
Are “Deep” Parameters Stable?
The Lucas Critique as an Empirical Hypothesis

Arturo Estrella* and Jeffrey C. Fuhrer**

April 1999

Abstract

For years, the problems associated with the Lucas critique have loomed over
empirical macroeconomics. Since the publication of the classic Lucas (1976)
critique, researchers have endeavored to specify models that capture the
underlying dynamic decision-making behavior of consumers and firms who
require forecasts of future events. By uncovering the “deep” structural parameters
that characterize these fundamental behaviors, and by explicitly modeling
expectations, it is argued, one can capture the dependence of agents’ behavior on
the functions describing policy. However, relatively little effort has been devoted
to testing the empirical importance of this critique. Can one find specifications
that are policy-invariant? This paper develops a set of tests for small
macroeconometric models, especially those used for monetary policy analysis,
and implements them on a set of models used extensively in the literature. In
particular, we attempt to test the robustness of optimizing versus non-optimizing
models to changes in the monetary policy regime. In this paper we present
evidence that shows that some forward-looking models from the recent literature
may be less stable than their better-fitting backward-looking counterparts.
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1. Introduction

 The Theory of the Lucas Critique

In his seminal 1976 paper, Lucas discusses the problem of econometric

forecasting in an economy in which the behavior of policymakers may shift across time.1

When private agents are forward looking, their decisions will depend in part upon their

forecasts of the future actions of policymakers. When the relationship describing

systematic policy actions changes in a way that is observable by private agents, their

forecasts of future policy actions should change conformably. Well-specified

econometric models should reflect this linkage, Lucas argues. If they do not, then the

models’ forecasts may themselves exhibit instability across time when shifts in policy

regime occur.

In Lucas’ notation, the forecasting model may be represented by a function F that

links forcing variables xt, including policy variables, with endogenous variables yt,

subject to random shocks e t , with the parameters of F collected in the vector 1:

y F y xt t t t+ =1 ( , , , )Θ ε (1.1)

A policy action entails a choice of at least some components of xt. If forecasts from the

model are to be useful, the form of F and its parameters 1 must be invariant to changes in

the process generating xt, which for our purposes means that F and 1 must be invariant to

changes in the systematic component of monetary policy.

Lucas’ critique may be summarized in his assertion that, for the backward-looking

models that were conventional at the time, “Everything we know about dynamic

economic theory indicates that this presumption [that F is stable across policy shifts] is

unjustified” (Lucas 1976, p. 111). If the F in backward-looking models is to be stable

across regime changes, then agents’ views about future movements in x cannot change

even when the underlying process generating x changes. Lucas views this as unlikely.

More likely in Lucas’ view is that 1 will depend on the parameters that govern the

behavior of policy.

Thus, suppose policy makers choose elements of xt  according to a rule

                                                
1 See Lucas (1976). Of course, the critique applies to shifts in the behavior of any of the agents in the
model.
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x G yt t t= ( , , )l h , where policy parameters are denoted 8 and h t  is a vector of

disturbances. Then the goal of economic modelers should be to estimate functions that

make the linkage between 8 and 1 explicit, that is they must find stable representations

F(yt,x t,1(8),,t).

Lucas’ critique was directed at the users and purveyors of econometric models at

the time, many of which relied on simple backward-looking descriptions of expectations

formation which would not change even when monetary policy changed. Suppose, for

example, that agents in an econometric model form expectations about inflation Bt using

a simple autoregression

π α πt
e

i
i

k

t i=
=

−∑
1

(1.2)

based on the behavior of inflation under monetary regime I. The coefficients "i would

approximate the time series behavior of Bt under regime I. When the systematic behavior

of monetary policy changes in new regime II, in general the coefficients "i that describe

the approximate time series behavior of Bt will also change. Models that assume that

agents will continue to form expectations using the "i estimates from equation (1.2) will

be missing a potentially important link between 1 (here the "i) and 8 (the parameters that

capture the shift in policy behavior). Lucas suggests that econometric modelers need to

be wary of such backward-looking specifications, as they may not be stable across

changes in policy regimes.

Of course, the model that incorporates equation (1.2) as its inflation expectations

specification could be stable across observed shifts in monetary regime. Stability could

arise for two reasons: (1) The observed shifts in monetary policy have been relatively

modest, or have resulted in an autoregressive representation for inflation that differs

insignificantly across regimes; equivalently, the link between 1 and 8 is not empirically

important in the historical sample; or (2) agents actually form their expectations

according to the estimated version of equation (1.2), and do not vary that expectations

mechanism across monetary regime shifts, and thus the model will be stable.
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In this regard, a key point that this paper wishes to re-emphasize2 is that for any

particular specification, the Lucas critique is a testable empirical hypothesis. We cannot

know a priori whether observed shifts in policy have been large enough to alter

significantly the backward-looking representations of economic variables. Similarly, we

cannot know a priori how agents form their expectations of future events. As a result, the

stability or instability of backward-looking models is an empirical, not a theoretical issue.

Lucas’s Solution to the Problem

Lucas and a host of researchers since the publication of his paper have

endeavored to specify models that capture the underlying dynamic decision-making

behavior of consumers and firms who require forecasts of future events. By uncovering

the “deep” structural parameters that characterize these fundamental behaviors, and by

explicitly modeling expectations, it is argued, one can capture the (presumed)

dependence of agents’ behavior on the functions describing policy.

