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Conditional testing for unit-root bilinearity in financial time series: 
some theoretical and empirical results 

 

Wojciech W. Charemza, Mikhail Lifshits and Svetlana Makarova 

Abstract 

The paper introduces a simple test for detecting bilinearity in a stochastic unit root process. 
It appears that such process is a realistic approximation for many economic and financial 
time series. It is shown that, under the null of no bilinearity, the tests statistics are 
asymptotically normally distributed. Proofs of this asymptotic normality requires the 
Gihman and Skorohod theory for multivariate diffusion processes. Finite sample results 
describe speed of convergence, power of the tests and possible distortions to unit root 
testing which might appear due to the presence of bilinearity. It is concluded that the two-
step testing procedure suggested here (the first step for the linear unit root and the second 
step for its bilinearity) is consistent in the sense that the size of step one test is not affected 
by the possible detection of bilinearity at step two. The empirical part consists in testing the 
unit root bilinearity for 64 GARCH-adjusted stock market indices from mature and 
emerging markets. It is shown that for at least 70% of these countries, the hypothesis of no 
unit root bilinearity has to be rejected. 

 



 

Wojciech W. Charemza, Mikhail Lifshits and Svetlana Makarova 

Conditional testing for unit-root bilinearity in financial time 
series: some theoretical and empirical results ∗ ) 

1. Introduction 

Modelling of economic time series with the use of stochastic bilinear processes 
seemes to be an attractive alternative to the usual linear modelling. Nevertheless, 
since the seminal Sabba Rao and Gabr (1974) and Granger and Andersen (1978) 
volumes and occasional further results regarding estimation and statistical inference 
(see Sabba Rao, 1981, Kim and Basava, 1990, Liu, 1990, Tong, 1990, Grahn, 1995, 
Brunner and Hess, 1995, Terdik, 1999) little has been done regarding economic 
applications of bilinear models. A notable exception here is the Peel and Davidson 
(1998) paper on the bilinear error correction model. 

Usually the bilinear process used in economic applications is defined as: 

1 2 1 2

1 21 0 1 1

ε ε− − − −
= = = =

= + +∑ ∑ ∑∑
p r m k

t j t j j t j l l t l t l
j j l l

y a y c b y      (1) 

where et is white noise. In compact notation, it is denoted as a BL(p, r ,m ,k) process. 
This is clearly a wide family of processes, possibly too wide for specific empirical 
inquiry. Its general nature is a possible explanation for a lack of interest in this type of 
modelling. So far, inference into this model has concentrated on its stationary case 
which, for economic implementations, is of a limited use. 

In this paper attention is paid to a much narrower, nonstationary class of these 
processes, the BL(1, 0, 1, 1) process, where a1 = 1 and c0 = 1. Such a process is called 
herein the unit root bilinear (URB) process. It seems to be of a particular interest to 
economists, since the linear unit root (URL) process is a straightforward and testable 
case of (1) with BL(1, 0, 1, 1), and b11 = 0.  

This paper develops a simple testing procedure in which the existence of the 
bilinear part in the unit root process can be detected by testing whether b11 > 0. 
Section 2 contains the general description of the problem and basics of the testing 
procedure. It is accompanied by Appendix A, describing the derivation of variance of 
the first difference of the analysed bilinear process. In Section 3 the main asymptotic 
results for the URB test statistics under the null hypothesis are given. They require 
utilisation of limit theorems for multivariate diffusion processes, which description is 
given in Appendix B. The detailed proofs of limit distributions for test statistics under 
the null hypothesis of no bilinearity are given in Appendix C. Section 4 analyses the 
problem of possible size and power distortions related to the fact that the proposed 
test is conditioned on the validity of the testable hypothesis of the URL process. The 
corresponding finite sample results describing speed of convergence, approximated 
                                                 

∗  ) Financial support of the INTAS99-00472 Project Nonlinear Structural VAR Modelling of East 
European Economies is gratefully acknowledged. We are indebted to Adriana Agapie and Derek 
Deadman for their comments on an earlier draft of the paper. We are solely responsible for the 
remaining deficiencies.  
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power of the test and possible distortions to unit root testing which might appear due 
to the presence of bilinearity and given in Section 5. In Section 6 the empirical series 
for 66 stock market indices are tested for the bilinear unit root. It is revealed that for at 
least 70% of them the bilinearity hypothesis can be accepted. Details of the empirical 
results are given in Appendix D. Concluding remarks and suggestions for future 
research constitute Section 7. 

 

2. The general testing procedure  

Consider the following BL(1, 0, 1, 1) process: 

1 1( )ε ε− −= + +t t t ty a b y  ,       (2) 

where 2~ (0, )εε σt IIDN , t = 1, 2, … , T. For a = 1 this process is similar to the 
stochastic unit root (STUR) process introduced by Granger and Swanson (1997). The 
main difference between the URB and STUR processes is that the latter depends 
autoregressively on its own lagged values, while the URB explicitly relates the unit 
root dynamics to the lagged innovations. It seems that the URB formulation is more 
realistic. In fact some direct support for such a specification can be found in the 
economic literature related to speculative behaviour (see e.g. Diba and Grossman, 
1988, Ikeda and Shibata, 1992). An illustration of differences between typical runs of 
the URL and URB processes is given by Figure 1, where simulated series of (2) with  
a = 1 for T = 1,000 are presented for b = 0 (that is, for the URL process) and for  
b = 0.025 (the URB process). It appears that the URB process, with its clearly visible 
periods of ups and downs, better resembles a typical macroeconomic or financial time 
series, than the URL process. 

