
THE GROUP OF ENDOTRIVIAL MODULES IN THE NORMAL CASE
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Abstract. The group of endotrivial modules has recently been determined for a finite group

having a normal Sylow p-subgroup. In this paper, we give and compare three different presen-

tations of a torsion-free subgroup of maximal rank of the group of endotrivial modules. Finally,
we illustrate the constructions in an example.

Keywords : Endotrivial modules, finite groups, cohomology of finite groups.

1. Introduction

Endotrivial modules play an important role in the modular representation theory of finite groups,
and this may explain why many group theorists have been studying them intensively, since the
late seventies. The classification of endotrivial modules of a finite p-group was recently achieved
in [12]. Thereafter, in a joint work, Jon Carlson, Daniel Nakano and the author tackled the question
of the classification of endotrivial modules for an arbitrary finite group, and they could give an
almost complete classification in the case of a finite group of Lie type in its defining characteristic
(cf. [9]). The general case is still an open question, in the sense that no presentation by generators
and relations of the group of endotrivial modules is yet known. However, the obstacles have been
overcome in the case of a finite group having a normal Sylow p-subgroup. The results are presented
in [9, Theorem 3.4], where the authors show that in this case, the group of endotrivial modules
is generated by the classes of the indecomposable endotrivial modules that are extended from
the Sylow p-subgroup. Then, by means of cohomological tools, they construct a minimal set of
generators for the group of endotrivial modules.

The primary aim of these notes is to give an alternative construction of a torsion-free subgroup
of maximal rank of the group of endotrivial modules of a finite group having a normal Sylow p-
subgroup, that does not appeal to any cohomological knowledge. The method refers to a theorem
proven by Dade, and it is presented in Section 3, after that basic facts about endotrivial modules
are recapitulated in Section 2. In Section 4, we review the modules and the techniques used in [8]
and [9], and we compare with the approach presented in the previous section. Finally, in Section 5,
we work out thoroughly an “odd extraspecial” example.

2. Preliminaries

Throughout these notes, we let k be an algebraically closed field of prime characteristic p. If
G is a finite group, we write mod(kG) for the category of finitely generated kG-modules and
stmod(kG) for the stable module category. That is, the objects of stmod(kG) are the same
as those of mod(kG), and the morphisms are equivalence classes of morphisms. Namely, two
morphisms are equivalent if their difference factors through a projective module (cf. [7, § 5]). In
addition, we write k for the 1-dimensional trivial kG-module, and if M is a finitely generated
kG-module, then Endk M = Homk(M,M) denotes the kG-module that is the k-algebra of k-linear
endomorphisms of M . Recall that, for two kG-modules M and N , there is an isomorphism of
kG-modules Homk(M,N) ∼= M∗⊗N , where M∗ = Homk(M,k) is the k-linear dual of M , and the
tensor product “⊗” is the tensor product over the field k.
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Definition 2.1. Let G be a finite group. A finitely generated kG-module M is endotrivial provided
that Endk M ∼= k in stmod(kG), or equivalently, Endk M ∼= k ⊕ (proj) in mod(kG), for some
projective kG-module (proj).

We say that two endotrivial kG-modules are equivalent if they are isomorphic in stmod(kG).
The set T (G) of isomorphism classes in stmod(kG) of endotrivial kG-modules is an abelian group,
called the group of endotrivial modules. The composition law is defined by [M ] + [N ] = [M ⊗N ].

In particular, in T (G), we have 0 = [k] and −[M ] = [M∗].

Endotrivial kG-modules have been defined by E. Dade (cf. [13]), in 1978, for finite p-groups, as
a particular case of the capped endo-permutation kG-modules. A capped endo-permutation kG-
module, for a finite p-group G, is a finitely generated kG-module whose endomorphism algebra is
a permutation module having a trivial direct summand. Modulo a suitable equivalence relation,
they form a finitely generated abelian group D(G), and the group T (G) identifies with a subgroup
of D(G).

Also, for a subgroup H of G, the restriction map ResG
H : mod(kG) → mod(kH) (also denoted

by “·↓G
H ”) induces a group homomorphism ResG

H : T (G) → T (H).
Non-trivial examples of endotrivial modules are the syzygies of the trivial module, whereas, in

the case of a finite p-group, most of the relative syzygies are capped endo-permutation modules
(not endotrivial in general, cf. [1]). Let us recall their definitions.

Definition 2.2. If X is a finite G-set, then Ω1
X(k) is the relative (to X) syzygy of k, that is,

the kernel of the augmentation map kX → k.
If X = G, then we define the syzygy Ωn

G(k) of k, for each n ∈ Z, as follows. If n ≥ 1, we let
Ωn

G(k) be the kernel of the (n− 1)-st differential in a minimal projective resolution of k.

. . .
∂n+1 // Xn

∂n //

"" ""FFFFFFFF Xn−1
∂n−1 // . . . ∂2 // X1

∂1 //

"" ""EEEEEEEE X0
∂0 // // k

Ωn
G(k)

, �

;;vvvvvvvvv
Ω1

G(k)
- 

<<yyyyyyyy

If n ≤ −1, we let Ωn
G(k) = Homk(Ω−n

G (k), k), and we set Ω0
G(k) = k.

Let G be a p-group and suppose that Ω1
X(k) is a capped endo-permutation kG-module. Then

we let ΩX denote its class in D(G), or T (G) in case it is endotrivial. In particular, for any finite
group G, and for any integer n, the syzygies Ωn

G(k) are indecomposable endotrivial modules and
we have [Ωn

G(k)] = nΩG in T (G). We refer the reader to Section 4 in [7] for more properties of the
syzygies, and to Sections 2 to 5 in [4] for those of the relative syzygies.

Elementary abelian p-subgroups play an important role in the analysis of T (G). In particular,
we will need the following group theoretical notions for our purposes.

Definition 2.3. Let G be a finite group and p be a prime.
(1) The p-rank of G is the largest integer r such that G has an elementary abelian p-subgroup

of rank r.
(2) We write E≥2(G) for the poset of G-conjugacy classes of elementary abelian p-subgroups

of G of p-rank at least 2.