But just as the backward-looking models cannot be known to be subject to the

Lucas critique a priori, neither can the “Lucas” solution to the problem be known to be

correct a priori. A model that is based on the underlying optimizing behavior of firms

and consumers and incorporates rational expectations may also be unstable across policy

regimes for two reasons: (1) the model may inaccurately reflect the objective function or

constraints facing firms and consumers; and (2) the model may inaccurately reflect the

way in which agents form expectations. In either case, shifts in policy can cause

significant shifts in the model’s parameters. Therefore, optimizing, explicit expectations

models should also be subjected to empirical tests of cross-regime stability.

In the end, then, the Lucas critique is an empirical issue: Can one find

specifications that are policy-invariant? The hope of policy modelers is that we can, but

we cannot know in advance whether those specifications will be backward- or forward-

looking, rational or near-rational or irrational, or based on optimizing behavior of the

textbook variety. Furthermore, as Ericsson and Irons (1995) have documented, it is

                                                
2 See, e.g., the earlier work of Ericsson et al. (1998), Oliner et al. (1996), Engle and Hendry (1993), Favero
and Hendry (1992), Alogoskoufis and Smith (1991), and Miller and Roberds (1991), who have looked at
various specific aspects of this issue. Ericsson and Irons (1995) present a thorough survey of papers that
cite the Lucas critique.
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difficult to find any careful formal testing of the practical significance of the Lucas

critique for any of these types of models. In this paper, we present evidence that shows

that some forward-looking models from the recent literature may be less stable – more

susceptible to the Lucas critique – than their better-fitting backward-looking counterparts.

While we suggest that addressing the Lucas critique will always be an empirical

matter, it should be noted that the answers obtained in this way can never be completely

satisfying. First, a model that is found to be stable across policy regimes has really only

shown its approximate stability across the historical data. The failure to reject stability

across observed shifts does not insure stability in the presence of shifts that have not yet

occurred. Second, of course, the nature of our statistical tests is such that we cannot prove

stability, we can only fail to reject stability. These unavoidable limitations of available

methodology make the analysis of alternative policy regimes, a key goal of this line of

research, unavoidably hazardous.

2. Policy Reaction Functions and Policy Regimes

Given the principal purpose of this paper – the testing of certain macroeconomic

models for stability across changes in monetary policy regime – it is practically essential

to give some thought to the construction of a model of monetary policy. Such a model

should capture both the systematic operation of monetary policy within one regime as

well as more fundamental changes that occur in the transition from one regime to

another. With this in mind, we define in this section a policy reaction function that

embodies our assumptions about regime changes and that is later used in section 4 to

close the structural models examined there.

The policy reaction function has a general form similar to that of the Taylor

(1993) rule in that the policy instrument, the federal funds rate, reacts to the level of

inflation and to the output gap. In contrast to Taylor (1993), however, we allow

somewhat greater flexibility with regard to functional form and we estimate the

function’s parameters. Specifically, the equation is

tttttt rdcybrar επ +∆++−=∆ −− 11 )( , (2.1)

where r is the quarterly-average federal funds rate, π  is the level of inflation over the last

four quarters as measured by the chain-weighted GDP deflator, y is the real output gap as
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defined by the Congressional Budget Office, and  ε is a random disturbance. This

equation may also be motivated, as suggested by Clarida et al. (1999), by viewing it as an

error-correction model for the federal funds rate in which the target interest rate is a

function of inflation and the output gap.

The first term of equation (2.1) corresponds to the gap between current inflation

and the inflation target in Taylor’s formulation. Of course, inflation targets are not

explicitly available, so we introduce a term containing the lagged federal funds rate to

serve as a reference point for inflation. The second term of equation (2.1), as in the

Taylor equation, is the output gap. Finally, we include a term containing the lagged first

difference of the federal funds rate. Recent research suggests that there is considerable

persistence in the process for the federal funds rate.3 This persistence is modeled in (2.1)

by the use of the first difference of the federal funds rate and by the inclusion of the

lagged difference as well as the level of the rate in the right hand side. Full sample

estimates of the parameters of equation (2.1) are given in table 1.4

Table 1. Estimates of equation (2.1) from 1966:1 to 1997:4 (Quarterly Data)
With d=0

Parameter Value Standard Error Value Standard Error
a .15 .076 .14 .080
b .57 .076 .55 .073
c .15 .043 .17 .042
d .09 .100  

Note in the table that the value of d is small and not statistically significant.

Nevertheless, we estimate the equation and test for breaks both with and without this

parameter, since there is some evidence that the parameter may be non-zero in some

subsamples.

The identification of break dates in this equation is clearly important, especially in

view of the focus of this paper. We look for evidence of such changes in the estimates of

equation (2.1) by performing various tests of stability. In addition, we have information

                                                
3 See, e.g., Rotemberg and Woodford (1998).
4 Since there is evidence of autocorrelation in the residual, consistent standard errors are calculated using
the Newey-West (1987) method with 4 lags. Otherwise, the estimates are obtained by least squares on the
assumption that the contemporaneous endogenous variables on the right-hand side are not affected within
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concerning actual changes in monetary policy and in operating procedures, and we make

use of those priors in the testing of equation (2.1). Specifically, we look for breaks after

1979:3, 1982:3, and 1987:2. The first and second dates are associated with changes in

Federal Reserve operating procedures. October 1979 is of course also well known as the

start of the tenure of Chairman Volcker, while 1982 marked the return to operating

procedures similar to those of the pre-1979 period. The third date corresponds to the

appointment of Chairman Greenspan, and there is at least some casual evidence that

changes at that time may have noticeable effects on the data.