 

Figure 1: A comparison of simulated URL and URB processes 
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The stationarity condition for (2) is 2 2 2 1εσ+ <a b  (see e.g. Granger and Anderson, 
1978). Evidently, if a = 1 and b = 0, the process (2) becomes a random walk. Since it 
is common for economic and financial time series exhibit a unit root, we concentrate 
on testing whether b π 0, assuming a = 1. A straightforward reparametrisation of (2) 
in this case is: 

1 1ε ε− −∆ = +t t t ty by          (3) 

where D is the first difference operator. It can be noticed that, for e0 = y0 = 0, 
2( ) εσ∆ =tE y b  and 2( ) ( 1)εσ= −tE y b t , which suggests that, for most economic and 

financial time series, b ≥ 0. It is shown in Appendix A that the variance of Dyt is: 

( ) ( ) 22 2 2 2 2 4 2 4 2( ) 5 1 4 7 4ε ε ε ε ε εσ γ σ σ σ σ
−

∆ = + + − + −
t

tVar y b b tb b    ,   (4) 

It confirms that, unlike the URL process, the ULB process is not stationary in first 
differences.  

In this paper we consider the problem of testing the null b = 0 given a = 1, using 
equation of the type (3) or similar against the alternative of b > 0 (further in Section 4 
the consequences of the fact that the hypothesis a = 1 has also to be tested are 
discussed). Given ε t-1, and for a = 1 the Student-t test (t-ratio) based on the ordinary 
least squares estimation of b in (2) using (3) can be derived. However, such formulae 
are not operational for b ≠ 0, since in fact the term ε t-1 is not directly observed. 
Nevertheless, for small b's it can be noted that in (3) ε∆ ≈t ty  and hence ε t-1 can be 
replaced by ∆yt-1

1) It leads to the following statistic: 

1 1
2

ˆ
2 2

1 1
2

ˆεσ

− −
=

− −
=

∆ ∆
=

⋅ ∆

∑

∑

T

t t t
t

b T

t t
t

y y y
t

y y

   ,        (5) 

where ˆεσ  is a consistent estimator of εσ . In fact the statistic (5) is the Student-t 

statistic for b̂  in the regression equation: 

1 1
ˆ

− −∆ = ∆ +t t t ty by y e    ,        (6) 

where et are the regression residuals and ˆεσ  can be estimated using et. An analogous 
statistic can be formulated for a regression containing an intercept: 

1 1
ˆ

− −∆ = + ∆ +t t t ty const by y e    .       (7) 

If the URB process contains a drift (intercept) µ, that is: 

1 1(1 )µ ε ε− −= + + +t t t ty b y    ,       (8) 

                                                 

1)  It can be shown that for positive 1/b T<  the ordinary least squares estimator of b and relevant 
statistics converge to well-defined random variables. See Charemza, Lifshits and Makarova (2002).  
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then the direct replacement of ε t-1 by ∆yt-1 does not make sense, since for b = 0, 
µ ε∆ = +t ty . One of the possibilities here seems to be to demean ∆yt that is, to replace 

∆yt by ( )∆ = ∆ − ∆t t tz y mean y . Hence, the corresponding formulae becomes:  

1 1 1 1
2 2 2

ˆ( ) 2
2 2

1 1 1 1
2 2

( 1)

ˆ 1 ( 1)
µ

εσ

− − − −
= = =

− − − −
= =

   − ∆ ∆ − ∆ ∆  
   =

 − − ∆ − ∆ 
 

∑ ∑ ∑

∑ ∑

T T T

t t t t t t
t t t

b
T T

t t t t
t t

T y z y y z y

T T y z y z

t    .    (9) 

The statistic (9) is in fact a Student-t statistic for b̂  in the following regression: 

1 1
ˆ

− −∆ = + ∆ +t t t ty const by z e    .                 (10) 

Also, ˆεσ  can be computed from the regression (10).  

 

3. Asymptotic properties of the URB test statistics 

In this section we present the limit properties of the statistics suggested in Section 2 
under the null hypothesis that b = 0. In particular, we discuss two data generating 
processes (DGP’s) and three test statistics: 

DGP 1: The data generating process is:  

1 ε−= +t t ty y    , (11) 

where 2~ (0, )εε σt IIDN , t = 1, 2, … , T . 

DGP 2: The data generating process is: 

1µ ε−= + +t t ty y    ,                   (12) 

The test statistics are based on the regression without a constant, (6), with a constant, 
(7), and on the regression with a constant on the demeaned differences (10). These 
tests are denoted respectively as Test 1, Test 2 and Test 3. Limit 
distributions for DGP 1 and Tests 1, 2 and 3 are given by the following 
theorem: 

Theorem 1. Let the series ty  is generated by (11). For the regression models, either 
(6) (Test 1), (7) (Test 2) or (10) (Test 3) and under the null of b = 0, as 

→ ∞T : 

[ ]

1

1 2
0

ˆ 1
2

1
0

( ) ( )
~ (0,1)

( )

⇒
∫

∫
b

W t dW t
t N

W t dt

   , (13) 

where ⇒  denotes weak convergence and 1 2,W W  are independent Wiener processes.  

For DGP 2 and Tests 2 and 3, the following theorem holds: 
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Theorem 2. Let the series ty  is generated by (12). For the regression model (7)
(Test 2), and the regression model (10) (Test 3), under the null of b = 0, as 

→ ∞T : 

( )
1

ˆ

0

3 ( ) ~ 0,1⇒ ∫b
t tdW t N    .                 (14) 

As it is shown later, proofs of these theorems require convergence results for higher 
moments and nonlinear functions of random processes in (5) and (9). The usual 
lemmas of the univariate functional central limit theorem (the Donsker’s theorem and 
its extensions, see e.g. Davidson, 1995, pp. 450-455 and Maddala and Kim, 1998, pp. 
54-61) are not sufficient here. Therefore, it is necessarily to apply the more general 
Gihman and Skorohod (1979, pp. 200-208) multivariate limit theorem for diffusion 
processes. Its adaptation and relevant lemmas and examples, subsequently used 
further in this section, are described in Appendix B. Detailed proofs of Theorem 1 
and Theorem 2 are given in Appendix C. They are based, among others, on a 
following: 

Statement. Let 1( )ε ≥k k  will be IID sequence with zero odd moments and variance 
2σ , and the related random walk is defined by 0 0=y  and 

1
ε

=
= ∑k

k jj
y , 1≥k . 