Note that the p-rank of a finite group G is the p-rank of a Sylow p-subgroup of G. Moreover, if
a Sylow p-subgroup P is normal in G, then E≥2(G) identifies with the quotient of E≥2(P ) by the
action by conjugation of G.
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The number of connected components of E≥2(G) and the torsion-free rank of T (G) are closely
related, as shown by the next two theorems. We state them here as they appear in [12] and in [9]
respectively. Let us point out the fact that the first result was first obtained by J. Alperin (cf. [1,
Theorem 4]).

Let P be a finite p-group. Assume that P has p-rank at least 2 and is not semi-dihedral. Let
F1, . . . , Fm denote a set of representatives of the components D1, . . . , Dm of the poset E≥2(P ).
By [12], we know that we can make such a choice satisfying that all Fi’s have p-rank 2, all but
possibly Fm are maximal, and Fm is normal in P . For each 1 ≤ i ≤ m let Si be a non-central
subgroup of P of order p that is contained in Fi. By [12, Lemma 2.2], if Fi is maximal then
CP (Si) = Si × Li, where Li has normal p-rank one. That is, Li is cyclic if p is odd, and can be
either cyclic or generalized quaternion in case p = 2.

Theorem 2.4 ([12], Theorem 3.1). The group T (P ) of endotrivial kP -modules is torsion-free of
rank m and it is generated by ΩP and the classes of the modules Ni for i = 1, . . . , (m− 1), where
Ni is the unique indecomposable summand with vertex P of

M⊗2
i if CP (Si)/Si is cyclic of order ≥ 3,

Mi if p = 2 and |CP (Si)/Si| = 2,
M⊗4

i if p = 2 and CP (Si)/Si is generalized quaternion,

and where Mi = Ω−1
P (k)⊗ Ω1

P/Si
(k). Moreover,

ResP
Fj

Ni
∼=

{
Ωai

Fi
(k)⊕ (proj) if i = j

k ⊕ (proj) otherwise

where
ai = −2p if CP (Si)/Si is cyclic of order ≥ 3,
ai = −2 if p = 2 and |CP (Si)/Si| = 2,
ai = −8 if p = 2 and CP (Si)/Si is generalized quaternion.

In particular, if T (P ) is cyclic, then T (P ) = 〈ΩP 〉.
We refer the reader to [10], [12] and [13] for a detailed description of the group of endotrivial

modules in the case that m = 1, since we will not consider that situation later.

Let G be a finite group having a normal Sylow p-subgroup P , and let F1, . . . , Fm be as above.
Choose representatives E1, . . . , En of the components C1, . . . , Cn of the poset E≥2(G).

Remark 2.5. If P has p-rank at least 3 and m ≥ 2, then, for any index 1 ≤ i ≤ m − 1, the
subgroups Fi and Fm are not G-conjugate. Indeed, since P is normal in G, then P contains all
p-subgroups of G, and since the p-rank is at least 3, then Fm is contained in an elementary abelian
p-subgroup F of rank 3. Thus, if gF i = Fm < F , for some g ∈ G, then Fi < F g < P . But
this means that Fi is not maximal in P , which implies i = m. In other words, there is only one
connected component of elementary abelian p-subgroups of rank at least 3, which is thus invariant
by any automorphism of P , in particular here by G-conjugation.

This observation allows us, without loss of generality and only for the convenience of the no-
tation, to choose the indexes of the Fi’s so that Ei = Fi, for 1 ≤ i ≤ n − 1 and En = Fm. The
structure of T (G) is as follows (cf. [9]).

Theorem 2.6. The group T (G) is finitely generated, and hence, it splits as a direct sum TT (G)⊕
TF (G), where TT (G) denotes the torsion subgroup and TF (G) is a torsion-free subgroup of max-
imal rank (as Z-module).

Moreover, T (G) is generated by the classes of the indecomposable endotrivial kG-modules whose
restriction to P is an indecomposable module, and TF (G) ∼= Zn.
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In particular, if TT (P ) is trivial, then TT (G) is generated by the classes of the one-dimensional
kG-modules. Also, if n = 1, then TF (G) = 〈ΩG〉.

Besides the purpose of the classification of endotrivial kG-modules, the fact that the syzygies
of k are indecomposable endotrivial modules has the following consequence.

Corollary 2.7. Let P be a normal Sylow p-subgroup of a finite group G, and let (X., ∂.) be a
kG-projective resolution of the trivial module k. Then, (X., ∂.) is minimal ⇐⇒ (X.↓G

P , ∂.↓G
P ) is

a minimal kP -projective resolution of k.

Proof. “⇐=” is obvious.
“=⇒” A projective kG-resolution of k is minimal if and only if it is the splice of short exact

sequences, one for each integer n ≥ 0,

0 // Ωn+1
G (k)

in // Xn
∂n // Ωn

G(k) // 0

By restriction to P , we get then

0 // Ωn+1
P (k)⊕ (proj)

in↓G
P // Xn ↓G

P

∂n↓G
P // Ωn

P (k)⊕ (proj) // 0

But the kG-modules Ωn
G(k) are indecomposable endotrivial and P / G, and so, by Theorem 2.6,

Ωn
G(k)↓G

P is indecomposable. Therefore the projective factors “(proj)” are all zero. In other words,
for each integer n ≥ 0, the above short exact sequence is in fact

0 // Ωn+1
P (k)

in↓G
P // Xn ↓G

P

∂n↓G
P // Ωn

P (k) // 0

Hence, (X.↓G
P , ∂.↓G

P ) is a minimal kP -projective resolution of k.
�

3. Dade’s result and its consequences

Throughout this section, we assume that G is a finite group and that P is a normal Sylow
p-subgroup of G. We continue with the notation used in the previous section.

