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EXTENSI ON OF GRANGER CAUSALITY
IN MULTIVARIATE TIME SERIES MODELS

Abst ract
This paper presents an example of a situation where Granger causality
does not exist but an extended definition of causality does. The
extended definition of causality is discussed, along with nmethods to
determne its existence in nultivariate time series nodels.

Key words:  Granger causality, nultivariate time series.

|, Introduction

The concept of Ganger causality (G anger 1969) has become widely
used in discussing relationships among variables. Some rel evant
references to Ganger causal ity are Sinms (1972), Haugh (1972), Pierce
(1977), and Pierce and Haugh (1977). Cenerally, Ganger causal ity has
been discussed in terms of bivariate nodels

Thi's paper proposes an extension of Ganger causality when nore than
two variables are used in a nultivariate time series nodel and it is
necessary to consider more than one- period- ahead forecasts.

Granger causality more appropriately may be called one- period- ahead
forecasting ability. Variable z is said to "Ganger cause" variable vy,

with respect to a given information set that includes z and y, if
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forecasts of present y are nore accurate when using past values of z than
when not doing so, al other available infornation being used in either
case. The neasure of accuracy usually used in the definition of Ganger
causal ity is the mean square error of one- period-ahead forecasts.

This idea can be expressed as follows: Let Z\t be the given inforna-
tion set (including at least z, and y,), Z\t ={AS: s< oZ(yIB)
be the mni numnmean square error fromforecastingy (one period ahead)
given the information set 8, and A.-z, be the set A, without z Then

z is said to Qanger causey if
o2(ylA) < o2(yIA=zZ).

Thus, Granger causality refers to only one- period- ahead forecasts.

Wen forecasting for nore than one period ahead, it is necessary to
know whet her G anger causal ity woul d include a1i possi bl e causal ity.
situations(in terns of forecasting ability). In section II is an exanple
of amiltivariate nodel for three variables(x, y, and 2. This nodel
denonstrates that while z may not Ganger causey, the two-period- ahead
forecasts using z have a smaller forecast error than the forecasts not
using z. Thus, Ganger causality does not enconpass all situations where
one woul d concl ude that sone type of causality exists(in terns of
forecasting ability). In section II, we also introduce an extension of

G anger causality that includes the multiperiod, nultivariate situation.

I1I. Extension of Ganger Causality

Wen dealing with only two variables, Pierce(1975) proves that if

better L-period-ahead forecasts for any L > 2 are produced by the addition
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of past z, then z must Granger cause y with respect to the set (Zt’ ytf).
However, as the following example demonstrates, this is not necessarily

true for systems with more than two variables:

(1) yp =91 % g ¥ Ay

Xp = 95324 1 % Ay
a

Zy = %3¢
where the ;s s and az are mutually orthogonal white noise processes
with variances o%, 0%, cg, respectively. |n this model, A; = (-yt’ Xis Zt)'

The minimum mean-square-error, one-period—-ahead forecasts for this

model are

(@) 5y () = by %
e 1(1) = b3 2,4

zt_l(-l) =0,

where Qt_l(l) is the one-period-ahead forecast of w at time t-1. These
forecasts have mean square errors of o%, og, and 0:23, respectively. (See
Tiao and Box (1981) for a general discussion of how to calculate
forecasts from these types of models and their mean square errors. )

If z is not included in the model, then the appropriate bivariate
model can be derived from the model given in equation (1) by matching the
variances, covariances, and cross covariances of y and x implied by this

model. This reduced model is given by

(3) oy =9 Xy * Ay
Xp = 3’5t

2, _ 22 2
where ¢« 9 = ¢23u3 + Ooe
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The minimum mean-square-error, one-period-ahead forecasts from this

model are

Ye_1(1) = bpx¢ 4

0,

xy_1(1)

with mean square errors of a% and ¢§3o§ + cg, respectively.

V¢ thus have shown that z does not Granger cause y (the mean-square-
forecast error is o% in both cases), but that z does Granger cause X
(dg < ¢§3o§ + cg). Similarly, we can show that x Granger causes y but not z.
Also, y does not Granger cause x or z. The causality chain is thus an
example of indirect causality (Tjostheim 1981) between z and y:

Z—X—>Y,
where -—+ means Granger causes.

When we examine the two-period-ahead forecasts, the result is

different. The two-period-ahead forecasts from model 1 are

(4) 9y 1(2) =855 X, (1) = 815 553 2, 4
% 1(2) = 853 2 1(1) = 0
0, |

24 4(2)

with mean square errors of ai +‘¢§Zog; cg'+ ¢§3o§, and o%, respectively.

(See Tiao and Box (1981) for a general discussion of how to calculate
multiple-period forecasts and their mean square errors. )

For model 3, the two-period-ahead forecasts are given by

(5) yt_l(z) = ¢12 it—l(l) =0
%,_1(2) =0,
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: 2 2 2
with nmean square forecast errors of oy + ¢12(02 +
2 2 2 2 2 -
$,5323) and o, + 8,505, respectively.