Hence: 

1. 
1

1 1 1 22
2 0

1
( ) ( )ε ε

σ − −
=

⇒∑ ∫
T

t t t
t

y W t dW t
T

 , where 1 2,W W  are independent Wiener 

processes; 

2. 
1

3 (1) (2)
1

2 0

1
( ) ( )ε

σ −
=

⇒∑ ∫
T

t t K K
t

y W t dW t
T

 , where (1) (2),K KW W are components of two-

dimensional Wiener process with covariance matrix K. 

3. 
1

2 (1)
1 1 32

2 0

1
( ) ( )ε

σ −
=

⇒∑ ∫
T

t t
t

ty tW t dW t
T

   , where W1(t) , W3(t) areindependent Wiener 

processes. 

Proofs of the Statement and other results related to the proof of two main theorems, 
which follow from Gihman - Skorohod approach, are given in Appendix B. 

 

4. Two-step testing 

The test presented in previous section is conditional on the existence of unit root 
in the DGP, that is, it assumes the URL process under the null. In practice, however, 
the existence of a unit root is a testable hypothesis. Generally, the testing procedure 
consists in applying one or more linear unit root tests (with the URL processes at null 
or alternative hypothesis) at the first step, then, provided that the URL hypothesis is in 
some way confirmed, applying the second test, with the URB as the alternative, at the 
second step. Clearly, the question arises as to what extent the testing procedure 
explained above is valid if it is conditional on an earlier result of unit root testing. 
Generally, in this case one must be careful in distinguishing between the conditional 
and unconditional probabilities of confirming and rejecting the tested hypotheses.  
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We consider the case where, at the first step, the null hypothesis is that of a URL  
and the alternative is that of stationarity. Usually, this is a case of the Dickey-Fuller 
test and its extensions, e.g. that of Leybourne (1995) DFmax test. Let z1 and z2 be the 
statistics used respectively in the first and second step of the conditional testing that, 
is, z1 is a unit root statistic and z2 is a bilinearity statistic (5) or (9) . Let a be the 
nominal size of the test (for notational simplicity we are assuming that the nominal 
size of the test is identical in both steps). Let f1 and f2 be the density functions of the 
statistics z1 and z2 . Let us further denote: 

1 1

1 1 1( | 1 , 0)
α

α
∈Ω

= = =∫
z

f z a b dz    ,               (15) 

where 1
αΩ  denotes the critical region for the statistic z1 at the nominal level of 

significance a. Hence, α is the probability of making the type 1 error at step one, 
conditional on a = 1 and b = 0, that is, on the random walk assumptions. It can be 
noted that the probability of making at step one type 1 error conditional on a = 1 and 
b > 0, that is: 

1 1

1 1 1 1 1( | 1 , 0) ( )
α

α α
∈Ω

= > = =∫
z

f z a b dz b     ,               (16) 

will not usually be equal to a. In step two we have: 

2 2

2 2 1 1 2( | ; 1 , 0)
α

α α
∈Ω

∉ Ω = = =∫
z

f z z a b dz    , 

where 2
αΩ  is the critical region for the statistic z2 at the nominal level of significance 

a . Hence, α  is also the probability of making  type 1 error at step two conditional on 
a = 1 and b = 0 and, additionally, on the non-rejection of the null hypothesis at step 
one. This will be called here the conditional probability of the type 1 error. The 
unconditional probability of the type I error at the nominal significance level a at step 
two is given by: 

2 2

1 1 2 2

2 2

2 2 2

1 1 1 2 2 1 1 2

2 2 1 1 2 2

( | 1, 0)

( | 1 , 0) ( | ; 1, 0)

(1 ) ( | ; 1, 0) (1 ) .

α

α α

α

α

αα α α α

∈Ω

∉Ω ∈Ω

∈Ω

= = =

= = × ∉Ω = =

= − × ∉Ω = = = = −

∫

∫ ∫

∫

z

z z

z

f z a b dz

f z a b dz f z z a b dz

f z z a b dz

 

Next, consider the conditional (on the non-rejection of the null hypothesis at step one) 
power of the step two test, 2

cM : 

2 2

2 2 2 1 1 2( | ; 1, 0)
α

α

∈Ω

= ∉Ω = >∫c

z

M f z z a b dz    ,               (17) 

and the nominal unconditional and true unconditional power, denoted respectively as 

2
nM  and 2

TM . They are given as: 
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( )1 2 1 2

2 2

2 12 1 2 1 2
,

2 2 1 1 2 2

( , | 1 , 0 ; 1 , 0)

(1 ) ( | ; 1 , 0) (1 ) ,

α α

α

αα α

∈Ω ×Ω

∈Ω

= = = = >

= − ∉Ω = > = −

∫∫

∫

n

z z

c

z

M f z z a b a b dzdz

f z z a b dz M
 

and: 

( )1 2 1 2

1 1 2 2

2 2

2 12 1 2 1 2
,

1 1 1 2 2 2

1 2 2 1 1 2 1 2

( , | 1, 0)

( | 1 , 0) ( | 1 , 0)

(1 ) ( | ; 1 , 0) (1 ) ,

α α

α α

α

αα α

∈Ω ×Ω

∉Ω ∈Ω

∈Ω

= = >

= = > × = >

= − ∉Ω = > = −

∫∫

∫ ∫

∫

T

z z

z z

c

z

M f z z a b dzdz

f z a b dz f z a b dz

f z z a b dz M

 

where f12 ( ) is a joint density function and 1
αΩ  is a complement of 1

αΩ . It is clear that: 

2 1 2 2( )α α= − +T c nM M M    .  

