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Abstract

We investigate the common conjecture in applied econometric work

that the inclusion of spatial fixed effects in a regression specification re-

moves spatial dependence. We demonstrate analytically and by means

of a series of simulation experiments how evidence of the removal of

spatial autocorrelation by spatial fixed effects may be spurious when

the true DGP takes the form of a spatial lag or spatial error depen-

dence. In addition, we also show that spatial fixed effects correctly re-

move spatial correlation only in the special case where the dependence

is group-wise, with all observations in the same group as neighbors of

each other.

Keywords: spatial econometrics, spatial fixed effects, spatial au-

tocorrelation, spatial externalities, spatial interaction, spatial weights
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1 Introduction

The presence of spatial effects in the form of spatial heterogeneity and spa-

tial dependence is increasingly acknowledged in both applied and theoretical

econometric work (for recent overviews, see, e.g., Anselin 2006, 2010, Baltagi

et al. 2007, Baltagi and Pesaran 2007, Arbia and Baltagi 2009, LeSage and

Pace 2009, Pinkse and Slade 2010). In empirical applications, a common

problem is the presence of unobserved local or regional variables that may

give rise to spatial error correlation. In addition, some theoretical models of

social and/or spatial interaction require the inclusion of spatial dependence in

the regression specification. Estimation and inference of such models neces-

sitates the application of specialized spatial econometric methods, typically

based on maximum likelihood or on the use of generalized method of mo-

ments (e.g., Ord 1975, Anselin 1988, Kelejian and Prucha 1998, 1999, 2007,

2010, Conley 1999, Lee 2003, 2004, 2007).

In many empirical applications, rather than employing these methods,

sometimes suggestions are formulated to “fix” the problem by other means.

Typically, these do not involve advanced estimation methods and are based

on the rationale that evidence of residual spatial autocorrelation is removed

after the fix is applied. For example, McMillen (2003, 2010) sees spatial au-

tocorrelation as a result of model misspecification (omitted variables) and

advocates the use of semi-parametric modeling to remedy it rather than the

use of spatial econometric methods. Others have suggested the inclusion
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of trend surface variables, i.e., polynomials in the coordinates of the obser-

vations (for an extensive discussion and counterexample, see Schabenberger

and Gotway 2005, p. 234).

The most commonly cited remedy, however, is the inclusion of spatial

fixed effects in the regression specification. In a recent study, Kuminoff et al.

(2010, p. 148) reviewed a large number of empirical studies of hedonic house

price models and reported that 23% of the analyses used spatial fixed effects

to deal with spatial autocorrelation. In addition, they carried out an exten-

sive series of simulation experiments to conclude that “spatial fixed effects

are clearly the preferable strategy for addressing spatially correlated omit-

ted variables in cross-section data” (Kuminoff et al. 2010, p. 158). Many

recent hedonic house price analyses follow this practice, e.g., Pope (2008a,b),

Horsch and Lewis (2009), Kovacs et al. (2011). This conjecture does not

stand alone. For example, a number of papers dealing with agglomeration

effects and spatial spill-overs refer to Ciccone (2002) as having suggested

that “the introduction of increasingly detailed spatial fixed effects allows to

control for spatially correlated omitted variables,” e.g., recently in Dalmazzo

and De Blasio (2007a,b), and De Blasio (2008, 2009).1

In this paper, we investigate this conjecture more closely. Specifically, we

clarify that spatial fixed effects address a form of spatial heterogeneity, but

1Interestingly, although Ciccone (2002) employs spatial fixed effects to control for spa-

tial externalities, his article actually does not make the recommendation cited in the

subsequent papers.
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not “true” spatial dependence. In practice, it may seem like spatial fixed

effects remove spatial autocorrelation from a regression specification, but it

turns out this may be spurious. If “true” spatial dependence is present,

in general there is no reason why spatial fixed effects would remove this

dependence. However, as we demonstrate in the paper, an exception to this

general statement is the special case in which the spatial correlation takes

on a group-wise structure.

In the remainder of the paper, we first present our formal argument, start-

ing with a definition of spatial fixed effects. We then consider the connection

between spatial dependence and model misspecification more closely, review-

ing the spatial lag and spatial error models and spatially correlated omitted

variables. In each of these cases, we show how spatial fixed effects do not in

general correct for the presence of spatial correlation. We next focus on the

special case of group-wise spatial dependence and demonstrate how this is

the only setting where the inclusion of spatial fixed effects corrects for spatial

correlation. We follow this formal discussion with an empirical illustration

based on a number of Monte Carlo simulation experiments. We close with

some recommendations for practice.