Before proceeding to the formal tests of stability, it is instructive to perform a

simple experiment with equation (2.1). Suppose the equation is estimated with data up to

1979:3 and the parameters then used to construct fitted values of the interest rate for the

remainder of the estimation period. What is the magnitude of the errors that result? This

simple experiment produces straightforward evidence that the equation underwent some

sort of structural shift in 1979. The top panel of figure 1 shows the actual and fitted

values from this experiment, and it is easy to identify a change visually. The bottom

panel shows cumulative root-mean-square errors (from 1966:1 to the given quarter) and

subsample root-mean-square errors. Note that the RMSE in the second subsample is

about twice that in the first, which reinforces the conclusions drawn from the first panel.

                                                                                                                                                
the same quarter by the dependent variable, the current interest rate. Experiments with instrumental
variables estimation yielded almost identical results.
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Figure 1

Actual and fitted r from equation (1) estimated to Q3 1979
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Formal tests of stability produce similar results. We employ in this section two

test statistics, a Lagrange multiplier test proposed by Andrews and Fair (1988) and a

predictive test proposed by Ghysels and Hall (1990). Both of these tests seem to have

reasonable characteristics in sample sizes like ours.5 The classical LM test and its

properties are well known in the literature. We estimate under the null of no break and

look at the departure from zero of the orthogonality conditions in the two subsamples.

                                                
5 In simulations we performed with stylized models with autoregressive properties similar to our actual
models, the commonly used Wald test (which roughly corresponds to a Chow test) had a size much larger
than the nominal size. E.g., the true size of a 5% test with 100 observations was 17%. Given the somewhat
inconsistent results provided by break tests, its seems useful to show results for both the LM and TS tests.
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The TS statistic of Ghysels and Hall (1990) has the same asymptotic distribution

as the LM statistic and has the interpretive advantage of corresponding to our simple

predictive experiment above. Specifically, the model is estimated in the first subsample,

up to the possible break point, and departures from zero of the orthogonality conditions in

the second subsample are tested. The specific forms of these statistics are given in

appendix 1 and the results are presented in table 2. The table shows results both with and

without the lagged change in the interest rate in the right-hand side of equation (2.1).

Table 2. Stability tests of equation (2.1) from 1966:1 to 1997:4 (p values)
With d=0

Break point LM TS LM TS
1979:3 .263 .078 .198 .046
1982:3 .376 .303 .425 .303
1987:2 .945 .363 .989 .256

Unknown .317 .241 .547 .213
Max 1980:3 1980:3 1980:3 1975:2

In line with the earlier heuristic results, the TS statistic provides evidence of a

break at 1979:3 at the 5% level when d=0 and at the 10% level when d is unconstrained.

Although this evidence is not supported by the LM statistic, it seems reasonable to

assume that a change did take place in light of events at the Federal Reserve in October

1979. For the other two possible break dates, the tests fail to reject. The tests for an

unknown break date also fail to reject. Note that, for technical reasons, these tests require

excluding some fraction of the observations at the beginning and end of the sample, and

we exclude 25% at each end.6 The date identified by the LM test is very close to one of

our “a priori” break dates, but the evidence of a break provided by these tests is fairly

weak.

What do we conclude from the foregoing tests? First, it seems fairly clear that we

must allow for a break around 1979:3. In that case, we know important changes took

place and the statistical evidence is significant. For the other two break dates, we take a

more agnostic approach. On the one hand, we know real changes took place, on the other

hand, there seems to be little statistical evidence that our equation was affected by those

changes. In the tests of the macroeconomic equations that follow in subsequent sections,

                                                
6 See explanation in Andrews (1993).
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we err on the side of assuming that there are breaks at those points. If the changes are not

there, consistent parameter estimates should lead to similar values before and after the

break date.

3. Empirical Analysis of Single-Equation Models

We examine in this section the stability of two basic equations that are commonly

included in macroeconomic models: a Phillips curve and an IS curve. The key

comparison for each of these equations is that between a forward-looking version of the

equation, which includes an expected future value of the dependent variable in the right-

hand side, and a backward-looking version that only contains lagged values in the right-

hand side. Previous research (e.g., Estrella and Fuhrer (1998)) has shown that the

backward-looking equations tend to fit the data better. However, are they more

susceptible to structural breaks than the forward-looking equations, as theoretical

arguments in Lucas (1976) suggest?

We start by defining the forward-looking equations. Because we want to test

models that have been seriously considered in the literature, and not straw men, we select

our specifications by matching them as closely as possible to existing models. In the case

of the single-equation Phillips curve, the specification is adopted from Roberts (1995),

who derives the form of the equation from models with optimizing agents. The equation

is

ttttt ybbE εππ +++= + 101 . (3.1)

Since the right-hand side variables in (3.1) are endogenous and expectations are rational,

Roberts estimates this equation by substituting actual future inflation for expected

inflation, and then using as instruments the log-change in oil prices, its first lag, the log-

change in real federal government purchases, and a dummy variable indicating whether

the President is a Democrat. We also adopt this estimation strategy, and we measure

inflation by the growth in the CPI as in Roberts (1995).

