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Dynamics, Cycles and Sunspot Equilibria in 
“Genuinely Dynamic, Fundamentally Disaggregative” 

Models of Money

by Ricardo Lagos and Randall Wright

This paper pursues a line of Cass and Shell, who advocate monetary models that are “genuinely dynamic
and fundamentally disaggregative” and incorporate “diversity among households and variety among
commodities.”  Recent search-theoretic models fit this description.  We show that, like overlapping
generations models, search models generate interesting dynamic equilibria, including cycles, chaos, and
sunspot equilibria.  This helps us understand how alternative models are related, and lends support to the
notion that endogenous dynamics and uncertainty matter, perhaps especially in monetary economies.  We
also suggest such equilibria in search models may be more empirically relevant than in some other
models.



1 Introduction

Cass and Shell (1980) advocate macro and monetary models with an explicit

microeconomic structure. The framework they had in mind was the overlap-

ping generations model of ¯at money [Samuelson [1958]; Shell [1971]; Wallace

[1980]). They argue \this basic structure has two general features which we

believe are indispensable to the development of macroeconomics as an intel-

lectually convincing discipline... First it is genuinely dynamic... Second it is

fundamentally disaggregative." They also say that they \¯rmly believe that

a satisfactory general theory must, at a minimum, encompass some diversity

among households as well as some variety among commodities," although

for technical reasons these features \will typically impose a signi¯cant con-

straint on our ability to derive substantial propositions concerning qualitative

e®ects."

Since they wrote these words a new monetary model has been developed

that is also genuinely dynamic and fundamentally disaggregative and takes

seriously diversity among households and variety among commodities { the

search model. While ostensibly quite di®erent, on some dimensions search

models deliver very similar predictions to overlapping generations models.

We show here that, like overlapping generations models, search models gen-

erate interesting dynamic equilibria including cycles, chaos, and sunspot equi-

libria. Knowing this helps us understand how alternative monetary theories

are connected, and lends further support to the notion that extrinsic dynam-

ics and uncertainty matter, perhaps especially in monetary economies (Shell

[1977]; Cass and Shell [1983]).

There are several search-based monetary models in the literature. Many

assume severe restrictions on how much money agents can carry, typically
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m 2 f0; 1g (Kiyotaki and Wright [1991]; Trejos and Wright [1995]; Shi

[1995]). This is convenient for the same reason two-period-lived agents are

convenient in the overlapping generations model: at any point in time we

can partition the set of agents into a subset with money who want to spend

it and a subset without money who want to get it. Yet m 2 f0; 1g is not

an appealing assumption. Recent search models allow agents to carry any

m 2 R+. Some versions of this model are notoriously di±cult to analyze

(Molico [1999]). Here we focus on the much more tractable version in Lagos

and Wright (2002) { hereafter referred to as LW.

Section 2 reviews the basic LW model. Section 3 goes beyond previ-

ous analyses by considering dynamic equilibria, including cycles and chaos.

Section 4 considers sunspots. Section 5 concludes.1

2 The Basic Model

Time is discrete. The set of agents A has measure 1. Agents live forever and

have discount factor ¯ 2 (0; 1). There is a set of nonstorable goods G . Our

version of Cass and Shell's (1980) \diversity among households [and] variety

among commodities" is as follows. Each i 2 A consumes a subset of goods

Gi ½ G, and produces one good gi where gi =2 Gi. Also, given any two agents

i and j drawn at random from A, the probability of a single coincidence is

prob(gi 2 G j) = ¾ 2 (0; 12) and the probability of a double coincidence is

prob(gi 2 G j ^ gj 2 Gi) = 0. In a single-coincidence meeting, if gi 2 Gj we
1A textbook treatment of cycles and sunspots in overlapping generations (and some

other) models is Azariadis (1993). Nonmonetary search models can also display interesting
dynamics, but only if the meeting technology has increasing returns (Diamond and Fuden-
berg [1989]), which is not the case here. Dynamics have been studied in monetary search
models by Wright (1994), Shi (1995), Coles and Wright (1998), Li and Wright (1998),
Ennis (2001,2002), and Lomeli and Temzelides (2002); these papers all assume m 2 f0; 1g.
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call j the buyer and i the seller.2

Let u(q) be i's utility from consuming any good in Gi and c(q) = q

the disutility of production. The assumption that c is linear is what makes

things tractable. Assume u is Cn with u0 > 0 and u00 < 0. Also, u(0) = 0

and u(¹q) = ¹q for some ¹q > 0. Let q¤ denote the e±cient quantity, which

solves u0(q¤) = 1. We sometimes need u000 · (u00)2=u0, which holds if u0 is

log-concave. In addition to goods, there is another object called money that

is storable, divisible, and can be held in any quantity m ¸ 0. For now, it has

no intrinsic value { it is ¯at money.