The above relation reveals an important practical problem related to the fact that 
testing at step one is performed at the nominal significance level a while, if in the 
second step the null hypothesis is rejected, the probability of rejecting the true null 
hypothesis at step one was in fact a1. If, however, 1α α> , the true unconditional 
power is going to decrease relatively to the nominal unconditional power since, at step 
one, the null hypothesis was rejected too often. In this case, the  size of the first step 
test is distorted, but in such a way that it affects power, and not size, of the second 
step testing. If, however, 1α α<  then, at step one, the null hypothesis was not rejected 
often enough and at the second step, the size of the test is distorted. 

 

5. Some finite sample results 

The previous section of this paper indicate that the entire testing procedure is 
dependent on the validity of the URL  condition under the null of b = 0. This might be 
tested by a battery of well-known unit root tests (for a review of these tests see, for 
instance, Maddala and Kim, 1998). These tests are usually developed under the null 
hypothesis of the URL and their finite sample distributions are examined (mainly by 
Monte Carlo simulations), in order to establish the critical values of these tests, that is, 
defining the sets 1

αΩ  in (15). This creates a potential problem in application of the 
unit root bilinearity test, since this is conditional on an appropriate unit root test not 
rejecting the null. But it was shown in Section 4 of this paper that the true probability 
of rejecting the true null at step one might not be equal to a if, at step two, the null of 
no bilinearity is rejected. 

In order to evaluate the potential effect of this inequality, a series of Monte Carlo 
experiments have been conducted, in which the usual unit root tests have been applied 
for data generated by (2) with a = 1 and for various values of the b parameter. For 
each of 25 different sample sizes ranging from 15 to 1,000 and b = 0.05, 0.10, 0.15, 
there were 50,000 series generated. For each series the Dickey-Fuller and DFmax tests 
were applied and, for the nominal 5% significance level, the frequencies of the cases 
where the null hypothesis is rejected at the nominal significance level of 5%, was 
computed. This is in fact the numerical approximation of a1, as defined by (16). The 
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nominal 5% critical values of the tests were obtained by the numerical approximation 
to (15) with the use of straightforward Monte Carlo experiments on (2) with b = 0.  

Figure 2 shows the frequencies of the cases where the null hypothesis was 
rejected at the 5% nominal level of significance in the case where b = 0.05 for the 
Dickey-Fuller and DFmax tests. It indicates a possible inconsistency of the DFmax test 
for very small sample sizes, since, for T = 15, the frequency of rejection is below 5%. 
However, for all other sample sizes, these frequencies are markedly greater than 5% 
which suggests that in fact 1α α>  and hence the power, and not size, of the second 
step testing is affected.  

Although the results given in Section 3 of this paper confirm the convergence of 
the proposed test to the standard normal distribution, its finite sample properties, and 
in particular the speed of convergence to normality has to be investigated. Table 1 
presents the p-values for the Jarque-Bera test for normality, obtained for 50,000 
simulated values of the URB test statistics (DGP 1, Test 1) under the null 
hypothesis (that is, where b = 0). It shows their reasonably quick convergence to 
normality. In particular, the URB statistics became approximately normally 
distributed for sample sizes of 150 and more. Convergence is even faster for the 
demeaned test, which might be used for samples as small as 75-150. 

 

Figure 2: Numerical approximations of a1, Dickey-Fuller and 
 DFmax tests, b = 0.05 
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Table 2 presents percentiles of simulated distributions the test statistics for T = 50, 
100 and 200 obtained for 50,000 replications. It confirms that in relatively small 
samples the deviation of percentiles of the URB statistics from the percentiles of the 
normal distribution is of a magnitude of less than 0.1. It appears that, for most 
empirical applications, percentiles of the normal distribution can be used as a 
sufficient approximation of true small sample critical values.  

Figures 3, 4 and 5 show empirical frequencies of the rejection of the null 
hypothesis by the URB tests for sample sizes of T = 50, 200 and 1,000, where data are 
generated by (2) for different values of b, ranging from zero to 0.15. For each sample 
size and for every value of b number of replications of the series is set at 10,000. For  
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Table 1: p-values of the Jarque-Bera statistics for the URB test (DGP 1) 

Sample size Test 1 Test 2 Test 3 

50 0.0000 0.0000 0.0000 

75 0.0053 0.0002 0.0709 

100 0.0057 0.0008 0.1486 

150 0.2602 0.2579 0.2051 

200 0.1822 0.0999 0.5266 

300 0.449 0.5891 0.6502 

500 0.1466 0.1559 0.9175 

700 0.3035 0.3513 0.1360 

1000 0.7444 0.7441 0.1617 

 

Table 2: Percentiles of distribution of the URB statistics (DGP 1) 