The only cases in which generators for the group TF (G) are not given by Theorem 2.6 are for
TF (G) not cyclic, i.e. for n ≥ 2, according to our notation. Hence, we will assume that n ≥ 2. In
this case, we also have m ≥ 2, and so TT (P ) = 0, by Theorem 2.4. Moreover, this also implies
that the center of P is cyclic non trivial. Thus, it has a unique cyclic subgroup Z of order p,
which is contained in any maximal elementary abelian p-subgroup. Furthermore, Z / G, since Z is
characteristic in P .

A key tool to determine which endotrivial kP -modules extend to G is provided by the following
theorem, proven by Dade and never published (as far as we are aware of).

Theorem 3.1 (Theorem 7.1, [14]). Let G be a finite group having a normal Sylow p-subgroup P , let
k be an algebraically closed field of characteristic p, and let M be an endo-permutation kP -module.
Then M extends to a kG-module if and only if M is G-stable.

By definition, if H is a normal subgroup of G and M is a kH-module, then we define the
conjugate kH-module gM of M by setting h · gm︸ ︷︷ ︸

in gM

= g( hg ·m︸ ︷︷ ︸
in M

) , ∀ h ∈ H, ∀ m ∈ M, ∀ g ∈ G. We

say then that M is G-stable if we have an isomorphism of kH-modules M ∼= gM, ∀ g ∈ G.
Equivalently, a kH-module M is G-stable if and only if gM ∼= M, ∀ g ∈ G/H.

Since an endotrivial module is an endo-permutation module, and since a module is endotrivial
if and only if its restriction to a Sylow p-subgroup is, we have the following.
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Corollary 3.2. The map ResG
P : T (G) → T (P ) induces an isomorphism of abelian groups

TF (G) ∼= TF (P )G/P , where TF (P )G/P is the subset of the G/P -fixed points. That is, TF (P )G/P

is the subgroup of TF (P ) generated by the classes of the G-stable endotrivial kP -modules.

Proof. By Theorem 2.6, we have ker(ResG
P ) = TT (G), and the image of ResG

P is necessarily a
subgroup of T (P )G/P . Hence, ResG

P induces an injection TF (G) → TF (P )G/P . Now, by Theo-
rem 3.1, an endotrivial kP -module M extends to a kG-module (necessarily endotrivial) if and only
if M is G-stable. That is, the above map is also surjective.

�

At this stage, determining a set of generators for TF (G) comes down to a question of linear

algebra. Indeed, if x ∈ T (P ) then x is uniquely expressible as a Z-linear combination x =
m∑

i=1

xiei,

where ei = [Ni], for the module Ni defined in Theorem 2.4, for 1 ≤ i ≤ m− 1, and em = ΩP .

Lemma 3.3. For all g ∈ G, and for all 1 ≤ i ≤ m, we have gei = eσg(i), for the permutation σg,
acting on the set {1, . . . ,m}, defined by gSj =P Sσg(j), ∀ 1 ≤ j ≤ m− 1 and σg(m) = m.

Here, the notation “ =P ” means “is P -conjugate to”.

Proof. Fix an index 1 ≤ i ≤ m − 1, and write S = Si and N = Ni. Let g ∈ G and consider the
map ϕ : gk[P/S] −→ k[P/gS], defined by ϕ(g(uS)) = gugS on a k-basis {g(uS) | uS ∈ P/S}
of the permutation kP -module gk[P/S]. Let us verify that ϕ is an isomorphism of kP -modules.
It is immediate that ϕ is an isomorphism of k-vector spaces, and so we only need to check that ϕ
commutes with the action of P :

v · ϕ(g(uS)) = v · gugS = g(vg u)gS = ϕ
(
g(vg uS)

)
= ϕ(v · g(uS)) , ∀ u ∈ P, ∀ uS ∈ P/S, ∀ g ∈ G.

It follows that we have exact sequences forming the commutative diagram:

0 // g Ω1
P/S(k) //

ϕ↓ker(gε)

��

gk[P/S]
gε //

ϕ

��

gk //

Id

��

0

0 // Ω1
P/gS(k) // k[P/gS] ε′ // k // 0

Since ϕ is an isomorphism, the left hand kP -modules gΩ1
P/S(k) and Ω1

P/gS(k) are isomorphic.
Similarly, we have gΩ1

P (k) ∼= Ω1
P (k) and the result follows.

�

This lemma has an immediate consequence.

Proposition 3.4. x =
m∑

i=1

xiei ∈ T (P )G ⇐⇒ xi = xj whenever Si =G Sj , ∀ 1 ≤ i ≤ m− 1.

We will need a group theoretical result, complementary to Lemma 2.2 in [12]. For this, let us
fix an index 1 ≤ i ≤ n − 1 and write S = Si, E = Ei and N = Ni. Recall that our choice of the
Ei’s forces Ei = Fj for some j.

Lemma 3.5. The stabilizer of the P -conjugacy class of S is the subgroup PNG(E) of G.

Proof. By [12, Lemma 2.2], we know that CP (S) = NP (S) = S ×L, where L has normal p-rank 1
and L contains the unique central subgroup Z of P of order p. Moreover, the index of NP (S) in
NP (E) is p. In particular, we deduce that E = S × Z, and that NP (E)/NP (S) acts transitively
(by conjugation) on the p non central subgroups of order p of E.
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Since Z / G, we have NG(S) ≤ NG(E), and so PNG(S) ≤ PNG(E).
Conversely, for g ∈ NG(E), we have gS ≤ gE = E. Thus, there exists v ∈ P (actually, we

can take v ∈ NP (E) − NP (S)) such that gS = vS, and so, v−1g ∈ NG(S). It follows then that
g ∈ PNG(S), as was to be shown.

�

Since PNG(E) is the stabilizer of the P -conjugacy class of S, Theorem 3.1 implies that N

extends to a k[PNG(E)]-module Ñ , which is necessarily endotrivial.
Let C be a set of representatives of the left cosets G/PNG(E). Then the correspondence c 7→ cN

is a bijection from C to the G-conjugacy class of N .