2 Spatial Fixed Effects

In so-called discrete spatial heterogeneity, the variability in the model is

structured by grouping the observations into a small number of discrete cat-

3



egories. The definition or delineation of these categories should be related

to spatial structure (Anselin 1990). A special case of discrete spatial hetero-

geneity is when only the constant term is allowed to vary between subgroups

in the data. This specification is commonly referred to as spatial fixed effects.

The corresponding regression model includes an overall constant term α

and expresses the spatial fixed effects as differences from the reference group,

for each observation i in group j (with j = 2, . . . , G) as:

yij = α + α2di2 + · · ·+ αGdiG + x′iβ + εij, (1)

with y as the dependent variable and x′i as the i-th row of the N ×K matrix

of explanatory variables X, and dij as an indicator variable (dij = 1 for j = h

when i ∈ h and dij = 0 otherwise). In this expression, each separate intercept

αj measures the difference of the “level” or mean of the group j, as defined by

a non-zero value for the dummy variable dij, relative to the reference group.

The regression “slope” coefficients β are common to all groups. The error

terms are typically assumed to be i.i.d.

The spatial fixed effects specification in Equation 1 is only operational

when the number of groups G is small relative to the number of observations

N . In addition, there should be sufficient observations in each subgroup.

This ensures that enough degrees of freedom are available to estimate the

effect parameter in each group. The fixed effects indicate the existence of

different intercepts across groups, but the model does not explain why such

differences may exist.
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A spatial fixed effects specification is appropriate when individual obser-

vations are organized into well-delineated groups and some characteristics

of the group are unobserved. For example, in hedonic analysis, when house

sales are grouped by school districts, but no data are available to gauge the

performance of the schools, a spatial fixed effects variable may capture how

this is reflected in the house sales price. This simply removes the school

district effect, rather than modeling it (Beron et al. 2001, p. 330).

There are at least three complications resulting from the use of spatial

fixed effects. First, since the fixed effects are captured by a constant indica-

tor variable, the effect is assumed to influence all observations in the group

identically. If there is within group heterogeneity or interaction, this will

be relegated to the error term, resulting in heteroskedastic and/or spatially

correlated disturbances. Second, there is only a single indicator variable to

capture all the omitted group effects, so multi-factor cases are excluded.

Most importantly, the spatial delineation of the groups is not always

unambiguous. When the omitted effects pertain to clearly defined adminis-

trative units (such as school districts, or counties) this may be a reasonable

assumption, but when the effects are designed to incorporate generic “neigh-

borhood” effects (such as crime, views, air quality, etc.) that do not follow

the administrative boundaries, this becomes problematic. Also, administra-

tive districts (e.g, census tracts) are often used to delineate spatial areas

out of convenience (or necessity), whereas there is no reason why various

neighborhood effects would necessarily match these areal units. Incorrect
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delineation of the spatial extent of the groups will again result in spatially

correlated and/or heteroskedastic error terms or potentially create additional

model misspecification.

In order to assess the extent to which the inclusion of spatial fixed effects

would eliminate spatial error correlation, we first take a closer look at spatial

dependence and model misspecification.

3 Spatial Dependence and Model Misspecifi-

cation

In spatial econometrics, the two main data generating processes (DGP) that

incorporate spatial dependence into a regression specification are the spatial

lag and the spatial error model (Anselin 1988). We consider in turn how

model misspecification in the form of ignoring these spatial effects relates to

the inclusion of spatial fixed effects. We also consider misspecification in the

form of spatially correlated omitted variables.

3.1 Spatial Lag Model

The spatial lag model is a specification for so-called substantive spatial de-

pendence, in the sense that it is a formal expression of the equilibrium out-

come of a spatial interaction process (Brueckner 2003, Anselin 2006). This

is typically implemented by including a spatially lagged dependent variable,
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spatially lagged explanatory variables, or a combination of these in the re-

gression specification. This allows for modeling a range of global and local

spatial multiplier effects (Anselin 2003). In its simplest form, a spatial lag

model is then:

y = ρWy + Xβ + ε, (2)

where, in the usual notation, y is a N × 1 vector of observations on the

dependent variable, W is a N × N spatial weights matrix, ρ is the spatial

autoregressive parameter, X is aN×K matrix of observations on explanatory

variables, with associated K×1 coefficient vector β, and ε is an N ×1 vector

of error terms. For the sake of simplicity, we will take the errors as i.i.d..