Each period has two sub-periods, day and night. During the day there is

a decentralized market with anonymous bilateral matching and bargaining;

at night there is a centralized frictionless market. Agents do not discount

between subperiods here but this is easily generalized (see Rocheteau and

Wright [2002]). All trade in the decentralized market must be quid pro

quo, as there can be no credit between anonymous agents (Kocherlakota

[1998]; Wallace [2001]). We could allow intertemporal trade in the centralized

market, but in equilibrium it will not happen since we cannot ¯nd one agent

who wants to save and another to borrow at the same interest rate.

Let Ft be the distribution of money holdings in the decentralized market

at t, whereMt =
R
mdFt(m) = M for all t.3 Let Vt(m) be the value function

of an agent with m dollars in the decentralized market and Wt(m) the value

function in the centralized market. Let qt (m; ~m) and dt (m; ~m) be the quan-

tity of goods and dollars traded in a single-coincidence meeting between a

buyer withm and a seller with ~m dollars. Let ® be the probability of meeting
2In LW, double coincidence meetings can occur with positive probability and the re-

sults are basically unchanged. Also, in LW there are some general goods that everyone
consumes, but this is not important for the model.

3We keep Mt constant here so we can focus on dynamics due exclusively to beliefs.
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anyone in the decentralized market and ¸ = ®¾. Bellman's equation is4

Vt (m) = ¸
Z

fu [qt (m; ~m)] +Wt [m¡ dt (m; ~m)]g dFt ( ~m)

+¸
Z

f¡qt ( ~m;m) +Wt [m+ dt ( ~m;m)]g dFt ( ~m) (1)

+(1¡ 2¸)Wt(m):

We normalize the price of goods in the centralized market to 1 and let Át
be the price of money. Then the problem is

Wt(mt) = max
xt;yt ;mt+1

fu (xt) ¡ yt + ¯Vt+1 (mt+1)g (2)

s.t. xt = yt + Át(m¡mt+1);

where xt is total consumption of goods in Gi, yt is production, and mt+1 is

money left over after trading. We impose nonnegativity on mt+1 and xt but

not yt. Our approach is to allow yt < 0 when solving (2); then, after ¯nding

equilibrium, one can introduce conditions to insure yt ¸ 0 (see LW).

If we insert yt from the budget equation,

Wt(m) = Átmt + max
xt;mt+1

fu(xt) ¡ xt ¡ Átmt+1 + ¯Vt+1 (mt+1)g : (3)

From (3), xt = q¤ where u0(q¤) = 1. Also, Wt(m) is linear:

Lemma 1 Wt(m) =Wt(0) + Átm:

Given this, we can simplify (1) to

Vt (m) = ¸
Z

fu [qt (m; ~m)] ¡ Átdt (m; ~m)g dFt ( ~m) (4)

+¸
Z

f¡qt ( ~m;m) + Átdt ( ~m;m)g dFt ( ~m) +Wt(m):

4The ¯rst term is the expected payo® from buying qt (m; ~m) and going to the centralized
market that night with m¡dt (m; ~m) dollars. The second term is the expected payo® from
selling qt( ~m; m) and going to the centralized market with m+dt( ~m; m) dollars. Notice the
roles of m and ~m are reversed in these two terms. The ¯nal term is the payo® from going
to the centralized market without trading in the decentralized market.
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We now turn to the decentralized terms of trade. Consider a single-

coincidence meeting when the buyer has m and the seller ~m. We use the

generalized Nash solution:

max
q;d

[u (q) +Wt (m¡ d) ¡Wt (m)]µ [¡q +Wt ( ~m+ d)¡Wt ( ~m)]1¡µ

s.t. d · m. By Lemma 1, this reduces to:

max
q;d

[u (q) ¡ Átd]µ [¡q + Átd]1¡µ (5)

s.t. d · m. The solution (q; d) to (5) does not depend on ~m, and depends

on m i® the constraint d · m binds. Thus, we write qt(m; ~m) = qt(m) and

dt(m; ~m) = dt(m) in what follows.

Lemma 2 The bargaining solution is

qt(m) =
½

bqt(m) if m < m¤
t

q¤ if m ¸ m¤
t

dt(m) =
½
m if m <m¤

t
m¤ if m ¸m¤

t
(6)

where m¤t = [µq¤ + (1¡ µ)u(q¤)] =Át and bqt(m) solves

Átm =
µqu0(q) + (1¡ µ)u(q)
µu0(q) + 1¡ µ : (7)

Proof: One can easily check that the proposed solution satis¯es the ¯rst order

conditions from (5). ¥

Lemma 3 For all t, for all m <m¤
t , we have q0t(m) > 0 and qt(m) < q¤.