The form of the forward-looking IS curve is obtained from McCallum and Nelson

(1998), who also derive it by optimization. The IS curve is

ttttttt ErccyEy επ +−++= ++ )( 1101 . (3.2)
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For consistency, we apply the same single-equation estimation method and the same data

used by Roberts (1995) for the Phillips curve, and find that the same instruments seem

reasonable in this case. Full-sample results for the PC and IS equations are presented in

table 3.

Table 3. Estimates of forward-looking equations (3.1) and (3.2)
 from 1966:1 to 1997:4

Equation (3.1): Phillips curve
Parameter Value Standard Error

0b .060 .144

1b .082 .186
Equation (3.2): IS curve

0c .15 .16

1c -.056 .061

The results in table 3 are disappointing. Although the parameter estimates have

the “right signs,” the magnitudes and the levels of significance are very low, suggesting

that the models are unsatisfactory. These results are consistent with earlier estimates in

Roberts (1995) and Estrella and Fuhrer (1998). McCallum and Nelson (1998) obtained

somewhat stronger significance in their estimates of the IS equation.

As noted, earlier work has shown that backward-looking equations fit the data

better. Consider the following backward-looking PC and IS equations, which are

modeled on the ones estimated by Rudebusch and Svensson (1998). These equations are

essentially a subset of a constrained vector autoregression (VAR). The PC is

ttttttt ybbbbbb επππππ ++++++= −−−−− 15443322110 (3.3)

and the IS curve is

tttttt rcycyccy επ +−+++= −−−− )( 11322110 , (3.4)

where both the federal funds rate and inflation enter in four-quarter averages. Rudebusch

and Svensson define inflation in terms of the chain-weighted GDP deflator, rather than

the CPI, as in the forward equations, and we adopt the same definition for our single
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equation estimates and formal tests.7 Estimates of equations (3.3) and (3.4) are shown in

table 4, with Newey-West (1987) standard errors using 4 lags.

Table 4. Estimates of backward-looking equations (3.3) and (3.4)
 from 1966:1 to 1997:4

Equation (3.3): Phillips curve
Parameter Value Standard Error

0b .148 .202

1b .702 .109

2b -.109 .117

3b .288 .092

4b .100 .088

5b .144 .037

Equation (3.4): IS curve

0c .138 .112

1c 1.18 .106

2c -.283 .104

3c -.078 .038

The parameters in table 4 are clearly more tightly estimated than those of the

forward-looking models in table 3. By practically any measure, the fit of the backward-

looking equations is superior to that of their forward-looking counterparts. For instance,

the 2R s of equations (3.1) and (3.2) are -.05 and -.08, respectively, as compared with .81

and .90 for equations (3.3) and (3.4). This measure is not entirely appropriate with the

instrumental variable estimates of the forward-looking equations, but the large

differences are indicative of the true fit of the equations.

However, it is possible that notwithstanding their inferior fit, the forward-looking

equations may be more stable across changes in monetary policy regime. There are at

least two reasons for this. First, the forward-looking equations were developed in an

optimizing rational expectations framework, precisely to attempt to deal with the problem

identified by the Lucas (1976) critique. Second, a more mechanical reason is that when

the parameters are estimated much less tightly, it may be more difficult to detect a break

                                                
7 For some purposes, it will be useful to have the same definition of inflation in the forward and backward
models. Thus, we settle on CPI inflation in Figure 2 and on the GDP deflator in the multi-equation model
of section 4.
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given the large margin for error embedded in the estimates. Thus, we use the techniques

described in the previous section and in appendix 1 to test for structural breaks in these

equations that may have resulted from structural changes in monetary policy.

To start, it is helpful to examine simple visual evidence of possible breaks, and we

do this by performing the same type of predictive experiment that was applied in the

previous section to the policy reaction function. Thus, each of equations (3.1) to (3.4) is

estimated with data from 1966:1 to 1979:3 and the actual and fitted values are compared

over the full sample period (to 1997:4). The results are shown in figure 2.

Figure 2

Actual and fitted inflation from PC equations
Equations (2) and (4) estimated to Q3 1979
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Equations (3) and (5) estimated to Q3 1979

66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96
-8

-6

-4

-2

0

2

4

6

Actual
Fitted Fwd
Fitted Bwd



13

Some of the features of figure 2 are visually clear, for instance, the fact that the fit

of the forward equations is poorer than the fit of the backward equations. Given that large

difference, however, it is less obvious whether the fit in the second “out-of-sample”

subperiod represents a deterioration as compared with the fit in the first “in-sample”

subperiod. If we take a look at the formal statistical evidence, we see that the signals are

not very strong, but that the clearest evidence of such deterioration is for the forward-

looking PC.

Table 5 contains the evidence for the PC equations.8 The only rejection of

stability at standard significance levels is found in the case of the 1979:3 break point, for

which the LM statistic is significant at the 10% level. The test for an unknown break

point comes very close to matching the date of this break, although it is not significant at

the 10% level. Even though the evidence is not strong, it is somewhat surprising to find

any such evidence at all, given the relatively large standard errors of the estimates of the

parameters of the forward looking PC equation, which were reported in table 2.