Definition 3.6. Let H be a subgroup of G and let M be a kH-module. We define the tensor
induced module TenG

H M as follows (cf. [15, § 5.1]). It is the k-vector space⊗
s∈[G/H]

(
s⊗M

)
, where [G/H] is a set of representatives of the left cosets G/H

endowed with the structure of kG-module given by

g · ⊗s(s⊗ms) = ⊗s(τg(s)⊗ hsms) = ⊗s(s⊗ hτ−1
g (s)mτ−1

g (s)) ,

where gs = τg(s)hs, with hs ∈ H and a permutation τg of [G/H].

Proposition 3.7. The kG-module TenG
PNG(E) Ñ is endotrivial.

Proof. It is enough to check that ResG
P TenG

PNG(E) Ñ is endotrivial. By the tensor version of Mackey
formula (cf. [15, Prop. 5.2.1]), and since P / G, we have isomorphisms of kP -modules

ResG
P TenG

PNG(E) Ñ ∼=
⊗
c∈C

TenP
P∩c(PNG(E)) Res

c(PNG(E))
P∩c(PNG(E))

cÑ =

=
⊗
c∈C

Res
c(PNG(E))
P

cÑ ∼=
⊗
c∈C

c
(
ResPNG(E)

P Ñ
) ∼= ⊗

c∈C

cN

which is a tensor product of endotrivial kP -modules and hence is endotrivial.
�

For any elementary abelian p-group E of rank at least 2, we may identify the group T (E) = 〈ΩE〉
with Z, via nΩE 7→ n.

Definition 3.8. Let H be a finite group and let E1, . . . , El be representatives of the connected
components of E≥2(H). The product of all restriction maps ResH

Ei
: T (H) −→ T (Ei), composed

with the isomorphism T (Ei) ∼= Z, 1 ≤ i ≤ l, yields a well-defined homomorphism

resE(H) : T (H) // ∏l
i=1T (Ei) // Zl

For any endotrivial kH-module M , the element resE(H)([M ]) ∈ Zl is called the type of M .

Throughout these notes, δi,j denotes the Kronecker symbol.

Proposition 3.9. We have ker(resE(G)) = TT (G). Moreover,

resE(G)([TenG
PNG(Ej) Ñj ]) = (δi,jai)n

i=1 ,

where ai is the integer defined in Theorem 2.4.
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Proof. The first statement has been proved in [9, Proposition 2.3], so we only need to show the
second one.

By transitivity of the restriction and Proposition 3.7, we have

ResG
Ei

TenG
PNG(Ej) Ñj

∼=
⊗
c∈Cj

ResP
Ei

cN j

where Cj is a set of representatives of the left cosets G/PNG(Ej). We may assume that 1 ∈ Cj for
all j. Now, for any c ∈ Cj , the kP -module cN j is endotrivial and defined in Theorem 2.4 as the
“unique” indecomposable direct summand with vertex P of a r-fold tensor product of the module

c
(
Ω−1

P (k)⊗ Ω1
P/Sj

(k)
) ∼= Ω−1

P (k)⊗ Ω1
P/cSj

(k)

where the integer r is either 1, 2 or 4. By “unique”, we mean unique up to isomorphism.
Even though it is not an endotrivial module, ResP

Ei
Ω1

P/cSj
(k) has a “unique” indecomposable

summand V with vertex Ei, and V is isomorphic to Ω1
(P/cSj)↓P

Ei

(k). By Mackey formula (for

Ei-sets) we have that
(P/cSj) ↓P

Ei
∼=

∐
x∈[Ei\P/cSj ]

Ei/
(
Ei ∩ xcSj

)
If i 6= j then Ej 6=G Ei and no G-conjugate of Sj is contained in Ei, since Ei = Si × Z and

Z / G. It follows that

(P/cSj)↓P
Ei
∼=

∐
x∈[Ei\P/cSj ]

Ei . Thus, V ∼= Ω1
Ei

(k) if i 6= j, by [4, Lemma 3.2.7],

and therefore cN j is trivial.
Otherwise, we have i = j. If xcSi < Ei, for x ∈ P , then there is y ∈ NP (Ei)−CP (Si) such that

xcSi = ySi, since NP (Ei)/CP (Si) acts transitively on the p non central subgroups of order p of Ei.
It follows that y−1xc ∈ NG(Si), and so c ∈ PNG(Si) = PNG(Ei). By the choice of representatives
in Ci, this implies c = 1. Then, Theorem 2.4 shows that ResP

Ei
Ni

∼= Ωai

Ei
⊕ (proj).

Finally, if i = j and c 6∈ PNG(Ei), then the previous argument shows that xcSi is not contained
in Ei, for any x ∈ P . Therefore, ResP

Ei

cN i
∼= k ⊕ (proj), as in the case i 6= j.

In conclusion, by tensoring all the pieces together, we deduce that

ResG
Ei

TenG
PNG(Ej) Ñj

∼=
⊗
c∈Cj

ResP
Ei

cN j
∼=

{
Ωai

Ei
(k)⊕ (proj) if i = j

k ⊕ (proj) if i 6= j

�

Theorem 3.10. Let G be a finite group having a normal Sylow p-subgroup P . Consider the
same notation as above, and write the group T (G) of endotrivial kG-modules as a direct sum
T (G) = TT (G)⊕ TF (G), where TT (G) is the torsion subgroup and TF (G) is torsion-free. Then,
we may choose the set{

ΩG, xi = [TenG
PNG(Ei) Ñi] | 1 ≤ i ≤ n− 1

}
as a basis for the free Z-module TF (G).

Moreover, we have resE(G)(ΩG) = (1)n
i=1, and resE(G)(xj) = (δi,jai)n

i=1.

Proof. The kG-modules TenG
PNG(Ei) Ñi are endotrivial and their classes are linearly independent,

by Theorem 2.4 and the proof of Proposition 3.7. Hence they generate a torsion-free submodule
of T (G) of rank equal to the rank of TF (G).