Proof: The implicit function theorem implies bqt(m) is Cn¡1 and

bq 0t =
Át(µu0 +1 ¡ µ)
u0 ¡ µ(Átm¡ q)u00

=
Át(µu0 + 1¡ µ)2

u0(µu0 +1 ¡ µ) ¡ µ(1¡ µ)(u¡ q)u00 > 0
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for allm < m¤t , where the second equality follows from (7). Since limm!m¤t bqt(m) =

q¤, we conclude that qt(m) = bqt(m) < q¤ for all m <m¤
t . ¥

Inserting (6) and (3) into (4), we have

Vt(m) = vt(m) + u(q¤) ¡ q¤ + Átm+ max
mt+1

f¡Átmt+1 + ¯Vt+1 (mt+1)g (8)

where

vt(m) = ¸fu [qt (m)] ¡ Átdt (m)g + ¸
Z

[Átdt ( ~m)¡ qt ( ~m)]dFt ( ~m) : (9)

In LW we show there exists a unique Vt(m) in a certain class of functions

satisfying (8).5 To avoid these details in this paper, we can work with the

sequence problem,

V0(m0) = max
fmt+1g
m0 given

1X

t=0

¯t [vt(mt) + u(q¤)¡ q¤ + Át(mt ¡mt+1)] (10)

where the agent takes as given the entire path for (Át; Ft).

Since qt(m) and dt(m) are Cn¡1 for all m 6=m¤
t , so is vt(m). We have the

¯rst order conditions

¡Át + ¯v0t+1 (mt+1) + ¯Át+1 · 0; = 0 if mt+1 > 0 8t: (11)

In a monetary equilibrium at least one agent must choose mt+1 > 0, and for

him (11) holds with equality. Indeed, we claim that all agents choose the

same mt+1 = M > 0 in any equilibrium. We show this in several steps.

Lemma 4 In any equilibrium, ¯Át+1 · Át for all t.

5This is a nonstandard dynamic programming problem because it is nonstationary and
because Vt(m) is unbounded due to the term Átm. The problem can be rendered stationary
by including Át as an aggregate state variable as in Du±e et al. (1994). The fact that Vt
is unbounded can be ¯nessed by working in the space of functions ¹V (m) = ¹v(m) + Ám,
where ¹v is continuous and bounded. See LW.
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Proof: From (9) we have

v 0t+1(m) =
½
¸u0 [bqt+1(m)] bq 0t+1(m) ¡¸Át+1 if m <m¤

t+1
0 if m ¸ m¤t+1

(12)

where bq0t+1 is given above. If ¯Át+1 > Át then the left hand side of (11) is

strictly positive for mt+1 > m¤t+1 and so the problem has no solution. ¥

Lemma 5 In any equilibrium, dt(mt) = mt < m¤t and qt(mt) = bqt(mt) < q¤

for all t ¸ 1.

Proof: One can easily check limmt+1!m¤t+1
v0t+1(mt+1) < 0. This combined

with Lemma 4 implies that the left hand side of (11) is strictly negative for

all mt+1 2 (m¤t+1 ¡ ";m¤
t+1) for some " > 0, and weakly negative for all

mt+1 > m¤t+1. Hence, we have mt+1 < m¤t+1. The rest follows from Lemma

2. ¥
We now know that agents choose mt+1 < m¤

t+1. If we could show v00 < 0

for mt+1 < m¤
t+1 then we could conclude they all choose the same mt+1,

simply because the marginal cost of acquiring money is constant at Át given

our linear production cost. While v 00 cannot be signed in general (since it

depends on u000) we do have the following result.

Lemma 6 Assume that µ ¼ 1 or that u0 is log-concave. Then in any equi-

librium, for all t ¸ 1, we have v00(mt+1) < 0 for all mt+1 < m¤t+1, and Ft is

degenerate at M .

Proof: Di®erentiation implies v00 is the same sign as ¡+(1¡µ) [u0u000 ¡ (u00)2],

where ¡ is a function of parameters that is strictly negative but otherwise

need not concern us. Hence, v 00 < 0 for all m in the relevant range if either

we assume u0u000 · (u00)2 for all q, which follows from log-concavity, or we
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assume µ ¼ 1. Given v00 < 0, there is a unique solution to (11) at equality,

and so all agents choose the same mt+1. That is, F is degenerate. ¥
The next step is to reduce the model to 1 equation in 1 unknown. To

begin, insert v0t+1 from (12) into (11) to get

Át = ¯Át+1 [1¡ ¸ + ¸e(qt+1)] ; (13)

where e(qt+1) = u0[qt+1(mt+1)]bq0t+1(mt+1)=Át+1. Inserting bq0t+1, we have

e(q) =
u0(q)[µu0(q) + 1¡ µ]2

u0(q)[µu0(q) + 1¡ µ] ¡ µ(1¡ µ)[u(q) ¡ q]u00(q) : (14)

Notice e(qt+1) does not depend on t or Át+1 directly, but only on qt+1.