T  1%  2.5%  5%  10.0%  90%  95%  97.5%  99%  

 Test 1 -2.27 -1.91 -1.60 -1.23 1.23 1.57 1.90 2.28 

50 Test 3 -2.36 -1.96 -1.64 -1.26 1.26 1.62 1.95 2.34 

 Test 3 -2.27 -1.91 -1.59 -1.23 1.23 1.59 1.89 2.28 

 Test 1 -2.29 -1.93 -1.61 -1.26 -1.23 1.60 1.91 2.28 

100 Test 2 -2.34 -1.95 -1.63 -1.27 -1.25 1.62 1.94 2.32 

 Test 3 -2.27 -1.93 -1.61 -1.26 1.25 1.61 1.92 2.29 

 Test 1 -2.30 -1.93 -1.61 -1.26 1.26 1.63 1.95 2.29 

200 Test 2 -2.32 -1.94 -1.63 -1.27 1.26 1.64 1.96 2.33 

 Test 3 -2.28 -1.92 -1.62 -1.26 1.26 1.63 1.94 2.30 

•  -2.33 -1.96 -1.64 -1.28 1.28 1.64 1.96 2.33 

 

T = 50, all these b’s are ‘small’, that is at most equal to an inverse of a square root of a 
sample size. However, for T = 200 all b’s greater than 0.07 should be regarded as 
‘large’ and so are all b’s greater than 0.03 for T = 1,000. For b > 0, the empirical 
frequencies of the rejection of the null are the numerical approximations of the step 
two conditional power 2

cM , as defined by (17). 

As it might be expected, the conditional power of the tests does not rise 
uniformly with the increase in true value of b. Initially, for ‘small’ b’s, the power rises 
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monotonously. It stabilises before reaching its maximum ‘small’ value and then, for 
‘large’ b’s, it is falling fast. It should be noted that for ‘small’ values of b large 
enough to be close to the maximal ‘small’ value’, power of the tests using Student-t 
statistics in Test 1 and Test 2 that is, from the regressions (6) and (7), is close 
to unity. However, power of the demeaned test (Test 3) applied for data generated 
by the DGP 1 that is, without an intercept, is lower than that of two other tests. This 
is quite understandable, since it uses more degrees of freedom in an overspecified 
model. 

Figure 3: Evaluation of 2 ( | 50)=cM b T  
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Figure 4: Evaluation of 2 ( | 200)=cM b T  
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Figure 5: Evaluation of 2 ( | 1,000)=cM b T  
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The finite sample analysis described above might be confusing, since for each b 
variances of the simulated series of DyT differ (see (4)) making direct comparison 
impossible. In another words, figures 3, 4 and 5 show 2 ( | )cM b T  for b > 0. Clearly, 
for different T, different variances of DyT might affect the probabilities of rejecting the 
null hypothesis. In order to evaluate potential effects of Var(DyT) on 2

cM  (conditional) 
and 2

nM  (unconditional) powers, they are represented for different T but such that 
Var(DyT) = const. Consequently, figures 6 and 7 show the simulated (empirical) 
unconditional and conditional power of the URL Test 1 and Var(DyT) = 1.05, 1.10 
and 1.15 respectively (results for the Test 2 and Test 3 are nearly identical) 
obtained for small b’s ( b = 0.006,…, 0.02) and 10,000 replications of (2) for each b. 
In order to keep variance of DyT constant, sample size varies from 207 (for b = 0.020) 
to 2,292 (for b = 0.06). 

Figure 6: Evaluation of 2 ( , | ( )∆ =n
TM b T Var y const , Test 1 
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Figure 6: Evaluation of 2 ( , | ( )∆ =c
TM b T Var y const , Test 1 
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It can be noticed that the conditional power of the test increases considerably with the 
increase in variance of Dyt and decreases with the increase in b. This is, however, not 
the case for the unconditional power. With the increase in variance of DyT the 
unconditional power of the URB test becomes more invariant for b. For practitioners 
such invariance is encouraging and suggests the rationale of using the URB test in 
series which exhibit relatively large variability in first differences. 
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5. Some empirical evidence 

In order to evaluate the hypothesis of unit root bilinearity for stock market indices 
an empirical analysis of 64 stock market indices have been conducted. The analysed 
time series contain daily observations from the 1st of September 1995 to the 18th of 
September 1999 on stock market indices for 64 countries. Series of data were 
obtained from Datastream. For most of the series the length of data was full, 
containing 1,100 observations, or a few less, as a result of suspended trading. For 
some emerging markets, where stock markets were established relatively late 
(Estonia, Latvia, Lithuania, Croatia, Oman, Romania), the series of data are 
considerably shorter.  

In empirical investigations of bilinear processes a difficulty might arise due to the 
fact that it is difficult to identify the ARCH and bilinear effects (see Bera and Higgins, 
1997). Since our purpose is to identify the bilinear effect in the unit root series with 
strong power, we decided to eliminate from the series possible ARCH effects. Hence, 
at first, the series of data, in their logarithms, were adjusted for a possible ARCH 
effect. After some experimenting, the GARCH(2 , 2) model was fitted to the series of 
daily returns (that is, first differences of the logarithms of the indices) and for each 
series the conditional variance ht. was evaluated. Then, the correction factor 

/ ( )=t t tCF h mean h  was computed and used for computation of the adjusted series 
of returns. Next, this series were used in order to rebuild, in a recursive way, the series 
of ARCH-adjusted stock market indices.  

Appendix D contains empirical results of the investigation. Table D1 in this 
Appendix shows descriptive statistics of the ARCH-adjusted returns, and also the 
mean correction factor, which indicates the average impact of the ARCH effect 
relatively to unconditional standard deviation. It reveals that the ARCH effect is 
reasonably strong and accounts for 2 to 8% of the unconditional standard error of 
returns. The table also shows substantial non-normality of distribution of the returns. 
With few exceptions, skewness, either positive, or negative, is significant and in all 
case, without any exceptions, kurtosis of the ARCH adjusted returns is very strong, 
resulting in the p-value being equal virtually to zero. Table D2 gives the McCulloch 
(1986) estimates of the parameters of stable (Pareto-Levy) distribution. Again, in all 
cases the estimates of the characteristic exponent of this distribution (the parameter 
alpha) are markedly below the value of 2 (for alpha = 2 the stable distribution 
becomes normal). 