In this structural form of the model, the inclusion of the spatially lagged

dependent variable Wy on the right hand side of the equation relates the

value of the dependent variable at a location to the values at neighboring

locations, where the neighbors are specified through the weights matrix W.

In principle, the weights matrix should reflect the spatial structure of the

interaction process, although in practice this is not so obvious and the spec-

ification of the weights is often rather ad hoc. The presence of the spatially

lagged dependent variable also reflects a degree of simultaneity or feedback

in the model which requires the use of specialized estimation techniques (Ord

1975, Anselin 1988).

Ignoring the spatial lag term, or, ignoring a spatial interaction process

when one is present, results in a misspecified model. Technically, the ignored

spatial lag is an omitted variable and as a consequence any estimates ob-
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tained from the misspecified model will be biased and any inference will be

misleading. Specification tests based on these estimates will indicate spatially

correlated residuals.

An alternative look at the misspecification that results from ignoring the

spatial interaction in the model is obtained from the reduced form of the

spatial lag model:

y = (I− ρW)−1Xβ + (I− ρW)−1ε, (3)

or, using the familiar power expansion for the inverse matrix,

y = (I + ρW + ρ2W2 + . . . )Xβ + v, (4)

where v = (I−ρW)−1ε, a spatially correlated and heteroskedastic error term.

In this expression, the omitted variables from using the standard regres-

sion specification consist of the sum of spatially lagged explanatory variables,

scaled by powers of the spatial autoregressive coefficient:

ρWXβ + ρ2W2Xβ + . . . . (5)

In order for spatial fixed effects to capture these omitted variables, they

would have to match the structure of the power expansion. Unless that

structure results in a set of group-wise constants that match the fixed effects,

this will in general not be the case. We return to this special case in Section 4.

In other words, in general, the inclusion of spatial fixed effects will not “fix”

the misspecification resulting from the omission of a spatial interaction term.

8



3.2 Spatial Error Model

In contrast with the spatial lag model, the spatial error specification deals

with dependence as a “nuisance,” i.e., with whatever dependence remains

after all the relevant variables have been included in the model. In other

words, ignoring this form of dependence does not result in biased estimates

but is primarily a problem of precision. Formally, this is expressed as the

usual regression specification (using the same notation as before):

y = Xβ + ε, (6)

with a non-spherical error variance-covariance matrix:

E[εε′] = Σ. (7)

The spatial structure of the variance-covariance matrix is the basis for refer-

ring to this as spatial correlation.

The consequences of ignoring spatial error correlation are well known:

ordinary least squares regression does not result in biased estimates, but the

variance of these estimates needs to be adjusted. In other words, this form of

misspecification affects the second moment of the estimates (their precision).

A very general theoretical framework that provides a motivation for the

presence of spatially correlated errors is contained in the “common shocks”

perspective outlined in Andrews (2005). Unobserved effects are shared by

pairs of observations and thus generate error correlation.

Formally, this can be expressed by considering an unobserved “factor”

f , with E[f ] = 0 combined with an observation-specific “loading” δi. The
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regression error term then consists of two components, one associated with

the factor and its loading, the other with an idiosyncratic error:

εi = δif + ui. (8)

Consequently, cross-sectional (spatial) correlation between errors in i and j

follows from the presence of a common factor f , such that:

E[εiεj] = δiδjσ
2
f . (9)

This framework can be extended to multiple factors (as well as to a panel data

setting) and encompasses a wide range of correlation structures, including

most familiar forms of spatial autocorrelation as well as group effects.

In general, the complex structure expressed in the error term will not

match the spatial fixed effects and therefore the latter will not “fix” the

spatial correlation. We focus on the special case where this does occur in

Section 4.

3.3 Spatially Correlated Omitted Variables

A common reason for the presence of spatial correlation in a cross-sectional

regression is the existence of spatially correlated omitted variables. Under

fairly general conditions, these are absorbed into the error term. The omitted

variables should not be correlated with the included variables, otherwise the

orthogonality of the X matrix and the error vector is violated.2 Several spa-

2In LeSage and Pace (2009, pp. 27–28 and 60–68) omitted variables with spatial depen-

dence are used as a motivation for a spatial regression model. However, in their examples,
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tially correlated error structures are available that accommodate the notion

of spatially correlated omitted variables.