Now (7) with m =M implies Át+1 = f (qt+1)=M , where

f(q) =
µqu0(q) + (1 ¡ µ)u(q)
µu0(q) + 1¡ µ : (15)

Inserting (15) into (13), we get a simple di®erence equation:

f (qt) = ¯f (qt+1)[1 ¡ ¸+ ¸e(qt+1)]: (16)

A monetary equilibrium is a path fqtg satisfying (16) that remains in (0; q¤)

for all t. A steady state qs is a solution to

1 = ¯ (1¡ ¸) + ¯¸e(qs): (17)

Proposition 1 Assume either that µ ¼ 1 or that u0 is log concave. Then

there can be at most one monetary steady state qs. A steady state qs exists

i® e(0) > (1 ¡ ¯ + ¸¯)=¸¯. When it exists, qs is increasing in µ, ¸ and ¯.

Also, qs ! q¤ as ¯ ! 1 i® µ = 1.

Proof: Let T(q) denote the right hand side of (17). Calculation shows the

stated conditions imply e0 < 0 and hence T 0 < 0, so there cannot be more
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than one solution to T(q) = 1. Notice

T(q¤) =
¯¸

1¡ µ(1¡ µ)[u(q¤) ¡ q¤]u00(q¤) + ¯(1¡ ¸):

Hence, T(q¤) · ¯ < 1, and there is a solution qs 2 (0; q¤) to T(q) = 1 i®

T(0) > 1 i® e(0) > 1¡¯+¸¯
¸¯ . Also, T(q¤) = ¯ if µ = 1 and T (q¤) < ¯ if µ < 1.

Hence, qs ! q¤ as ¯ ! 1 i® µ = 1. The rest is routine. ¥

3 Dynamics

We now consider equilibria where q changes over time. To begin, denote

the right hand side of (16) by R(qt+1). Notice R(qt+1) ¸ 0, f(0) = 0, and

limq!1 f(q) = 1 (at least if we assume u0 is bounded away from 0). Also

notice

f 0(q) =
u0(q)[µu0(q) + 1 ¡ µ] ¡ µ(1¡ µ)[u(q) ¡ q]u00(q)

[µu0(q) + 1¡ µ]2 > 0:

Hence, 8qt+1 ¸ 0 there exists a unique qt = g(qt+1) such that f(qt) = R(qt+1).

Thus g is single-valued, although h = g¡1 is generally a correspondence.

Clearly q = 0 is a (nonmonetary) steady state.6 Under the conditions in

Proposition 1 there is a unique monetary steady state qs = g(qs) > 0. Hence

g intersects the 45o line exactly twice, at 0 and at qs.

Lemma 7 Assume a unique monetary steady state qs exists; then g0(qs) < 1

and g0(0) > 1.

Proof: Di®erentiation implies

g0(qt+1) =
¯
f 0(qt)

ff 0(qt+1)[1 ¡ ¸+ ¸e(qt+1)] + ¸e0(qt+1)f (qt+1)g :

6Notice e(q) · µu0(q) + 1 ¡ µ. Hence, f (q)e(q) · µqu0(q) + (1 ¡ µ)u(q). Therefore the
right hand side of (16) is 0 at q = 0.
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At qt = qt+1 = qs we have

g0(qs) = ¯(1¡ ¸) + ¯¸e(qs) + ¯¸e
0(qs)f(qs)
f 0(qs)

:

Inserting (17), we have

g0(qs) = 1 +
¯¸e0(qs)f(qs)
f 0(qs)

: (18)

As in Proposition 1, T(q¤) < 1 where T(q) = ¯¸e(q) + ¯ (1¡ ¸). Hence, if

there exists a unique solution to T(qs) = 1 we must have T 0(qs) < 0. This

means e0(qs) < 0, so (18) implies g 0(qs) < 1 and g0(0) > 1. ¥

FIGURE  1

Figure 1 shows qt = g(qt+1) and qt+1 = h(qt) in the (qt; qt+1) plane when

h is single-valued. Since g0(0) > 1 we have h0(0) < 1, which means there

exists a continuum of dynamic equilibria: for all q0 2 (0; ¹q0), where ¹q0 ¸ qs,
there is a path from q0 staying in (0; q¤).7 We summarize this observation as

follows.