Table D3 shows the results of testing of the first-step unit root hypothesis jointly 
by the augmented DFmax (Leybourne, 1995) and the KPSS (Kwiatkowski, 1992) tests. 
Since these tests have been applied jointly, the critical values used here are these of 
Charemza and Syczewska (1998) which are appropriate for such joint testing.  Second 
and fifth column indicate whether the statistic is significant (‘0’ means no 
significance; ‘+’, ‘++’ and ‘+++’ denote respectively that is belongs to appropriate 
90%, 95% and 99% critical regions). Hence, a pair of ‘0’ for the DFmax test and ‘+++’ 
for the KPSS test indicates the joint confirmation of the unit root hypothesis at 99% 
confirmation level. The third column shows the longest significant length of 
augmentation and the B/F column gives information as to whether the maximum of 
the Dickey- Fuller statistic was achieved in the backward or forward regression. The 
table reveals that, with the exception of one country (New Zealand), there is a strong, 



 13

universal, confirmation of the unit root hypothesis; all other statistics belong to the 
99% joint confirmation region.  

Table D4 present s the results of the augmented URB test. As in earlier table, the 
1%, 5% and 10% significance of the statistics is denoted by ‘+++’, ‘++’ and ‘+’ 
respectively. It shows that for 46 out of 64 of the countries (70%) the hypothesis of no 
bilinearity has to be rejected at 1% and 5% level of significance. For another 5 
countries the hypothesis of bilinearity can be rejected less strongly, at 10% level of 
significance. It left only 14 countries for which no signs of bilinearity have been 
detected and this includes New Zealand, ruled out after the first step. 

 

7. Conclusions  

It appears that the proposed concept of unit root bilinearity and testing procedures 
might be applied in various areas of empirical macroeconomics. The concept of 
stochastic unit root can substantially enrich the analysis traditionally conducted within 
the linear unit root framework. In particular, the URB tests can be used for detecting 
speculative bubbles in financial time series, which are widely regarded as being not 
treatable by traditional linear unit root tests (see e.g. Evans, 1991). It is also possible 
to consider the bilinear unit root tests as an attractive alternative for unit root 
structural break tests. The paper also reveals that a substantial number of empirical 
financial time series exhibit unit root bilinearity. The asymptotic and finite sample 
properties of the tests and especially the asymptotic normality of the test statistics 
suggest robustness of the testing procedures proposed. The testing itself is simple and 
can easily be used without a need for developing of specialised software (a collection 
of procedures written in GAUSS for testing unit root bilinearity in empirical time 
series is available on request; see Charemza and Makarova, 2002).  

It might be conjectured that further development of statistical analysis of 
economic time series will aim towards the relaxation of assumptions of linear and 
deterministic nonstationarity in more complicated multivariate models. Consequently, 
a natural way of future extensions of works presented here is likely to be into a 
generalisation for vector autoregressive processes and processes with multiple 
stochastic roots.  
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Appendix A: Derivation of ( )∆ tVar y  

Consider the process: 

1 1 1ε ε− − −= + +t t t t ty y by  1,2,...=t , 0 0 0ε= =y .            (A1) 

Multiplying (A1) by ε t  and taking expectation we get: 

2ε σ=t tEy ,                  (A2) 

which implies, that 2σ∆ =tE y b . Moreover, from (A1) and (A2) it is clear that: 

2( 1), 1,2,...σ= − =tEy b t t                 (A3) 

Bearing in mind that 1 1ε ε− −∆ = +t t t ty by  and 1 1( , ) 0ε ε− − =t t tCov y we get: 

2 2 2 2 2 2 4 2
1 1 1 1( ) ( )ε σ ε σ σ− − − −∆ = + = − +t t t t tVar y bVar y b Ey b .            (A4) 

From (A4), in order to recover ( )∆ tVar y  it is enough to estimate 2 2
1 1ε− −t tEy . Let us 

denote: 
2 2 2,α β ε= =t t t t tEy Ey  .                 (A5) 

In order to get expression for ,α βt t  let us derive the vector difference equation for 

vector 
α
β

 
=  

 
t

t
t

X . 

Squaring (A1), multiplying the result by ε t  and 2ε t , taking expectation and, 
considering (A3), we obtain: 

2 2 2 4
1 1

2 2 2 2 6
1 1

4 ( 2)
4 ( 2)

ε ε

ε ε ε ε

α α β σ σ
β σ α σ β γ σ

− −

− −

 = + + + −


= + + + −
t t t

t t t

b b t
b b t

   ,             (A6) 

where 4
εε γ=E . From (A6) we may conclude that 2-dimensional vector 

α
β

 
=  

 
t

t
t

X  

satisfies the following difference equation: 

1−= +t t tX AX F ,      
2

1
ε

σ
γ

 
=  

 
X ,     t = 2,3,…              (A7) 

where: 
2

2 2 2

1
σ σ

 
=  

 

b
A

b
, and:  

2 2 2 4
2 4 2 4

2 2 2 6

1 1 8
4 ( 2) 4

8
ε

ε ε

σ σ σ
σ σ

σ σγ γ σ

   −   
= − + = +       −      

t

b
F b t b t

b
 . 