Table 5. Stability tests of PC equations (3.1) and (3.3) from 1966:1 to 1997:4
(p values)

Forward-looking (3.1) Backward-looking (3.3)
Break point LM TS LM TS

1979:3 .073 .113 .543 .632
1982:3 .238 .133 .911 .616
1987:2 .389 .140 .711 .686

Unknown .122 .332 .962 .956
Max 1979:4 1977:2 1988:2 1981:2

The corresponding results for the IS equation are reported in table 6. In this case,

there are no significant rejections of stability, and perhaps the most interesting feature of

this table is that the dates in which the statistics assume their maximum values are all

within the period in which the Federal Reserve operating procedures were changed.

                                                
8 Note that in applying the tests for unknown break points to these equations, we exclude 30% of the
observations at each end, rather than 25% as for the reaction function. The reason is that the dummy
variable indicating a Democrat as President must not be constant in any of the subsamples.
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Table 6. Stability tests of IS equations (3.2) and (3.4) from 1966:1 to 1997:4
(p values)

Forward-looking (3.2) Backward-looking (3.4)
Break point LM TS LM TS

1979:3 .855 .527 .860 .403
1982:3 .492 .193 .146 .196
1987:2 .873 .277 .673 .617

Unknown .928 .669 .521 .573
Max 1980:2 1982:4 1982:4 1980:3

With the above single-equation tests, it is difficult to make a clear distinction

between the performances of the forward- and backward-looking models. If anything, the

test evidence suggests that the backward-looking models have a slight edge, but that

structural stability is not a major problem for either type of model. In the following

section, we make an attempt to sharpen these results by bringing more information to

bear on the problem in the context of a structural system estimated based on full-

information maximum likelihood.

4. Empirical Analysis of Forward- and Backward-Looking Multi-Equation Models

The preceding section analyzes the stability of forward- and backward-looking

models in a single-equation context. However, there are two reasons for examining the

stability of the models in a system or multi-equation context. First, the models are

designed for evaluating alternative monetary policy regimes via simulations and welfare

computations. Doing so relies on the interactions among the monetary policy rule, the IS

curve specification, and the price or Phillips curve specification. Thus, we would like to

know whether the joint behavior of the model’s equations exhibits evidence of instability

across shifts in monetary policy regime. Evidence of instability in the overall model

would make the model less attractive for evaluating alternative monetary policies, even if

individual equations show little sign of instability.

Second, we should expect to improve our ability to detect structural shifts by

using full rather than limited information methods. Individual equations’ marginally

significant instabilities may imply more significant instability of the whole model. It is

only possible to detect such system instabilities by working with the full model

specification. We pursue this strategy in this section.



15

We examine three archetypal models, comprising an inflation specification, a

monetary policy rule for the short-term interest rate, and an aggregate demand or IS

specification. The monetary policy rule is identical for all models, and takes the form

described above in equation (2.1). The first model incorporates backward-looking

functions for inflation and the IS curve, as in equations (3.3) and (3.4) above. The other

two models employ forward-looking inflation and IS specifications, as in equations (3.1)

and (3.2). We also examine a variant of the forward-looking model that adds serially

correlated shocks to the inflation and IS specifications. The error specification that we

use explicitly models the shocks as second-order autoregressive processes, which appears

to be sufficient to reduce the residuals to white noise.9

We examine two types of stability tests, as in section 3 above. First, we look at

the out-of-sample predictions made by the system of equations across potential regime

breaks. Second, we examine statistical tests of stability, focusing primarily on the

likelihood ratio test. We prefer the likelihood ratio test as it follows naturally from the

maximum likelihood estimation procedure that we employ for system estimation. 10

Graphical Evidence of Instability

Figures 3 to 5 display static simulations of each of the three models. The models

are estimated via maximum likelihood over the sample 1966:1-1979:3, and then

simulated (single-period or static simulations) within that sample and past the estimation

sample through 1997:4. The estimation procedure is described in appendix 2. The

simulations are full system simulations, imposing rational expectations (for the forward-

looking models).11

                                                
9 To the extent that the dynamics of the model are driven by the autocorrelated error processes, the forward-
looking model begins to look more like the backward-looking, loosely constrained vector autoregressive
model.
10 We have experimented with a number of other tests, including the LM, Wald, and Ghysels-Hall (1990)
tests, exploring their finite sample properties and robustness to different approximations to the asymptotic
covariance matrices required for each. Some information on our experience with these tests appears in
appendix 3.
11 Note the difference between these simulation paths and the single-equation simulations presented in
section 3 above. Here, the cross-equation constraints implied by rational expectations are imposed,
producing rather stark dynamic implications, particularly for the simple forward-looking model. In the
single-equation simulations presented above, expectations are proxied by unconstrained least-squares
projections on instrument sets. This less-constrained expectations framework allows the expectations to
conform more closely to the data than the expectations that are formed in a model-consistent fashion.
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As figure 3 indicates, the forecast for the simple forward-looking model with iid

errors varies almost imperceptibly over time. In both inflation and IS specifications, no

initial conditions will alter the path of the endogenous variable. Both are expected to

remain at their steady-state values. The estimated shocks in the model equal the data. In

these circumstances, it is very difficult to detect visually a structural break in the

predictions of the model.

Figure 4 displays the same results for the forward-looking model with AR(2)

errors. Now the static simulation exhibits some conformity between model predictions

and data. The figure also suggests, however, that the one-period predictions begin to drift
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away from the actuals around 1979-80. Both inflation and the output gap are

systematically overpredicted by the model from 1980 forward.12

In contrast, figure 5 displays the simulated values from the backward-looking

model. As in the preceding figures, the model is estimated from 1966 through 1979. The

predicted values for inflation lie quite close to the actuals both before and after 1979. The

                                                
12 Use of the output gap avoids the requirement that agents in the model know about the shift downward in
the trend rate of output growth in the mid-1970s. Thus, this important shift cannot account for the failure of
the models to predict outcomes out of sample in the 1980s and forward.
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predicted values for the output gap remain very highly correlated with the actual after

1979, although there appears to be an intercept shift in the later sample.