Moreover, the proof of Proposition 3.7 shows that in T (P ) we have

ResG
P [TenG

PNG(Ei) Ñi] =
∑
c∈Ci

[cN i]
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where Ci denotes a set of the representatives of the left cosets G/PNG(Ei). Since {cN i | c ∈ Ci} is
a sequence without repetition that contains all the G-conjugates of Ni, it also makes the element∑
c∈Ci

[cN i] of T (P ) satisfy the minimal necessary condition for being G-stable, by Proposition 3.4.

This proves the first statement. The second claim has been proved in Proposition 3.9.
�

4. Alternative constructions

Throughout this section, we let G be a finite group having a normal Sylow p-subgroup P . We
assume n ≥ 2, and we choose the representatives E1, . . . , En and F1, . . . , Fm of the connected
components of E≥2(G) and E≥2(P ), respectively, such that Ei = Fi, ∀ 1 ≤ i ≤ n−1 and En = Fm,
as before. Write also Z = 〈z〉 for the unique central subgroup of P of order p. Finally, let ai be
the integer defined in Theorem 2.4.

The purpose of this section is to review the two constructions of endotrivial modules providing
free sets of generators for TF (G), as given in [9]. Then, we compare the modules obtained for
each construction. We assume that the reader is familiar with the notions of cohomology of finite
groups and (cohomological) varieties of modules given in [7] or [15]. The notation we use in this
section is as follows. For an inclusion of finite groups H → K, we denote the induced restriction
map in cohomology H∗(K, k) → H∗(H, k) either ResK

H or ↓K
H indifferently. Meanwhile, we denote

by res∗K,H : VH(k) → VK(k) the induced map on the varieties.
Let us now recall the presentation of TF (G) given in [9].

Theorem 4.1 ([9, Theorem 3.4]). For each 1 ≤ i ≤ n − 1 there exists an endotrivial kG-module
Ui such that

Ui ↓G
Ei

∼= Ωai

Ei
⊕ (proj) and Ui ↓G

Ej
∼= k ⊕ (proj) , ∀ j 6= i ,

where the ai’s are the integers defined in Theorem 2.4.
The classes ΩG, [Ui], 1 ≤ i ≤ n− 1 form a free set of generators for TF (G).

The structure of the modules Ui is described in the proof, which uses the construction originat-
ing from [11] and quoted by the authors as the “deconstruction method”. Briefly, it consists in
analysing the variety V = VG/Z(Ωai

G (k)), where Ωai

G (k) is the kG/Z-module that is the quotient
of Ωai

G (k) by the submodule (z − 1)p−1Ωai

G (k). The arguments of [8, Theorem 7.2] show that for
each index j, the variety V decomposes as a union of varieties Vj ∪ V ′

j such that

Vj ∩ V ′
j = {0} , Vj = res∗G/Z,Ej/Z(VEj/Z(k)) and res∗G/Z,El/Z(VEl/Z(k)) ⊆ V ′

j , ∀ l 6= j

Then, by [8, Corollary 4.3], there exists an endotrivial module of the desired type, whose construc-
tion appeals to previous results (and ultimately from a theorem of [2], applied to the Lyndon-
Hochschild-Serre spectral sequence of the group extension 1 → Z → G → G/Z → 1). Indeed, it
turns out that each Vj is the variety of the kG/Z-module that is the quotient Uj/(z − 1)p−1Uj of
an indecomposable endotrivial kG-module Uj .

We now turn to the third construction. Note that it does not require P / G, and that, instead,
it necessites an additional assumption on the cohomology group H∗(G, k).

Proposition 4.2 ([8, Corollary 4.6]). Suppose that Z is a subgroup of order p in the center of a
Sylow p-subgroup P of G. Suppose that for d > 0 the group H2d(G, k) has an element ζ such that
ResG

Z (ζ) 6= 0. Then G has an endotrivial module of type (2dδi,j)n
i=1 for each 1 ≤ j ≤ n.

Let us recall how these endotrivial modules are obtained, starting from a generalization of the
definition of Carlson’s Lζ ’s modules (cf. [7, § 6]).
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Definition 4.3. Let ζ ∈ Hs(G, S) be non zero, where S is a 1-dimensional kG-module and s ≥ 1.
Let ζ̃ ∈ HomG(Ωs

G(k), S) represent ζ. We define the kG-module Lζ,S = ker ζ̃.

Among many properties of these modules, all that we need to know for our concern is that the
modules Lζ,S are defined up to isomorphism by the class ζ ∈ Hs(G, S). In particular, for s = 2d,
as in Proposition 4.2, we have a short exact sequence of kG-modules

0 // Lζ,S // Ω2d
G (k)

ζ̃ // S // 0

which does not depend on the choice of ζ̃, and which does not involve any projective summand.
Since Ω2d

Z (k) = k, we have that Ω2d
G (k)↓G

Z
∼= k⊕(proj). Thus, the assumption that ζ ↓G

Z 6= 0 implies
that Lζ,S ↓G

Z is projective. By Quillen Dimension Theorem (cf. [15, Corollary 8.3.3]), it follows
that the variety VG(Lζ,S) of Lζ,S is disconnected, since the number n of connected components of
E≥2(G) is at least 2. More precisely, VG(Lζ,S) is a union of n subspaces V1, . . . , Vn, each Vi being
the variety of a kG-submodule Li of Lζ,S , such that Lζ,S decomposes as direct sum L1⊕ · · · ⊕Ln.
Note that Vi is a line for each 1 ≤ i ≤ n − 1. The similar reasoning applies to the group P
instead of G, and since ΩG(k) ↓G

P
∼= ΩP (k), we conclude that Lζ,S ↓G

P
∼= Lζ↓G

P
splits as a direct

sum X1 ⊕ · · · ⊕Xm, where m ≥ 2 is the number of connected components of E≥2(P ). Moreover, if
VP (Lζ,S ↓G

P ) = W1 ∪ · · · ∪Wm, with Wi = VP (Xi), then G acts by permutation on the Wi’s and
hence on the Xi’s. It follows that Li ↓G

P
∼= ⊕g∈[G/Gi] g ·Xi, for the stabilizer Gi = PNG(Fi) of the

P -conjugacy class of Fi, as in the previous section.
For each index 1 ≤ i ≤ n, set L′i = ⊕j∈Ji

Lj , where Ji = {j | 1 ≤ j ≤ n, i 6= j}.