Multiplying (A7) by 
12

2

1
1 σ

−
 
 
− 

b
, where 

2

1

 
 
− 

b
 and 2

1
σ

 
 
 

 are eigenvectors of 

matrix A and denoting 
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12

2

1
1 σ

−
 

=  
− 

t t

b
Y X     ,                 (A8) 

we obtain the following equation: 

12 2

0 0
0 1 σ −

 
= + + 

t t tY Y G
b

 , 
1 42

1 1 2 2 2 22

1 1
11

ε

ε

σ γ
σ σ γσ

−
   −

= =    + +−   

b
Y X

b b
, 

                    (A9) 

where: 
12 4

2 4
2 22 2 2 4

01 21
4 ( 2)

1 11 3
σ

σ
σσ σ σ

−
   − 

= = − +     +− +    
t t

b
G F b t

b b
.          (A10) 

The solution of difference equation (A9)-(A10) can be written in the form: 

( ) ( )

4

2 2

2 2 2 2 4 6
12 2 2

2 2 2 2 2 2

1

5 5 4
1 4

1

ε

ε ε

σ γ
σ

σ γ σ γ σ
σ σ

σ σ σ
−

 −
 + =  + + −

+ − − 
 + 

t
t

b
Y

b b b
b t

b b b

.          (A11) 

Recovering ( )∆ tVar y  from (A4), (A5), (A8) and (A11), finally we obtain equation 
(4): 

( ) ( ) 22 2 4 2 2 2 2 2 2 4 2 4 2
1( ) 5 1 4 7 4εβ σ σ σ γ σ σ σ σ

−

−∆ = − + = + + − + −
t

t tVar y b b b b tb b . 
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Appendix B: Gihman-Skorohod techniques in diffusion limit theorems 

We describe here a simplified, but also, in some sense, extended, version of technique 
for proving limit theorems for discrete schemes with convergence to vector-valued 
diffusion process. The full version is available at Gihman and Skorohod (1979), 
Chapter 2, Section 3 (pp. 200 – 208, in Russian edition pp. 267 – 275). 

1. Model and results 

Consider a scheme of series of mR  - valued random vectors 

, , , 0∈ ≤ <T kX T N k T . Let's associate with each series a process: 

,( ) =T T kX t X ,         
1+

≤ <
k k

t
T T

,    0 ≤ <k T    , 

and consider the differences: , , 1 ,+∆ = −T k T k T kX X X ,   0 ≤ <k T . Now specify the 

diffusion nature of X. Consider a martingale difference series ,( )δT k , ∈T N , 

1≤ ≤k T , i.e. , ,0 ,( | ,..., ) 0δ =T k T T kE X X , such that 

, ,0 ,( | ,..., )δ = m
T k T T k

I
Cov X X

T
 ,                (B1) 

where mI  means m-dimensional unit matrix. Let a function h is defined on [0, ]× mT R , 
takes values in the space of ×m m  matrices and satisfies the conditions: 

|| ( , ) | | (1 || ||)≤ +h t x C x , and || ( , ) ( , ) | | || ||− ≤ −h t x h t y C x y . 

Let now , , ,( )δ∆ =T k T k T kX h X . Assume also that sequences of martingales 

,
1

( ) δ
=

= ∑
k

T T j
j

V t , 
1+

≤ <
k k

t
T T

, weakly converges to the Wiener process W . 

Under all conditions given above the Gihman Skorohod theorem (see Gihman and 
Skorohod (1979), p.207, Theorem 12) may be applied and in our particular case it will 
be obtained that TX  weakly converges to the solution of stochastic differential 
equation  

( )( ) , ( ) ( )=dX t h t X t dW t .              (B2) 

We also need a minor extension of this result given in Lemma B below.  

Lemma B  If, instead of (B1), we have: 

, ,0 ,( | ,..., )δ =T k T T k

K
Cov X X

T
     ,             (B3) 

with some positively defined matrix K, then the limit process satisfied the equation 

( )( ) , ( ) ( )= KdX t h t X t dW t  ,             (B4) 

where KW  stands for m-dimensional Wiener process with covariance K. 

Proof. At first, let us choose the coordinate system where K  has a diagonal form, 
say, with some diagonal elements 2 2

1 ,0, 0l …l …p . Let L  be the diagonal matrix with 

diagonal elements 1 ,0, 0l …l …p . Construct a new martingale difference *
,δT k  such 
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that *
, ,δ δ=T k T kL  and *

,( )δ = m
T k

I
Cov

T
 . Indeed, we can set *( ) ( )

, , /δ δ= lj j
T k T k j  for 1 ≤ ≤j p  

and choose *( )
,δ j

T k  for >j p  to be random variables with zero mean, variances equal to 
1
T

, which are mutually independent and independent on ,{ }δ n k . Both required 

properties are obviously satisfied. Next, let us consider equation 

, , ,( , )δ∆ =T k T k T k

k
X h X

T
. Since: 

* * *
, , , , , ,( , ) ( , ) : ( , )δ δ δ= =T k T k T k T k T k T k

k k k
h X h X L h X

T T T
,  where *( , ) : ( , )⋅ ⋅ = ⋅ ⋅h h L ,  

and *
,( )δ = m

T k

I
Cov

T
, our equation corresponds the standard Gihman-Skorohod scheme 

described above and the processes converge to the solution of equation: 
*( ) ( , ( )) ( ) ( , ( )) ( ) ( , ( )) [ ( ) ]= = =dX t h t X t dW t h t X t LdW t h t X t d LW t  

Finally, notice that ( ) ( )= KLW t W t  where KW  denotes a Wiener process with the 
covariance K . Hence the equation for the limit process is indeed, 

( ) ( , ( )) ( )= KdX t h t X t dW t , as required and the proof of Lemma B is completed. 

2. Proof of Statement, Section 3. 

We present three examples below which follows from the scheme described 
above and which give us the proof of Statement from Section 3. These examples will 
be later recalled in Appendix C in order to prove the Theorems 1 and 2.  