The correlations between predicted and actual values for inflation and the output

gap for the three models and two samples appear in table 7. In the second sample, the

backward-looking model’s predictions for both inflation and output exhibit greater than

90 percent correlation with the actuals. As indicated in the top panel of the table, the

correlation between predicted and actual inflation for the forward-looking model with iid
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errors is negative in both samples. The simple forward-looking model’s predictions for

the output gap exhibit correlations of no more than 25 percent with the actuals in both

samples. The error-augmented forward-looking model’s inflation predictions are much

better, exhibiting about 60 percent correlation in both samples, while its output gap

correlations are quite poor, below 20 percent in both samples. As noted above, this

inability of the forward-looking models to fit the data on inflation and output within the

estimation sample could make it difficult to detect a breakdown in fit out of sample.

Table 7. Correlations between data  and models’ predictions of
Inflation and Output Gap

Variable
Forward-looking,

iid errors
Forward-looking,

AR(2) errors
Backward-

looking
Inflation

1966:1-1979:3 -0.75 0.59 0.80
1979:4-1997:4 -0.90 0.64 0.93
Output Gap

1966:1-1979:3 0.25 0.18 0.93
1979:4-1997:4 0.18 0.11 0.94

Likelihood Ratio Tests

In the likelihood ratio tests presented below, we examine sample splits determined

by both a priori knowledge about monetary policy, and by the sample break tests

reported in Section 2 above. The test procedure that we adopt is as follows. We first

estimate the structural model in “unconstrained” form, allowing the parameters in the IS

and inflation specification to differ across breakpoints. We employ the full information

maximum likelihood estimation algorithm that is detailed in appendix 2. We then

constrain the IS and inflation equation parameters to be equal across the subsamples, and

re-estimate the model, imposing this constraint.13 Twice the difference between the log-

likelihoods for the unconstrained and constrained models is asymptotically distributed

chi-squared with degrees of freedom equal to the number of parameters constrained. The

forward-looking models contain four IS and inflation parameters, plus four

                                                
13 In the estimates reported, we hold the reaction function parameters at their OLS estimates, rather than
estimating these parameters jointly with the rest of the model.
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autoregressive error parameters for the model with serially correlated errors. The

backward-looking model has four IS and four inflation parameters.

The LR tests for the three models across a variety of breakpoints are reported in

the table below.

Table 8. Likelihood Ratio Test for Joint Stability of IS, Inflation Specifications
Numbers displayed are p-values (Degrees of freedom in parentheses)

Sample Splits
Model (1) 66:1-79:3

(2) 79:4-82:3
(1) 66:1-79:3
(2) 79:4-87:3

(1) 66:1-79:3
(2) 79:4-97:4

Multiple Splitsa

Backward-
Looking

0.66 (8) 0.46 (8) 0.35 (8) 0.19 (24)

Forward-Looking 1.4e-9 (4) 2.4e-8 (4) 9.0e-15 (4) 5.2e-23 (12)
Forward-Looking,
AR(2) errors

0.049 (8) .044 (8) .0015 (8) 0.013 (24)

aThe “multiple splits” column includes splits based on the breakpoint analysis in section 2
and on prior knowledge of Federal Reserve operating procedures and appointments. The
breaks occur at 1979:3, 1982:3, and 1987:2, corresponding to the October 1979 change in
operating procedures, the return to conventional operating procedures, and the beginning of
Alan Greenspan’s chairmanship, respectively.

As the table indicates, the backward-looking model fails to reject for any of the

sample splits explored, yielding asymptotic p-values of 0.19 or greater in all cases. The

forward-looking model that assumes iid errors rejects very strongly for all sample

breakpoints. The forward-looking model that allows for second order autocorrelation in

the errors rejects at the 5 percent level or lower for all breakpoints. The longer the test

period after the assumed breakpoint, the more confident the rejection of the forward-

looking models. The p-value for the backward-looking model also falls as the number of

observations after the breakpoint increases.14

The straightforward conclusions to draw from these results are that (1) the full-

information approach yields greater power to detect structural shifts by exploiting

information about the joint behavior of inflation and output, and (2) both forward-looking

                                                
14 A limited investigation of the finite-sample distribution of the likelihood ratio (LR) test for these models
generally found a shift to the right of the LR test relative to the asymptotic chi-squared distribution.
However, use of the empirical distribution generally leads to the same qualitative conclusions as the
asymptotic distribution: the backward-looking model fails to reject, while the simple forward-looking
model rejects decisively. The test of stability for the forward-looking model with AR(2) errors with the
longest second sample develops a p-value of 0.11. The appendix discusses further test results with
empirical finite sample distributions.



21

models exhibit evidence of instability across regime shifts, while the backward-looking

models fails to reject stability in all cases. These formal statistical tests corroborate the

pictorial evidence presented in figures 3 to 5.