The most commonly used specification is a spatial autoregressive model

for the error term:

ε = λWε+ u, (10)

with λ as the autoregressive coefficient, W as the spatial weights matrix and

u as the idiosyncratic disturbance. We can therefore rewrite the regression

specification as:

y = Xβ + λWε+ u. (11)

Analogous to a panel data setting (e.g. Baltagi 2008), in order to correct for

the spatial correlation, the fixed effects will need to conform to the structure

of the random components in Wε. There is no formal argument to ensure

that this would be the case in general.

4 Groupwise Spatial Dependence and Spatial

Fixed Effects

A special structure for the spatial weights matrix, initially introduced in

spatial econometrics in the work of Case (1991, 1992), organizes the obser-

vations into groups (e.g., locations within districts). All observations in the

the error term contains a component that is correlated with the explanatory variable in

the model, and thus causes simultaneity bias in addition to the spatial correlation. We

specifically exclude simultaneity bias.
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same group are neighbors of each other, but there are no between-group

interactions. The result is a block diagonal spatial weights matrix, with

each block corresponding to a group. The elements of the row-standardized

weights matrix for each group k equal 1/(nk − 1), where nk is the number of

members of the group. As a consequence of the block structure, a spatially

lagged variable takes on a particular form. In effect, the spatial lag term for

each observation in the same group will be equal to the average of all values

in the group, except the observation itself. This will be close to a constant,

but not actually a constant, since wii = 0 by convention.

This particular model has received some attention in the theoretical spa-

tial econometric literature. It is also formally related to the literature on

spatial and social interaction, where, using the terminology of Manski (1993),

the average of the members of the “reference group” enters into the model

specification as a proxy for endogenous social effects (see also Brock and

Durlauf 2001, Durlauf 2004, Li and Lee 2009). The econometric properties of

this model were investigated by Lee (2002) and Kelejian and Prucha (2002).

Specifically, Lee (2002) proved that OLS is a consistent estimator for a spa-

tial lag specification that uses the group-wise weights. On the other hand,

Kelejian and Prucha (2002) showed that both OLS and 2SLS are inconsistent

in the case that only a single group is used.

We consider the weights structure more closely and extend the Kelejian

and Prucha (2002) result to a situation with multiple blocks. Slightly adapt-
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ing their notation, each block weight takes on the form:

Wk = [1/(nk − 1)]Jnk
− [1/(nk − 1)]Ink

, (12)

where Jh = ιhι
′
h, with ιh as a h × 1 vector of ones and Ink

as an identity

matrix of dimension nk. The complete weights matrix has a block-diagonal

structure:

W =



W1 0 . . . 0

0 W2 . . . 0

. . . . . . . . . . . .

0 0 . . . WG


. (13)

for G groups or blocks.

Kelejian and Prucha (2002, p. 694) show that the reduced form inverse

for each block reduces to a special structure (in our notation):

(I− ρWk)−1 = δ1Jnk
+ δ2Ink

, (14)

with δ1 and δ2 functions of ρ and nk. More importantly, they use this result

to prove that the reduced form for the spatially lagged dependent variable

asymptotically becomes a constant vector.

For a complete block structure as in Equation 13, this extends to the

inverse matrix that corresponds to each block. More precisely, using this

result, it follows that the spatially lagged dependent variable based on the

group-wise weights will converge to a set of constant vectors, one for each

group. In essence, this then corresponds to a spatial fixed effects structure,

where each effect is constrained to a group.
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The implications of this for removing spatial correlation are two-fold. If

the dependence is of the spatial lag form, the inclusion of spatial fixed effects

is asymptotically equivalent to a spatially lagged dependent variable with

group-wise weights. On the other hand, if the dependence is of the spatial

error form, the group-wise structure will result in error components that

match the spatial fixed effects. Again, apart from a scale adjustment (in

the constant term, since the error components have mean zero), this can be

modeled by including spatial fixed effects in the regression specification.

These are the only special cases where there is a formal link between the

spatial fixed effects and the specification of spatial dependence in the model.

However, it should be kept in mind that the group-wise structure has some

peculiar characteristics that do not correspond to received spatial theory.

