ty. 

situations (in terms of forecasting ability). In section I1 is an example 

of a multivariate model for three variables (x, y, and z). This model 

demonstrates that while z may not Granger cause y, the two-period-ahead 

forecasts using z have a smaller forecast error than the forecasts not 

using z. Thus, Granger causality does not encompass all situations where 

one would conclude that some type of causality exists (in terms of 

forecasting ability). In section 11, we also introduce an extension of 

Granger causality that includes the multiperiod, multivariate situation. 

11. Extension of Granger Causality 

When dealing with only two variables, Pierce (1975) proves that if 

better L-period-ahead forecasts for any L > 2 are produced by the addition 
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o f  past  z, then z must Granger cause y w i t h  respect t o  the se t  (zt, yt).  

However, as the fo l low ing  example demonstrates, t h i s  i s  not  necessar i ly  

t r u e  f o r  systems w i t h  more than two var iables:  

where the al, a2, and a3 are mutual ly  orthogonal whi te noise processes 

2 2 2  w i t h  variances ul, u2, u3, respect ively.  In t h i s  model, At = (yt, xt, zt). 

The minimum mean-square-error, one-period-ahead forecasts f o r  t h i s  

model are 

where Gt - (1) i s  the one-period-ahead forecast  o f  w a t  t ime t-1. These 

2 2 2 forecasts have mean square e r ro rs  of ul, u2, and u3, respect ively.  (See 

Tiao and Box (1981) f o r  a general discussion o f  how t o  ca lcu la te  

forecasts from these types o f  models and t h e i r  mean square errors.  ) 

I f  z i s  not  included i n  the model, then the appropriate b i v a r i a t e  

model can be derived from the model given i n  equation (1)  by matching the  

variances, covariances, and cross covariances of y and x ' imp l i ed  by t h i s  

model. Th i s  reduced model i s  given by 

2 
where o2I2  = 4:3< + u2. 
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The minimum mean-square-error, one-period-ahead forecasts f rom t h i s  

model are 

w i t h  mean square e r ro rs  of U: and 6E30: + u;, respect ive ly .  

We thus have shown t h a t  z does no t  Granger cause y ( t he  mean-square- 

forecast  e r r o r  i s  U: i n  both cases), b u t  t h a t  z does Granger cause x 

+ a ) .  Simi la r l y ,  we can show t h a t  x Granger causes y but  not  z. ('2 < '2303 

Also, y does no t  Granger cause x o r  z. The causa l i t y  chain i s  thus an 

example of i n d i r e c t  causa l i t y  (Tjostheim 1981) between z and y: 

where - means Granger causes. 

When we examine the  two-period-ahead forecasts, the  r e s u l t  i s  

d i f f e r e n t .  The two-period-ahead forecasts  from model 1 are 

2 w i t h  mean square e r ro rs  of 0: +.4:2~g, U: + 4:3~$, and u3, respect ive ly .  

(See Tiao and Box (1981) fo r  a general discussion of how t o  ca l cu l a te  

mu1 t ip le- per iod forecasts  and t h e i r  mean square er rors .  ) 

For model 3, the two-period-ahead forecasts  are g iven by 
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2 with mean square forecast errors of a: + dl2(a; + 

a
2
) and 0; + $:3a:, respectively. '23 3 

Thus, the mean square forecast error for y two periods ahead is less 

2 2 in the moiel including z ( a  + d12a2) than it is in the model not including 

2 2 2  2 2 2  
z (al + d12a2 + $12423a3). This illustrates the principle that 

even if a variable z does not Granger cause another variable y, z may be 

useful in forecasting y more than one period ahead. 

This motivates the following extension of Granger causality. A 

variable z is said to cause another variable y, with respect to the set 

(6) U ~ ( ~ ( L )  I A) 4 U ~ ( ~ ( L )  IA-) for any L > 0, 

where y ( ~ )  is the L-period-ahead forecast of y at time t-1. We call this 

type of causality L-period causality, where L is the smallest value so 

that inequality 6 is true. Thus, Granger causality is one-period 

causal i ty. 