5. Conclusions

The Lucas critique is probably both one of the most widely accepted tenets of the

economics profession and one of the most frequently ignored in practice. It is widely

accepted because of the straightforward and compelling logic of Lucas’s (1976)

argument. It is frequently ignored in practice because in order to heed its implications

fully one must construct a truly structural model, in Lucas’s terms, and that is an

extraordinarily daunting task.

In this paper, we have shown that a common modeling technique designed to deal

with the Lucas critique – the construction of forward-looking rational expectations

models based on deep parameters – is no guarantee of success in dealing with the

instability problem identified by Lucas. We approach the Lucas critique as the source of

an empirically testable hypothesis and we put to the test both forward- and backward-

looking models. Perhaps surprisingly, there is little evidence that the backward-looking

models are unstable. In principle, the Lucas critique applies most forcefully to these types

of models, but in practice the magnitude of the Lucas effect – the reaction of agents’

behavioral equations to structural changes in policy – does not seem very large.

In contrast, the forward-looking equations designed to deal with regime changes

exhibit clear evidence of instability, especially when subjected to the full-information

techniques of section 4. The fact that these equations seem inferior to their backward-

looking counterparts in terms of fit probably reduces the ability of statistical tests to reject

specific hypotheses. Thus, the fact that the full-information tests still reject stability is all

the more significant.

The purpose of this paper, however, is not to argue that the attempt to formulate

structural forward-looking models is misguided. We wish instead to emphasize the

following implications of our analysis. First, the Lucas critique is not a pure theoretical

result, but rather a warning that highlights the importance of applying stability tests to

macroeconomic models. In practice, no model is strictly policy invariant and results must
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be viewed empirically as relative and not as absolute. Second, a corollary of the first

conclusion is that every model should be thoroughly tested for stability before being used

for policy analysis.

Third, the fact that an empirical model is founded on a theoretical model with

optimizing agents and rational expectations does not mean that the model will be

empirically stable. Fourth, the fact that a model is backward-looking or is a reduced form

does not mean that it will be strongly susceptible to policy changes. Fifth, of the current

crop of small macroeconomic models, it seems that backward-looking formulations,

which fit the data better, are more stable than their forward-looking counterparts.
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Appendix 1: Form of the Lagrange multiplier (LM) and predictive (TS) tests

Let the model to be tested be ttt uxfy += ),(θ  and assume that the model is

estimated by imposing orthogonality conditions of the form 0)( =gE , where g is a

vector function of the data and the parameters.  As in Hansen (1982) and Newey and

West (1987), assume that the estimate is obtained by minimizing over θ  the quadratic

form Wgg ' . Also, let θ∂∂= /gD  and let S represent the Newey-West (1987) matrix of

weighted residual autocovariances. Then a consistent estimator of the variance of θ̂  is

11 )'(')'( −−= WDDWSWDDWDDV .

For the purposes of constructing the test statistics, define also

WDWDDM ')'( 1−= . Then the Lagrange multiplier is defined as in Andrews and Fair

(1988) as

LM = 1
1

1
21

''
1

MgVMg −

ππ
,

and the Ghysels-Hall (1990) predictive statistic is defined as

TS = 2
1

21222 )'(' gDVDSg −+ ,

where the subscript i indicates that the component is calculated from data in the ith

subsample (but with parameter estimates from the first subsample in the case of TS), and

where iπ  indicates the proportion of the data in the ith subsample.

Andrews and Fair (1988) and Ghysels and Hall (1990), respectively, show that

under standard regularity conditions LM and TS are distributed asymptotically as chi-

squared with degrees of freedom equal to the number of parameters that may change

across subsamples. In follow-up articles, Andrews (1993) and Ghysels, Guay and Hall

(1997) derive the asymptotic distribution of sup LM and sup TS, where the sup is taken

over an interior portion of the full sample that excludes some observations at each end.

This statistic may be used to test for a break when the break point is unknown. In the text,

we provide p values of these tests based on simulations (100,000 iterations) of the

asymptotic distribution, which as shown by Andrews (1993) is given by a Bessel process.

Note that in many specific cases, the formulas above simplify considerably. For

instance, if the estimates are obtained by least squares, then uXg '=  and
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XXWD '1 == − . If instrumental variables are used, then uZg '= , XZD '= , and

1)'( −= ZZW . If the estimates are obtained by maximizing a log-likelihood function L,

then θ∂∂= /Lg  and, if the disturbance u is iid, Berndt et al. (1974) have shown that

)()( SEDE = . Thus, simplification obtains if we assume that, given the expectational

equivalence, D=S holds approximately, and that W=I.

Appendix 2: Computation of the Likelihood Function

Model Solution and Observable Representation

Each of the stochastic linear rational expectations models that we consider can be

cast in the format

H x H E xi t i i
i

t t i t
i=-τ

θ

ε
0

1
∑ ∑+

=
++ =  (6.1)

where J and 2 are positive integers, xt is a vector of variables, and the Hi are conformable

n-square coefficient matrices, where n is the number of endogenous variables in the

model. The coefficient matrices Hi are completely determined by a set of underlying

structural parameters 1.  The expectation operator Et(.) denotes mathematical expectation

conditioned on the process history through period t,15

E x E x x xt t i t i t t+ + −= ( | , , )1 K . (6.2)
The random shock ,t is independently and identically distributed N(0,S). Note that the

covariance matrix S is singular whenever equation (6.1) includes identities. Of little

importance are accounting identities such as the national income accounting identity

linking GDP and consumption, investment, government expenditures, and net exports. Of

more importance are “expectational identities” such as the identity that defines the ex

ante long-term real interest rate, D, in the pure expectations hypothesis definition of the

long rate

ρ β πt
i

i
t t i t iE r= −

=

∞

+ + +∑
0

1( ) (6.3)

                                                
15 The code for computing the observable structure allows an expectations viewpoint date of either t or t-1.
For simplicity, we focus on the t-period expectations case here.
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Expectational identities are important because they define variables such as the long real

rate that can only be observed within the context of the model.