Proposition 4.4. Each Li gives rise to an indecomposable endotrivial kG-module Mi, of type
(2dδi,j)n

j=1, built as the push-out in the following commutative diagram.

0

��

0

��
L′i

��

L′i

��
0 // Lζ,S //

��

Ω2d
G (k)

ζ̃ //

��

S // 0

0 // Li
//

��

Mi
//

��

S // 0

0 0

Proof. The proof is a paraphrase of an argument used in the demonstration of [9, Theorem 3.1],
and goes as follows.

Let 1 ≤ i, j ≤ n. We need to show that

Mi ↓G
Ej

∼=
{

Ω2d
Ej

(k)⊕ (proj) if i = j

k ⊕ (proj) otherwise

We have Li ↓G
P = ⊕g∈[G/Gi] g ·Xi, with Xi ↓P

Ej
projective (and hence injective) if and only if

j 6= i, i.e. Ej 6= Fi, by our choice of the representatives of the connected components of E≥2(P ) and
E≥2(G). This implies that exactly one of the restrictions to Ej of the exact sequences consisting
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in the second column or the bottom row is split, depending on whether Xj is a summand in Li ↓G
P

or not. Namely, the restriction to Ej of the second column splits if and only if Xj | Li ↓G
P , that is,

if and only if Xj = g ·Xi, for some g ∈ G. This happens if and only if i = j, and in this case we
have

Mj ↓G
Ej

⊕(proj) ∼= Ω2d
P (k)↓P

Ej
∼= Ω2d

Ej
(k)⊕ (proj).

Hence Mj ↓G
Ej

∼= Ω2d
Ej

(k)⊕ (proj).
Otherwise, i 6= j and the restriction to Ej of the bottom row splits, since the left term is

injective. In this case, we have Mi ↓G
Ej

∼= k ⊕ (proj).
Thus Mi ↓G

Ej
is endotrivial for all 1 ≤ i, j ≤ n, and the type of Mi is (2dδi,j)n

i=1, as asserted.
�

We discuss the possible additional assumptions needed for this construction to be carried out.
That is, we want to give a sufficient and necessary condition on the cohomology group H2d(P, k),
that would detect when there exists a one-dimensional kG-module S such that H2d(G, S) contains
an element that restrict non trivially to Z.

Let H be a normal subgroup of G. Then HomH(M ↓G
H , k) is a kG-module, for any kG-module M ,

and since the restriction map commutes with the differentials in complexes of kG- and kH-modules,
it induces a map of kG-modules ResG

H : Hs(G, k) −→ Hs(H, k) in cohomology (cf. [15, § 4.1]). In
fact, H acts trivially on HomH(M ↓G

H , k), and so, we can consider ResG
H as a map of kG/H-modules.

Similarly, for G, P, Z and 2d as in Proposition 4.2, the map ResP
Z : H2d(P, k) −→ H2d(Z, k) is

a map of kG/P -modules. Since p does not divide the order of G/P , the map ResP
Z splits. Now,

the fact that H2d(Z, k) is one dimensional implies that, if ResP
Z is non zero, then any non zero

element β ∈ H2d(Z, k) lifts to an element ζ ∈ H2d(P, k) that restricts non trivially to Z and such
that (g · ζ)↓P

Z = g · ζ ↓P
Z = µgβ, for some |G : P |-root of unity µg ∈ k, for any g ∈ G.

On the other hand, we also have that the action of G on the 1-dimensional k-vector space
Hs(Z, k), for any integer s ≥ 0, defines a representation ρ : G → Aut(Hs(Z, k)) of G. Set H for
the kernel of ρ, that is, H = {g ∈ G | g · ζ = ζ , ∀ ζ ∈ Hs(Z, k)} is the stabilizer of Hs(Z, k) in G.
In particular, H is a normal subgroup of G containing P , and the quotient group G/H is cyclic
of order prime to p, since it is isomorphic to a finite subgroup of the group of units in k. Hence,
Hs(Z, k) is a kG/H-module.

Lemma 4.5. Let s ≥ 0 be an integer and assume there exists ζ ∈ Hs(P, k), such that ζ ↓P
Z 6= 0.

Then TrH
P ζ ∈ Hs(H, k) and we have (TrH

P ζ)↓H
Z 6= 0, where TrH

P denotes the transfer in cohomology
( cf. [15, § 4.2]).

Proof. Let ζ ∈ Hs(P, k), for some s ≥ 0, and assume that ζ ↓P
Z 6= 0. By definition of H, we have

ResH
Z TrH

P ζ =
∑

g∈[H/P ]

g · ζ ↓P
Z = |H : P | · ζ ↓P

Z .

Since |H : P | is invertible in k, we have that ResH
Z TrH

P ζ 6= 0 if ζ ↓P
Z 6= 0.

�

This observation leads us to a sufficient and necessary condition for determining when the last
construction of endotrivial modules can be applied, provided that it applies for T (P ).

Proposition 4.6. There exist a 1-dimensional kG-module S and η ∈ Hs(G, S) such that η↓G
Z 6= 0

if and only if there exists ζ ∈ Hs(P, k) such that ζ ↓P
Z 6= 0.