The concept of L-period. causality is not the same as the idea that z 

is related to y with an L-period lag. Consider the model 

for some j > 1. In this model, y is related to z with .a j-period lag, 

but z Granger causes y; the value of j is immaterial. This also 

illustrates the idea that Granger causality does not necessarily involve 

only one-period lags. . 
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111. Determining Multiperiod Causality 

Given a multivarjate time series model., we wish to determine what 

patterns of causality are represented by the model. One method of doing 

this (as demonstrated in the example in section 11) is to compare the 

mean square forecast errors from the reduced models resulting from 

deleting one and only one variable with those of the full model f.or 

different forecast lengths. One advantage in ,doing this is to learn how 

much the mean square errors change. For example, we saw in section I1 
2 2 2 that the two-period-ahead mean square error for y was reduced by 412623a 

when z was included in the given model. 
. . 

Consider the following model for n variables: 

where K (n-1 x n-1), J (n-1 x l ) ,  M (1 x n-1), and N (1 x 1) are 

polynomial matrixes in B (where B is the backshift operator, i .e., Bvt 

= v t-1 ); W is the vector of n-1 variables excluding v; and TI (n-1 x 1) 

and E (1 x 1) are the corresponding error terms. If the variable v is 

omitted from this model, the resulting model is given by 

(See Quenouil le 1957, p. 43. ) The autoregressive operators wi 11 be given 

by the right-hand side of equation (7). The moving average operators 

will have to be dete,rmined by combining the two sources of error n and 

. Once the submodels are determined, the mean square forecast errors 

for the submodels for different forecast lengths can be compared with the 
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corresponding quantities of the full model to determine L-period 

causality. This method also could be used to determine the effect of 

Granger causality on the mean square error for one-period-ahead 

forecasts. 

One disadvantage of this method is the number of submodels that must 

be determined. In general, if there are n variables in the model, then 

we must determine n-1 submodels, each of which has n-1 variables. The 

determination of these submodels is difficult when there are more than 

three variables in the model. 

We now hypothesize an additional method of determining L-period 

causality. The method is presented without proof, but it is intuitively 

appealing. The hypothesis is that y is L-period caused by z for some L 

if there exists a chain of Granger causali3es between z and y. If each 

Granger causality in the system involves only one lag, then we 

hypothesize that L is equal to the length of the ~inimum-length chain 

between z and y. However, if some of the lags involved in the Granger 

causality chain are longer than one, then L may be larger than this 

minimum, depending on the position of the longer lags. For example, 

consider the following model: 

(8) Yt = d12 't-j + alt 

x t = 4  23 z t-k + a2t 

zt = a3t. 

In section 11, we saw that if j = k = 1, then z two period causes y. 

In general, it can be shown that for this model z (1 + j) period causes y 

independently of k.  Thus, the value of L depends not only on the length 
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of the Granger causal chain but also on the lags involved and their 

location in the chain. 

In terms of forecasting ability, L-period causality occurs when each 

variable in the chain is better forecast in the Granger sense using the 

previous variable. The L-period forecast is thus a better forecast 

because each variable in the chain is better forecast. That is, the 

L-period forecast of y depends on the forecast of x, which depends on the 

forecast of w, ... which depends on lagged z. In the example of equation 

(l), y is two-period caused by z, because the two-period-ahead forecast 

of y depends on the one-period-ahead forecast of x, which depends on 

lagged z. 

The advantage of this method over the previous method is its ease of 

use. Determination of Granger causal i ty is fairly easy (Tjostheim 

1981). Once the Granger causalities are ascertained, it is trivial to 

determine the chains of causalities. However, this method does not 

provide an indication of how much the L-period-ahead mean square error is 

reduced. Thus, we may have L-period causality with no practical 

significance. This would probably be true when L becomes large. 

IV. Summary 

Because Granger causality is determined only in terms of one-period 

forecasts, and because it is often necessary to forecast more than one 

period ahead, an extension of Granger causality is necessary in 

multivariate models.. We have presented an example that illustrates this 

idea and a proposal for an extension of Granger causality that addresses 

this problem. This extension involves L-period forecasting abi 1 ity. 
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That is, the ability to forecast a variable for L periods ahead is 

improved by using another variable versus not using it in the same sense 

of Granger causality for one period ahead. We have provided methods for 

determining L-period causality when a model is known. 
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