Proposition 2 If a steady state qs > 0 exists, there is a ¹q0 ¸ qs such that

8q0 2 (0; ¹q0) there is an equilibrium starting at q0 where qt ! 0.

FIGURE  2

In Figure 2, h is a correspondence: given qt there can be multiple values

of qt+1 consistent with equilibrium. The Figure is drawn with g0(qs) < ¡1,

which implies there is a 2-period cycle. We state this formally, but as the

result is standard we only sketch the proof (see Azariadis [1993] ).
7In the case shown in the ¯gure we have ¹q0 = qs because h is single valued; in general,

when h is not single valued we can have ¹q0 > qs (see Figure 2 below). Also, if there are
multiple monetary steady states, the result holds if we interpret qs as the lowest one.
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Proposition 3 Assume a monetary steady state qs exists. If g0(qs) < ¡1

then 9(ql; qh), with q l < qs < qh, such that qi = g2(qi), i = l; h, and if g0(qs)

is close to ¡1 then qi 2 (0; q¤).

Proof: If g0(qs) < ¡1 then in the (qt; qt+1) plane g is steeper than h where

they intersect on the 45o line. Given g(0) = h(0) = 0, the curves must

intersect o® the 45o line at some point (ql; qh). This means g2(ql) = q l and

g2(qh) = qh. Hence the system has a 2-cycle. Technically, as g0 passes through

¡1 the system undergoes a °ip bifurcation that gives rise to the cycle, which

guarantees q l and qh will be close to qs if g0 is close to ¡1. ¥
In (18) we found g0(qs) = 1 + ¯¸f (qs)e0(qs)=f 0(qs). For instance, if µ = 1

then g0(qs) = 1 + ¯¸qsu00(qs), which suggests that su±cient curvature in u is

required for g0(qs) < ¡1. To consider an explicit example, suppose

u(q) =
(b+ q)1¡´ ¡ b1¡´

1 ¡ ´ ;

where b 2 (0; 1) and ´ > 0. With µ = 1, we can solve explicitly for

qs =
µ

¸¯
1 ¡ ¯ + ¸¯

¶1=´

¡ b:

For b ¼ 0 we have g0(qs) ¼ 1 ¡ ´(1 ¡ ¯ + ¯¸), and so g0(q) < ¡1 when

´ > ´0 = 2= (1¡ ¯ + ¯¸). For ´ close to ´0 the cycle stays in (0; q¤). More

generally, given b > 0 there is a critical ´b such that as we increase ´ beyond ´b
the system bifurcates and a 2-cycle emerges. As ´ increases further cycles of

other periodicity emerge; e.g. with ® = 1, ¾ = 0:5, b = 0:01 and ¯ = 1=1:1,

cycles of period 3 emerge at ´b ¼ 3:9, as can be veri¯ed numerically by

looking for ¯xed points of g3. Once we have cycles of period 3 we have cycles

of all periods, including chaos (Li and Yorke [1975]).

Similar results hold in other models, including overlapping generations

models, although there seems to be a view that \unrealistic" parameter values
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are required in that context. In our model we need qt+1 = h(qt) to be

backward bending, just like in an overlapping generations model, but in that

model the condition means the saving function is non-monotone in the rate

of return, while here it means the demand for liquidity is non-monotone in

in°ation, which seems to be a di®erent requirement.8

We now introduce a °ow return ° per nominal unit of money. This can

have interesting e®ects on the equilibrium set here, as it can in overlapping

generations models (Farmer and Woodford [1997]), and will also be useful in

the next section. One can interpret ° as interest on currency if ° > 0 and

as a storage cost or tax if ° < 0. Interpreting it as interest on currency will

allow us below to relate to Friedman's (1969) policy discussion. Note that °

is a real return per unit of currency: the `government' pays °m goods to an

agent holding m dollars (it does not matter which good since every g 2 G
has the same price). We balance the budget with lump sum taxes.