In particular, for s = 2d, there exists then an indecomposable endotrivial module of type
(2dδi,j)n

i=1, for each index 1 ≤ j ≤ n.
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Proof. The “if ” part is clear.
Assume there exists ζ ∈ Hs(P, k) such that ζ ↓P

Z 6= 0, and let H be the stabilizer of Hs(Z, k)
in G, as above. By Lemma 4.5, we have that TrH

P ζ ∈ Hs(H, k) and that (TrH
P ζ)↓H

Z 6= 0. By the
Eckmann-Shapiro Lemma (cf. [15, Proposition 4.1.3]), we have Hs(H, k) ∼= Hs(G, k↑G

H). Thus, the
image of TrH

P ζ under this isomorphism is an element of Hs(G, k↑G
H) that restricts non trivially to

the subgroup Z. Now, k↑G
H is a direct sum of 1-dimensional kG-modules, since G/H is a cyclic

group of order prime to p, as noted above, and since k is algebraically closed. Therefore, there is a
1-dimensional direct summand S of k↑G

H and η ∈ Hs(G, S) such that η↓G
Z 6= 0, as was to be shown.

The last assertion is then the application of Proposition 4.2.
�

We end this section with the comparison of the modules obtained in each construction, and, for
convenience, we use the same notation. First, observe that a module TenG

Gi
Ñi of Section 3 is not

indecomposable and it has a large dimension, in general. Moreover the corresponding kP -module
Ni is the cap of a (larger, in general) endo-permutation module. That is, Ni is the unique direct
summand with vertex P of a capped endo-permutation kP -module. Consequently, if one wishes to
compute T (G) with a computer support, the generators for TF (G) provided by the TenG

Gi
Ñi are

likely to involve time-consuming algorithms. Instead, the modules of Section 4 are indecomposable
and their construction is likely to be more handy by an algebra software.

In order to compare the three presentations of TF (G), we use the injectivity of the restriction
map resE(G) : TF (G) →

∏n
i=1 T (Ei). Then, it is the simple matter of comparing the computations

in Theorems 3.10, 4.1, and Proposition 4.2.

Remark 4.7. In stmod(kG), we have isomorphisms TenG
Gi

Ñi
∼= U∗

i
∼= M∗

i , ∀ 1 ≤ i ≤ n. In
particular, since Ui and Mi are indecomposable, we have Ui

∼= Mi in mod(kG), for all 1 ≤ i ≤ n.

It is remarkable, and remains yet unexplained, that the modules Ui and Mi are isomorphic, since
their construction is apparently different. Moreover, the modules Mi cannot be built in general,
whereas the modules Ui always exist.

5. Odd extraspecial example

Let p be an odd prime and let P be a Sylow p-subgroup of PSL3(p). That is, P is an extraspecial
p-group of order p3 and exponent p. Let G be its normalizer in PSL3(p).

There are p+1 conjugacy classes in P of maximal elementary abelian p-subgroups of rank 2, each
consisting of a single maximal normal subgroup of P . Let us call these subgroups F1, . . . , Fp+1.
Choose also non central subgroups Si < Fi, 1 ≤ i ≤ (p + 1) of order p.

By Theorem 2.4, the group T (P ) of endotrivial modules is free abelian of rank p+1 and admits
a presentation T (P ) = 〈ΩP , [Ni], 1 ≤ i ≤ p〉, where [Ni] denotes the class of the indecomposable
endotrivial summand of the kP -module

(
Ω−1

P (k) ⊗ Ω1
P/Si

(k)
)⊗2, for each index i. The elements

[Ni], for 1 ≤ i ≤ p + 1, verify a non trivial relation in T (P ) (cf. also [5, § 11])
p+1∑
i=1

[Ni] = 2p ΩP , since both have the same type, namely (2p, . . . , 2p) ∈ Zp+1.

Let us also point out that, for each index i, the module
(
Ω−1

P (k)⊗ Ω1
P/Si

(k)
)⊗2 is not endotrivial

(and hence it is decomposable). Indeed, it has dimension (p3−1)2(p2−1)2, which is not congruent
to ±1( mod p3), ∀ p > 2.

Let us now consider T (G). By Theorem 2.6, the torsion subgroup TT (G) is generated by the
one-dimensional kG-modules, since TT (P ) is trivial. That is, TT (G) is isomorphic to the character
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group of the abelian p′-group G/P ∼= Cp−1 × Cp−1. On the other hand, for TF (G), we note that
there are exactly two elementary abelian p-subgroups which are normal in G, and the p− 1 others
form a unique G-conjugacy class. Say F1, F2 / G, and F3 =G · · · =G Fp+1. Then, we may
choose Ei = Fi, 1 ≤ i ≤ 3, and so we get G1 = G2 = G and G3 has index p − 1 in G, where
Gi = PNG(Ei) = NG(Ei) for 1 ≤ i ≤ 3. Indeed, by the Class Formula, the cardinality of the
G-orbit of E3 is p− 1, which is hence the index in G of the stabilizer PNG(E3) of the G-conjugacy
class of E3.

From Proposition 3.4 and Lemma 3.5, we get T (P )G/P = 〈ΩP , [N1], [N2]〉 ∼= Z3. Note also

that
p+1∑
i=3

[Ni] = −[N1]− [N2] ∈ T (P )G/P .

Theorem 3.1 implies that the modules N1 and N2 extend to G, into indecomposable endotrivial
modules Ñ1 and Ñ2, respectively. Therefore, TF (G) = 〈ΩP , [Ñ1], [Ñ2]〉, by Theorem 3.10.

By Proposition 3.7, the module N3 extends to an indecomposable endotrivial kG3-module Ñ3,
yielding then an endotrivial kG-module TenG

G3
Ñ3. Moreover, [TenG

G3
Ñ3] + [Ñ1] + [Ñ2] ∈ TT (G).

Lastly, we remark that in the presentation of TF (G) above, the underlying modules are inde-
composable, which is not the case in general. But it need to be pointed out that the modules Ni

are proper direct summands of (endo-permutation) modules of dimension (p3 − 1)2(p2 − 1)2, and
that at this point we do not know what Dim(Ni) is. The second half of this section will give us
the answer.

We turn now to the presentation of T (P ) and TF (G) described in Section 4, and for convenience,
we adopt the same notation. In particular, since p is odd, we have ai = 2p, for the integer ai of
Theorem 2.4. Hence, we can apply Proposition 4.2 to find generators for T (P ). Indeed, by [3,
Theorem 10.1] (or [16, Theorems 6 and 7]), there exists ζ ∈ H2p(P, k) such that ζ ↓P

Z 6= 0. In fact,
ζ ∈ H2p(P, Fp) and ζ is obtained as the norm from any F ∈ E≥2(P ) to P of the inflation of a non
zero element η ∈ H2(Z, Fp), and where Z is identified with a quotient of F .