The equality of the weights within each block violates any notion of distance

decay. Moreover, the lack of inter-block interaction is a serious constraint.

Whether these limitations apply in practical contexts is largely an empirical

question.

5 Empirical Evidence

To further illustrate the properties of the spatial fixed effects specification

in the presence of spatial correlation, we carry out a series of Monte Carlo

simulation experiments. We consider the two main spatial regression DGPs,

the spatial autoregressive error model and the spatial lag model. The re-

14



gression specification consists of a constant term (ι) and one explanatory

variable (x), drawn from a normal distribution with mean zero and standard

deviation 1.4. The associated regression coefficients α and β1 are both set

to 1. The i.i.d idiosyncratic error terms are generated as standard normal.3

With u as the vector of error terms and the matrix of explanatory variables

as X = [ι x], the N × 1 vector of “observations” on the dependent variable

under the spatial error DGP is obtained as:

y = Xβ + (I− λW)−1u, (15)

with β as a 2 × 1 vector of ones, λ as the spatial autoregressive coefficient

and W as the N×N spatial weights matrix. Under the the spatial lag DGP,

the vector of observations on the dependent variable is obtained as:

y = (I− ρW)−1Xβ + (I− ρW)−1u, (16)

with ρ as the spatial autoregressive coefficient and the other notation as

before.

We create increasing degrees of spatial autocorrelation by considering

seven values for the autoregressive coefficient (λ or ρ): 0.0 (null hypothesis

on no misspecification), 0.01, 0.1, 0.25, 0.5, 0.75, 0.9 and 0.99. We consider

two geographies. One consists of the 3084 contiguous counties in the U.S., the

other of 5035 locations of single family residences for sale in the city of Seattle,

WA in 1997 (for a detailed discussion of the sample, see Koschinsky et al.

3Under the null of no misspecification, this yields an average R2 of 0.66.
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2011). These reflect commonly encountered situations in empirical practice,

such as growth convergence studies (counties or NUTS regions, e.g., Ciccone

2002) and hedonic house price models (house locations, e.g., Kuminoff et al.

2010).

Two types of spatial weights are introduced. One is derived from the

commonly used criterion of contiguity. For the U.S. counties, this is based on

so-called “queen” contiguity (i.e., two counties that have at least one point in

common on their boundaries; this includes “four corner” situations). For the

Seattle locations, we used a k-nearest neighbor criterion with 20 neighbors.

These two approaches differ in that the former tends to result in a very sparse

weights matrix with a small number of neighbors (6 on average), whereas the

latter has a relatively large number of 20. In addition to these traditional

spatial weights, we also include group-wise or “block” weights. For the U.S.

counties, this is based on the states, with all counties in the same state being

considered as neighbors (but no cross-state neighbors). This results in an

average number of neighbors of 63 (ranging from 1 to 254). The Seattle blocks

are based on census tracts, resulting in an average number of neighbors of 180

(ranging from 51 to 271). All spatial weights are used in row-standardized

form.

The combination of geography (U.S. counties or Seattle locations), DGP

(spatial lag or error), spatial weights (contiguity or block) and spatial autore-

gressive parameter values yields 56 different data setups. For each of these
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combinations, we generated 10,000 replications.4

We carried out three estimations for each data setup. First, we esti-

mated the standard regression specification by means of OLS, ignoring any

spatial effects. Second, we introduced spatial fixed effects into the specifica-

tion and estimated the resulting model by means of OLS. The fixed effects

corresponded respectively to the states and census tracts in the samples. Fi-

nally, we estimated the proper spatial model, following the DGP. For the

spatial error model, we used the generalized moments estimator of Kelejian

and Prucha (1999). The spatial lag model was estimated using the spatially

lagged explanatory variable as an instrument for the spatially lagged depen-

dent variable, as an application of spatial two stage least squares (Anselin

1988, Kelejian and Prucha 1998).

The results are summarized in Figures 1–4.5 Each of the Figures contains

six graphs depicting the empirical distribution of the β̂1 estimate over the

10,000 replications, for each value of the autoregressive parameter. The three

graphs on the left, (a)–(c), use the contiguity-based spatial weights in the

DGP, the three graphs on the right, (d)–(f), are based on block weights.