To derive the equilibrium conditions with ° 6= 0, simply add the term

°mt minus the lump sum tax to the right hand side of the budget constraint

in (2), and notice that now Wt(m) = Wt(0) + (Át + °)m. The bargaining

solution is as in (6) except we replace Át with Át+ ° in the de¯nitions of m¤
t

and bqt(m). The steps leading to (16) now yield

f (qt) = ¯f(qt+1)[1¡ ¸ + ¸e(qt+1)] + °M; (19)

where e and f are as before, although now Át = f (qt)=M ¡ °. Hence, qt =

g°(qt+1) where g° is de¯ned by (19). Figure 3 shows the dynamical system

for three cases: ° < 0, ° = 0, and ° > 0. The ° = 0 case was analyzed

above, and we now consider the cases ° < 0 and ° > 0 in turn.
8The essential point is that here money is a genuine medium of exchange, not merely a

store of value, and so the empirical implications have di®erent interpretations. Moreover,
our model can be easily and naturally calibrated to an arbitrarily period length { a year,
a day, or whatever { which also changes the empirical implications.
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FIGURE  3

If ° < 0 then g° is shifted to the left of g0. There is some ° < 0 such that

if ° < ° there is no monetary steady state, or indeed any monetary equilibria.

If ° 2 (°; 0), there are generically an even number of monetary steady states,

all below the qs that prevailed with ° = 0. The lowest monetary steady state

q inherits the stability properties of the nonmonetary steady state from the

case ° = 0, so it is locally stable. Now q = 0 is still a steady state (where

agents dispose of money, given ° < 0) but it is unstable; indeed, for any

q0 2 (0; q) we have qt ! q. Although q is locally stable, qt may not converge

to it if q0 > q; it is possible that qt will converge to another steady state q or

cycle around q (this cannot happen in Figure 3, because h is single valued,

but it can happen in general).

If ° > 0 then g is shifted to the right. Then there is a unique monetary

steady state, and it is above the qs that prevailed with ° = 0. One can

generalize Lemma 3 to show that qt can never exceed q¤: as we will argue

shortly, equilibria only exist for ° below some threshold °̂, and given µ = 1

and ° = °̂, we have q = q¤ is a steady state, while otherwise qt < q¤ 8t.
First, notice that ° > 0 implies q = 0 is not an equilibrium. Thus, ° > 0

eliminates the nonmonetary steady state, and any path converging to q = 0.

Also, suppose a monetary steady state does not exist with ° = 0; i.e., suppose

qt = g0(qt+1) in Figure 3 does not intersect the 45o line when ° = 0. When

° > 0, it is obvious from (19) that g° must intersect the 45o line at some

q > 0, so there necessarily is a monetary steady state.9

To complete the analysis of ° > 0 we characterize the maximum feasible
9Intuitively, even if you believe money has no exchange value, you would still be willing

to give some positive q for it so as to get the interest °. Similar results hold in models
where m 2 f0; 1g (Li and Wright [1998]).
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interest payment °̂. First, with ° 6= 0 (17) becomes

e (q) = 1 +
1¡ ¯
¸¯

¡ M
¸¯f (q)

°: (20)

Second, we can generalize Lemma 5 to show ¯(Át+1 + °) · Át. In steady

state this reduces to ° · 1¡¯
¯ Á or, since f (q) = (Á+ °)M ,

° · 1¡ ¯
M
f (q) = °(q): (21)

Any equilibrium has to satisfy this condition.

Suppose we set ° to the maximum feasible °, satisfying (21) with equality.

Then (20) becomes

e(q) = 1 +
1¡ ¯
¸¯

¡ M
¸¯f (q)

°(q) = 1:

When µ = 1, e(q) = 1 holds at qs = q¤ and ° = °(q¤) = (1 ¡ ¯)q¤=M = °¤;

for any µ < 1, however, e(q) = 1 holds at qs < q¤ and ° = °(qs) < °¤. That

is, given µ = 1 the maximum interest we can pay is °¤, and it implies qs = q¤

8t is an equilibrium (indeed, the unique equilibrium); given µ < 1, however,

the maximum interest we can pay is ° < °¤, and it implies the steady state

is qs < q¤.

We interpret ° = °¤ as the Friedman Rule for interest on currency. One

can derive similar results if, rather than paying interest, we contract the

money supply so Át increases with t: the maximum de°ation rate consistent

with monetary equilibrium (Át+1=Át = 1=¯) is the optimal policy, and it

achieves the e±cient outcome i® µ = 1. Yet there is one signi¯cant di®erence:

with de°ation and ¯at money (° = 0) the nonmonetary equilibrium always

exists; with interest payment °¤, given µ = 1 the e±cient outcome is the

unique equilibrium.10 We summarize the key results as follows:
10We already argued that ° = °¤ implies the steady state is q¤ and that for any ° > 0
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Proposition 4 Suppose ° > 0. Then there is some maximum feasible °̂. If

µ = 1, °̂ = °¤ and it implies the unique equilibrium is qt = q¤ 8t. If µ < 1,

°̂ < °¤ and qt < q¤ 8t. In any case, ° > 0 implies there is no equilibrium

with qt = 0 or qt ! 0. Now suppose ° < 0. Then there is some ° < 0 such

that ° 2 (°; 0) implies multiple equilibria, all of which have qt < q¤ 8t, while
° < ° implies there are no monetary equilibria.