Let ζ̃ : Ω2p
P (k) → k represent ζ and set Lζ = ker ζ̃. Then Lζ is the direct sum L1 ⊕ · · · ⊕ Lp+1

of indecomposable kP -modules. Moreover, all the modules Li have same dimension, since the
automorphism group Aut(P ) of P permutes transitively the subgroups F1, . . . , Fp+1 and hence
Aut(P ) also acts by permuting transitively the Li’s.

Now, the endotrivial modules Mi, for 1 ≤ i ≤ p + 1, are obtained as the push-out

Lζ //

��

Ω2p
P (k)

���
�
�

Li
//____ Mi .

In addition, by [11, Corollary 4.4], we have Dim(Ω2p
P (k)) = p3(p + 1) + 1. Therefore, we get

Dim(Li) = p3, and so Dim(Mi) = p3 + 1. Note that this is the minimal possible dimension that
we could expect for Mi. Indeed, it has to be greater than 1 and congruent to 1 ( mod |P |).

Last but not least, we handle TF (G). Note that since H2p(P, k) contains an element that
restricts non trivially to Z, we can apply any of the two constructions presented in Section 4. We
choose the “deconstruction method” (cf. Theorem 4.1).

We consider the kG/Z-module

U = Ω2p
G (k)

/
(z − 1)p−1Ω2p

G (k) .

Note that the action of (z−1)p−1 =
∑p−1

i=0 zi on a kZ-module M annihilates any non-free summand
of M , and sends a free module onto its socle. By a dimension argument (cf. [11, Corollary 4.4]),
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we deduce that Ω2p
G (k)↓G

Z
∼= k ⊕ (kZ)p2(p+1), and so (z − 1)p−1Ω2p

G (k) has dimension p2(p + 1). It
follows that Dim(U) = p2(p + 1)(p− 1) + 1.

In addition, in the notation of the discussion after Theorem 4.1, the variety V = VG/Z(U)
decomposes as the union V1 ∪ V2 ∪ V3 ∪ W , where W = V ′

1 ∩ V ′
2 ∩ V ′

3 . This is because E≥2(G)
consists in three isolated vertices E1, E2, E3. Then, each Vi is the variety of the kG/Z-module
Ūi = Ui/(z − 1)p−1Ui, for an indecomposable endotrivial kG-module Ui satisfying

Ui ↓G
Ej

=
{

Ω2p
Ei

(k)⊕ (proj) if i = j
k ⊕ (proj) if i 6= j

Since the group Aut(G) of automorphisms of G permutes transitively E1, E2 and E3, the induced
action on V permutes transitively V1, V2 and V3. Consequently, the modules Ū1, Ū2 and Ū3

have same dimension. Since the Ui’s are endotrivial, we have Ui ↓G
Z = k ⊕ (proj). It follows that

Dim(Ui) = 1 + p Dim(Ūi), for 1 ≤ i ≤ 3, and thus the modules Ui have same dimension.
Now, Ei = Fi, for 1 ≤ i ≤ 3, and E3 =G Fi , ∀ 3 ≤ i ≤ p + 1. That is, the G-conjugacy

classes of F1 and F2 coincide with their respective P -conjugacy classes. Therefore, U1 ↓G
P and

U2 ↓G
P are isomorphic to the indecomposable endotrivial modules obtained using the techniques

of Theorem 4.1 applied to P instead of G, and corresponding to F1 and F2 respectively. By
Remark 4.7, we have Ui ↓G

P
∼= Mi for i = 1, 2. Thus, Dim(Ui) = p3 + 1 and Dim(Ūi) = p2,

for i = 1, 2 and 3. Note also that the isomorphism U3 ↓G
P ⊕ (proj) ∼= ⊗p+1

i=3 Mi tells us that
Dim((proj)) = (p3 + 1)p−1 − (p3 + 1). On the other hand, the variety W is the variety of a
kG/Z-module of dimension Dim(U)− 3 Dim(Ū1) = p2((p + 1)(p− 1)− 3) + 1.

We can now answer the question concerning the dimension of the modules Ñ1, Ñ2 and TenG
G3

Ñ3.
Indeed, by duality and indecomposability, we have Dim(Ñi) = p3 + 1 for i = 1, 2, whereas
Dim(TenG

G3
Ñ3) = (p3 + 1)p−1.

In particular, TenG
G3

Ñ3 is not indecomposable, since

Dim(M3) = (p− 1)p3 + 1 < (p3 + 1)p−1 = Dim(TenG
G3

Ñ3), ∀ p > 2 .

More precisely, we have TenG
G3

Ñ3
∼= M∗

3 ⊕ (proj), where

Dim((proj)) = Dim(TenG
G3

Ñ3)−Dim(M3) =
p−1∑
i=2

(
p− 1

i

)
p3i.

Acknowledgments
The author would like to thank in a special way Jon Carlson for sharing his deep knowledge of

the topic. In particular, she is grateful to him for the many enlightening discussions and suggestions
that helped to generalize several results.

References

[1] J. L. Alperin, A construction of endo-permutation modules, J. Group Theory 4 (2001), 3–10.

[2] D. Benson, J. Carlson, Perodic modules with large period, Quart. J. Math. 43 (1992), 283–296.

[3] D. Benson, J. Carlson, The cohomology of extraspecial groups, Bull. London Math. Soc. 24 (1992), no. 3,
209–235.

[4] S. Bouc, Tensor induction of relative syzygies, J. Reine Angew. Math., 523 (2003), 113–171.

[5] S. Bouc, N. Mazza, The Dade group of (almost) extraspecial p-groups, Journal of Pure and Applied Algebra,
192 (2004), 21–51.



14 NADIA MAZZA
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