First, consider the spatial error case depicted in Figure 1 for the U.S.

counties and in Figure 2 for the Seattle locations. The top row shows the

distribution of the estimate using OLS. The familiar result depicts an in-

4The code is part of the so-called spatial econometric workbench in the PySAL open

source library for spatial analysis (Rey and Anselin 2007). The PySAL code is available

from http://pysal.org.
5Detailed tables with the full results are available from the authors.
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creasing variance around the true value of 1 as the spatial autoregressive

parameter gets larger, and quite dramatically so for the value of 0.99. The

same pattern is seen in the two geographies. This fully conforms to the theo-

retical expectation that the OLS estimator remains unbiased, but its variance

increases with increasing positive spatial error autocorrelation.

The second row of graphs shows the distribution of β̂1 for the spatial

fixed effects estimator. In graph (b) the DGP is based on the contiguity

weights, whereas in graph (e) the block weights are used. As argued above,

the fixed effects estimator does not alleviate the variance-increasing influence

of the error spatial autocorrelation when the latter is based on contiguity.

In (b), while the variance is slightly smaller than for OLS, it does increase

with larger λ. This is compatible with some of the evidence in practice that

FE seem to eliminate the indication of spatial correlation. In fact, they

do not, but the variance increases less with λ than for OLS. However, as

demonstrated in Section 4, when the fixed effects match the blocks used in the

weights specification, the effect of spatial autocorrelation is negligible. For

increasing values of λ, the distribution of β̂1 in graph (e) remains unaffected

and identical to that under the null. The same result is found in Figure 1

and Figure 2. Finally, the use of the spatial GM estimator shown in the

bottom graphs yields a result that is unaffected by the value of the spatial

autoregressive parameter. In each case, the resulting distribution of the

estimates is essentially the same as under the null.

In Figures 3 and 4 the DGP is the spatial lag model. The two graphs in
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the top row show the familiar result how the OLS estimate for β1 becomes in-

creasingly biased (moves away from the true value of 1.0) with larger spatial

autoregressive parameters. In addition to the bias, the variance of the esti-

mate increase with ρ as well. The same result is obtained for the contiguity

and block weights and for both geographies.

The second row of graphs illustrates the use of the spatial fixed effects.

As in the case of the spatial error DGP, the result for the contiguity weights

is largely unchanged from the base OLS case, with bias and variance growing

with ρ, but at a less rapid rate. However, again as demonstrated in Section 4,

the effect of ρ on the β̂1 obtained with the fixed effects estimator is negligible.

The estimates are centered on the true value of 1.0, with the variance essen-

tially constant across values of ρ. The same result is found in the graphs of

the bottom row, where the spatial two stage least squares estimator properly

accounts for the effect of the spatial lag. In Figures 3 and 4, the distribution

shown in graph (e) is essentially the same as those for the spatial estimators

in graphs (c) and (f).

In sum, the simulation results confirm the theoretical expectations for-

mulated in the early part of the paper. In general, the use of spatial fixed

effects does not properly correct for the presence of spatial autocorrelation.

However, when the true spatial correlation is of the group-wise form and the

fixed effects exactly correspond to the groups in question, then the inclusion

of spatial fixed effects is equivalent to the use of a spatial estimator to obtain

estimates for the regression parameters.
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6 Conclusions

We showed both analytically and in a series of simulation experiments how

spatial fixed effects only control for spatial correlation when the DGP cor-

responds to a group-wise or block structure. While such a structure may

be compatible with some of the social interaction literature, it violates the

principal tenet of spatial interaction, namely Tobler’s first law in which “ev-

erything depends on everything else, but closer things more so” (Tobler 1979).

The implied distance decay is absent in the block structure.

In practice, since the true DGP is unknown, it remains largely an em-

pirical matter which interaction structure is appropriate. However, unless

there are strong theoretical or practical reasons why distance decay should

be ruled out, the use of spatial fixed effects will not be sufficient to correct

for the presence of spatial correlation. A careful assessment of alternative

model specifications remains a prudent strategy, rather than the adoption of

a one size fits all “fix.”
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Figure 1: DGP Spatial Error Model – U.S. Counties
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Figure 2: DGP Spatial Error Model – Seattle
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Figure 3: DGP Spatial Lag Model – U.S. Counties

29



(a) knn (d) Block
OLS

(b) knn (e) Block
FE

(c) knn (f) Block
S2SLS

Figure 4: DGP Spatial Lag Model – Seattle
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