4 Sunspots

Let st be a stochastic process with no e®ect on fundamentals but potentially

with an e®ect on behavior due to expectations. Assume st is known at t

before the decentralized market opens, but st+1 is random with distribution

function G(st+1jst). In general, all variables now need to be indexed by s as

well as t. In a stationary equilibrium we need to index things by s but not

by t. Much of this section will focus on stationary equilibria, but we will also

consider brie°y nonstationary sunspot equilibria.

We begin with an example where ° = 0. The example constructs a

nonstationary sunspot equilibrium along the lines of Cass and Shell (1983) by

randomizing across deterministic equilibria. Assume the graph of qt+1 = h(qt)

is a correspondence, so that given some q0 there are two distinct values, qH1
and qL1 , both in (0; q¤) and both satisfying q1 = h(q0). This means that

f(q0) = ¯f(q1) [1 ¡ ¸+ ¸e(q1)] (22)

holds at both q1 = qH and q1 = qL.

there are no equilibrium paths leading to q = 0. If h0 > 0 at q¤ then there clearly can
be no nonstationary equilibria. If h0 < 0 at q¤ then paths starting near q¤ must oscillate
around q¤, which violates the result that qt · q¤. Hence qt = q¤ for all t is the unique
equilibrium.
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Now suppose we set q1 = qH with probability ¼ and q1 = qL with

probability 1 ¡ ¼. To be more precise, we set prob(s = s1) = ¼ and

prob(s = s2) = 1 ¡ ¼, and the equilibrium is as follows: s = s1 implies

q1 = qH while s= s2 implies q1 = qL, and for t > 1 we follow a deterministic

equilibrium path from q1. Proceeding as above, the generalized equilibrium

condition is

f (q0) = ¯¼f (qH)
£
1 ¡ ¸+ ¸e(qH)

¤
+ ¯(1 ¡ ¼)f (qL)

£
1¡ ¸ + ¸e(qL)

¤
: (23)

Clearly, if the equilibrium condition for the deterministic economy holds at

both qH and qL then the equilibrium condition for the economy with sunspots

also holds.11

We now consider stationary sunspot equilibria, where at every date q =

q(s). We omit t subscripts and write, e.g., qt = q and qt+1 = q+1. The

generalization of (3) is

W (m; s) = u(q¤)¡ q¤+ Á(s)m+ °m+ max
m+1

f¡Á(s)m+1 + ¯EV+1 (m+1; s+1)g

whereE is the expectation with respect to G(s+1js). As in Lemma 1,W (m; s)

is linear. The bargaining solution is as in (6), except m¤(s) and bq(m; s) are

indexed by s, and (8) becomes

V (m; s) = v(m; s) + u(q¤)¡ q¤ + Á(s)m+ °m

+max
m+1

f¡Á(s)m+1+ ¯EV+1 (m+1; s+1)g ;

11Following Peck (1988) one can also construct a sunspot equilibrium which is not
a randomization over deterministic equilibria, even if h is a function. Consider (22),
and suppose that R0 > 0 where R(q1) denotes the right hand side (it is not hard to
make assumptions to guarantee this). Then let qH = q1 + " and qL = q1 ¡ ". Then
clearly R

¡
qL

¢
< f (q0) < R

¡
qH

¢
. Therefore, we can choose the probability ¼ so that the

equilibrium condition for the sunspot economy (23) will hold.
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where v(m; s) is the obvious generalization of (9).

The relevant ¯rst order conditions are

¡Á(s) + ¯E
£
v 0+1 (m+1; s+1) + Á(s+1) + °

¤
= 0 8s; (24)

where

v0(m; s) =
½
¸u0 [bq(m; s)] bq 0(m; s)¡ ¸[Á(s) + °] if m < m¤(s)
0 if m ¸ m¤(s)

and bq 0 is as above. Notice that m+1 ¸ m¤(s+1) with probability 1 implies

v0+1 (m+1; s+1) = 0 with probability 1, and thus (24) implies E [Á(s+1) + °] =

¯¡1Á(s) > Á(s) with probability 1. At least with ° · 0, this is cannot be

{ we cannot expect Á(s) to rise in every state in a stationary equilibrium {

and so we have m+1 < m¤(s+1) with positive probability. However, it is not

necessarily true that m+1 <m¤(s+1) with probability 1.