Thus, the nmean square forecast error for y two periods ahead is |ess

in the model including z( a + ¢%zo§) than it is in the nodel not including

2 22 2.2 2
1+ 91292 + 91297373)
even if a variable z does not Ganger cause another variable y, z may be

2 (o This illustrates the principle that

useful in forecasting y nore than one period ahead.
This notivates the following extension of Granger causality. A
variable z is said to cause another variabley, with respect to the set

A, if
(6) o2(y(L)IA) 4 o2(y(L)IA=Z) for any L > O,

where y(L) is the L-period-ahead forecast of y at time t-1. W call this

type of causality L-period causality, where L is the smallest value so

that inequality 6 is true. Thus, Ganger causality is one-period
causal ity
The concept of L-period.causality is not the same as the idea that z

is related toy with an L-period lag.  Consider the nodel

Ve = b1p Xp Y 91375 * At
Xg = %t
Zy = 3¢

for some j>1 Inthis nodel, y isrelated to z with.aj-period |ag,
but z Granger causes y; the value of j is immterial. This also
illustrates the idea that Granger causality does not necessarily involve

only one-period Iags.
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11I. Determning Miltiperiod Causality

G ven a multivariate time series nodel., we wish to determ ne what
patterns of causality are represented by the nodel. One nethod of doing
this(as denonstrated in the exanple in section II) is to conpare the
nean square forecast errors fromthe reduced model s resulting from
del eting one and only one variable with those of the full nodel for
different forecast lengths. (ne advantage in -doing this is to |earn how

muich the nean square errors change. For exanple, we saw in section II

2 2 2

that the two- period-ahead nean square error for y was reduced by 81,8530

when z was included in the given nodel .

Consi der the following nodel for n vari abl es:

MRS

MoON v o Lel”

where K (n-1 x 1), J (n-1x 1), M(1 x nl, and N(1 x 1) are
polynomal natrixes in B(where Bis the backshift operator, i.e., Bvy
=V, )i W Is the vector of n-1 variables excluding v; and n (n-1 x 1)

and (1 x 1) are the corresponding error terns. If the variable v is

omtted fromthis nodel, the resulting nodel is given by

(7) (K=aN"Y M)W = n-onLe.

(See Quenouil 1e 1957, p 43.) The autoregressive operators w 11 be given
by the right-hand side of equation(7). The noving average operators
wll have to be determined by conbining the two sources of error » and

Once the subnmodel s are determned, the nean square forecast errors

for the subnodel s for different forecast |engths can be conpared with the
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corresponding quantities of the full nodel to determ ne L-period
causality. This nethod al so could be used to determne the effect of
Granger causality on the nean square error for one-period-ahead
forecasts.

(One di sadvant age of this method is the nunber of subnodels that nust
be determned. In general, if there are n variables in the nodel, then
we nust determ ne n-1 submodels, each of which has n-1 variables. The
determnation of these subnodels is difficult when there are nore than
three variables in the nodel.

V& now hypot hesi ze an additional nethod of determning L-period
causality. The nethod is presented wthout proof, but it is intuitively
appealing. The hypothesis is that y is L-period caused by z for some L
if there exists a chain of Ganger causalities between z and y. If each
Granger causality in the systeminvolves only one |lag, then we
hypot hesi ze that L is equal to the length of the minimum-length chain
between z and y. However, if some of the lags involved in the G anger
causal ity chain are longer than one, then L nay be larger than this
m ni num dependi ng on the position of the longer lags. For exanple,

consi der the fol | owi ng nodel :

B) yp = by %y it
x, = 623 7t-k © %2t
Zt = a3t.

In section II, we sawthat if j = k =1, then z two period causes Y.
In general, it can be shown that for this nodel z(1 +j) period causes y

i ndependent|y of k. Thus, the value of L depends not only on the |ength
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of the Ganger causal chain but also on the Iags involved and their
| ocation in the chain

In terns of forecasting ability, L-period causality occurs when each
variable in the chain is better forecast in the Ganger sense using the
previous variable. The L-period forecast is thus a better forecast
because each variable in the chain is better forecast. That is, the
L- period forecast of y depends on the forecast of x, which depends on the
forecast of w, ... which depends on lagged z In the exanple of equation
(1), y is two-period caused by z, because the two-period-ahead forecast
of y depends on the one- period- ahead forecast of x, which depends on
| agged z.

The advantage of this method over the previous nethod is its ease of
use. Determnation of Granger causal ity is fairly easy (Tjostheim
1981). (Once the Ganger causalities are ascertained, it is trivial to
determne the chains of causalities. However, this nethod does not
provide an indication of how much the L- period-ahead mean square error is
reduced. Thus, we may have L-period causality with no practica

significance. This would probably be true when L becomes |arge.

V.  Summary

Because Granger causality is determned only in terns of one-period
forecasts, and because it is often necessary to forecast more than one
period ahead, an extension of Qanger causality is necessary in
nul tivariate nodels.. V& have presented an exanple that illustrates this

i dea and a proposal for an extension of Ganger causality that addresses

this problem This extension involves L-period forecasting abi 1ity
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That is, the ability to forecast a variable for L periods ahead is
i nproved by using another variable versus not using it in the same sense
of Granger causality for one period ahead. \® have provided methods for

determning L-period causality when a nodel is known.
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