Because ,t is white noise, Et(,t+k)=0.  Leading equation (6.1) by one or more

periods and taking expectations conditioned on period-t information yields a

deterministic forward-looking equation in expectations,

H E x ki
i

t t k i
=−

+ +∑ = >
τ

θ

( ) , ,0 0 (6.4)

We use the Anderson-Moore (1985) procedure to solve equation (6.4) for

expectations of the future in terms of expectations of the present and the past.  For a

given set of initial conditions, Et(xt+k+i):k>0, i=-J,…,-1, if equation (6.1) has a unique

solution that grows no faster than a given upper bound, that procedure computes the

vector autoregressive representation of the solution path,

E x B E x kt t k i
i

t t k i+
=−

−

+ += >∑
τ

1

0( ), (6.5)

In the models we consider here, the roots of equation (6.5) lie on or inside the unit circle.

Using the fact that Et(xt-k)=x t-k for k$0, equation (6.5) is used to derive

expectations of the future in terms of the realization of the present and the past.  These

expectations are then substituted into equation (6.1) to derive a representation of the

model that we call the observable structure,

S xi
i

t i t
=−

+∑ =
τ

ε
0

(6.6)

Equation (6.6) is a structural representation of the model because it is driven by the

structural disturbance, ,t; the coefficient matrix S0 contains the contemporaneous

relationships among the elements of xt.  It is an observable representation of the model

because it does not contain unobservable expectations.

Computing the Likelihood Function

Having obtained the observable structure of equation (6.6), it is relatively

straightforward to compute the value of the likelihood function given the data and

parameter values. The likelihood is defined as

L T J= -(log| | . log $ )5 W (6.7)
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where T is the sample size, J is the Jacobian of the transformation from x to g (which is

time-invariant by assumption within subsamples), and S  is the variance-covariance

matrix of the structural residuals ,t.

Consider concatenating the n x n coefficient matrices Si, ordered left to right from

i=-J to 0.  We denote this n by n x (J+1) matrix '.  Define the vector stack of the

endogenous variables at time t as Xt = [xt-J,…,x t]’. Thus equation (6.6) may be rewritten

G Xt t= e (6.8)

In computing the value of the likelihood, it will be useful to partition ' as follows.

Denote stochastic equations by the subscript s, identity equations by the subscript i, and

denote data variables with the subscript d, and “not-data” variables (such as the

unobserved long real rate defined above) with the subscript n. Arbitrarily ordering the

observable structure so that stochastic equations appear in the top rows and data variables

in the left columns of each block, we can write equation (6.6) as









=
























 −

−

−

0
,

,

1

,,1,

,,1, t

tn

td

t

niditi

nsdsts

X

X
X

SSS

SSS ε
. (6.9)

Ss,t-1 denotes the coefficient block of ' for the lagged variables that enter the stochastic

equations; Si,t-1 is the corresponding block for identity equations. The right-hand-most n

by n block of equations, representing the coefficients on contemporaneous variables, is

further partitioned vertically into its data and not-data components.

For each observation t, we use this concatenated, partitioned version of the

observable structure to solve for the residuals ,t.  First, solve for the period-t not-data

variables as

X S S X S Xn t i n i t t i d d t, , , , ,[ ]= − +−
− −

1
1 1 (6.10)

Now substitute the solution for Xn,t into the top rows of equation (6.9) to solve for ,t:

ε t s t t s d d t s n i n i t t i d d tS X S X S S S X S X= + − +− −
−

− −, , , , , , , ,[ ]1 1
1

1 1 (6.11)

The residuals for each time period t=1,…,T are computed, and the residual covariance

matrix is then computed as

Ω = ′( / )1 T εε
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Note that implicit in the solution for the residuals (equation (6.11)) is the definition of the
Jacobian, ∂ ∂e x ,

J S S S Ss d s n i n i d≡ − −
, , , ,

1 (6.12)

Full Information Maximum Likelihood Estimation

Maximum likelihood estimation consists of finding the parameter values 1, implicit

in the coefficient matrices Hi of equation (6.1), that maximize equation (6.7).  We use

Matlab's sequential quadratic programming algorithm constr to maximize the likelihood

function, subject to several types of constraints:

• Parameter boundary constraints (upper and lower bounds for the elements of 1);
• Equality constraints of the form F(1) = 0;
• Inequality constraints of the form G(1)#0. Our routine always enforces the

nonlinear inequality constraint that the current parameter setting must be
consistent with the correct number of large roots (the number of roots whose
magnitude exceeds the specified upper bound is consistent with a unique, stable
solution) in a converged solution.

The procedure uses numerical derivatives of the likelihood with respect to the parameters

and of the constraints with respect to the parameters.  Standard errors are computed from

the numerical estimate of the Hessian, H
L

=
∂

∂Θ∂ ′Θ
as

se =  diag H( )−1

where diag indicates the diagonal elements of the inverse Hessian matrix.