The conditions in Lemma 6 now imply v00 · 0 8s with strict inequality

if m+1 < m¤(s+1). Hence, there is a unique solution to (24), and F is again

degenerate at m+1 =M . Let B = fs : M < m¤(s)g be the set of realizations

for s such that q < q¤. Inserting v0 into (24), we have

Á(s) = ¯
Z

B
[Á(s+1) + °] f1¡ ¸ + ¸e [Q(s+1)]g dG(s+1js)

+¯
Z

Bc
[Á(s+1) + °]dG(s+1js);

where Q(s) is the equilibrium value of q in state s and e(q) is de¯ned above.

Inserting Á(s) = f[Q(s)]=M ¡ °, where f is de¯ned above, we have a

functional equation in Q(s):

f[Q(s)] = ¯
Z

B
f [Q(s+1)] f1¡ ¸ + ¸e [Q(s+1)]g dG(s+1js)

+¯
Z

Bc
f[Q(s+1)]dG(s+1js) + °M:
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It is always possible for agents to ignore sunspots; e.g. if ° = 0 one solution

is Q(s) = qs 8s where qs is the steady state in the model without sunspots,

and another is Q(s) = 0 8s. Or, if ° < 0 but j°j is not too big, then

there are two monetary steady states without sunspots, called q and q in the

previous section. Here we are interested in a proper sunspot equilibrium, or

a non-constant solution Q(s).

At this point, mainly to reduce notation, we set µ = 1 so that e(q) = u0(q)

and f(q) = q. Now consider the case s 2 fs1; s2g, with prob(s+1 = s2js =

s1) = H1 and prob(s+1 = s1js = s2) = H2 (Hj is the probability of leaving

state sj). Let qj = Q(sj). One possibility is that B contains both states {

say, q1 < q2 < q¤ { in which case we have

q1 = ¯(1¡H1)q1 [1¡ ¸ + ¸u0(q1)] + ¯H1q2 [1¡ ¸ + ¸u0(q2)] + °M
q2 = ¯H2q1 [1 ¡ ¸+ ¸u0(q1)] + ¯(1 ¡H2)q2 [1¡ ¸ + ¸u0(q2)] + °M:

We seek a solution to this system with q1 < q2 < q¤. For this, we mimic

what one does in overlapping generations models.

One way to proceed is to follow Guesnerie (1986) or Azariadis and Gues-

nerie (1986) by considering the limiting case where H1 = H2 = 1. In this

case the system becomes

q1 = ¯q2 [1 ¡ ¸+ ¸u0(q2)] + °M = g°(q2)

q2 = ¯q1 [1 ¡ ¸+ ¸u0(q1)] + °M = g°(q1)

where qt = g°(qt+1) is precisely the dynamical system in the previous section.

That is, with H1 = H2 = 1 we have reduced our search for sunspot equilibria

to a search for 2-cycles. We know a 2-cycle exists if g0 < ¡1 by Proposition

3 and the explicit example. Since the system of equations in question is

continuous in (H1; H2) there also exist stationary sunspot equilibria with

q1 < q2 < q¤ for some Hj < 1.
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Another way to proceed is to set ° < 0 and then try to construct sunspot

equilibria from the two monetary steady states, similar to Cass and Shell

(1983). To begin, set H1 =H2 = 0, so that

q1 = ¯q1 [1¡ ¸ + ¸u0(q1)] + °M
q2 = ¯q2 [1¡ ¸ + ¸u0(q2)] + °M:

These two equations are identical, but can have two di®erent solutions: the

two monetary steady states in Figure 3. Thus, we can set q1 = q 2 (0; q¤)

and q2 = q 2 (q; q¤). By continuity, there exists a solution q1 < q2 < q¤ for

some Hj > 0.

We summarize the key results of this section as follows:

Proposition 5 When h is a correspondence, sunspot equilibria exist where

given q0 we randomize over q1. When there is a 2-cycle, stationary sunspot

equilibria exist when Hj is near 1. When there exist multiple monetary steady

states, stationary sunspot equilibria exist when Hj is near 0.

5 Conclusion

This paper has pursued a line, due to Cass and Shell (1980), that says it is

desirable to work with monetary models that are \genuinely dynamic and

fundamentally disaggregative" and also allow \diversity among households

and variety among commodities." Recent search-theoretic models ¯t this

description well. We showed here that these models, like some other models,

generate interesting dynamics. This helps us to understand how alternative

monetary theories are related, and gives further support to the notion that

extrinsic dynamics and uncertainty matter. One possible advantage of our

framework is that the parameter values needed for °uctuating equilibria may
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not be as empirically implausible, and certainly the implied period length

seems more empirically relevant, that in some other models.
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Figure 1: Case where h is a function
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Figure 2: Case where h is a correspondence
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Figure 3: Equilibria for di®erent °
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