Let (ek) k≥1 be IID sequence with zero odd moments and variance 2σ . We define 

the related random walk by 0 0=y  and 
1
ε

=
= ∑k

k jj
y , 1≥k . Consider three Gihman-

Skorohod 2-dimensional (m=2) constructions and investigate the limit behaviour of 
vector process ( )(1) (2)( ) ( ) , ( )=T T TX t X t X t . Actually, we are really interested in the limit 

behaviour of a single random variable (2) (1)X . In all examples we set: (1)
,

σ
= k

T k
y

X
T

 

and (1) (1) 1
, ,

ε
δ

σ
+= ∆ = k

T k T kX
T

, and, therefore, they will differ in the constructions of the 

second component and different matrix h . 

Example 1. Let (1) (2)
(1)

1 0
(( , ))

0
 

=  
 

h x x
x

 and (2 ) 1
, 2

ε ε
δ

σ
+= k k

T k
T

. The solution of the 

equation (B2) may be represented in the form: 

1

1 2
0

( )

( )
( ) ( )

 
 

=  
 
 
∫
t

W t

X t
W s dW s

 , 

where 1 2,W W  are independent Wiener processes. Hence the limit theorem provides: 
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1
(2)

1 1 1 23
2 0

1
(1) ( ) ( )ε ε

σ − −
=

= ⇒∑ ∫
T

T t t t
t

X y W t dW t
T

.             (B5) 

Example 2. Let ( )(1) (2)
(1)

1 0
( , )

0
 

=  
 

h x x
x

 and 
3

(2) 1
,

ε
δ += k

T k
T

. Now the components of 

,δT k  are genuinely correlated as in (B3), and the corresponding covariance matrix is: 

12

12 22

1 
=  

 

k
K

k k
,  where 4

12

1
ε

σ
= tk E  and 6

22 ε= tk E . 

The solution of the equation (B4) may be represented in the form: 
(1)

(1) (2)

0

( )

( )
( ) ( )

 
 

=  
 
 
∫

K

t

K K

W t

X t
W s dW s

. 

Hence the limit theorem provides: 
1

(2) 3 (1) (2)
1

2 0

1
(1) ( ) ( )ε

σ −
=

= ⇒∑ ∫
T

T t t K K
t

X y W t dW t
T

,                (B6) 

where (1) (2)( , )K KW W  is two-dimensional Wiener process with covariance K. 

Example 3.: Let ( )(1) (2)
(1)

1 0
, ( ( ), ( )

0
 

=  
 

h t x t x t
tx

 and 
2

(2) 1
,

ε σ
δ + −

= k
T k

c T
, where 

2 2 2 2 4 4( )ε σ ε σ= − = −t tc E E . We make use of 3 0ε =tE  which provides the 

orthogonality of (1)δ  and (2)δ . The solution of the equation (B2) may be represented 
in the form: 

1

1 3
0

( )

( )
( ) ( )

 
 

=  
 
 
∫
t

W t

X t
sW s dW s

   , 

where 1 3,W W  are independent Wiener processes. Hence the limit theorem provides: 

1
(2) 2 2

1 1 32
2 0

1
(1) ( ) ( ) ( )ε σ

σ −
=

= − ⇒∑ ∫
T

T t t
t

X ty tW t dW t
c T

   .               (B7) 

These three examples complete the proof of Statement.  
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Appendix C: Proofs of Theorem 1 and Theorem 2 

 

To proof Theorem 1 and Theorem 2 it is convenient to formulate a following 

Lemma C. 

Lemma C: Consider IID sequence ( ) 1
ε

≥k k
 with zero odd moments and variance 2σ  

and define the related random walk by 0 0=y  and 
1
ε

=
= ∑ t

t jj
y , 1≥t . Hence: 

1) 
1

3
1 1 1 2

2 0

1
( ) ( )ε ε σ− −

=

⇒∑ ∫
T

t t t
t

y W t dW t
T

, where 1 2,W W  are independent Wiener 

processes; 

2) 
1

(2) 3 (1) (2)
1

2 0

1
(1) ( ) ( )ε

σ −
=

= ⇒∑ ∫
T

T t t K K
t

X y W t dW t
T

, where (1) (2)( , )K KW W  is two-

dimensional Wiener process with covariance K; 

3) ( ) ( )2 2 2
1

2

ε σ−
=

− =∑
T

t t
t

y O T T    , 

4) 
1

2 2 4 2
12

1 0

1
( )ε σ

=

⇒∑ ∫
T

t t
t

y W t dt
T

   . 

5) 
1

2 3
1 12

2 0

1
( )ε σ−

=

⇒∑ ∫
T

t t
t

ty tW t dt
T T

   . 

Proof. 

1) See (B5), Appendix B. 

2) See (B6), Appendix B. 

3) Denote 2 2ε σ= −t tu  and 2( ) =tVar u c . Obviously 0=tEu , 1−ty and tu  are 

orthogonal. Because of orthogonality of 2
1−t ty u  to each other for different t we get: 

2 2 2 2 2
1 1

2 2

|| || || ||− −
= =

=∑ ∑
T T

t t t
t t

y u c y . Bearing in mind that 2 2
1|| || σ− ≤ty t , we obtain: 

( )2 2 2 2 2 2 4 2 3
1 1

2 2 2

|| || || || σ− −
= = =

= ≤ =∑ ∑ ∑
T T T

t t t
t t t

y u c y c t O T  . 
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4) Using 2) and 3) above we obtain: 

( ) ( )2 2 2 2 3 4 2 2 2 2 2 2 2
1 1 1 1 12 ( )ε ε ε ε ε σ ε σ− − − − −= + + = + = + − +∑ ∑ ∑ ∑ ∑ ∑ ∑t t t t t t t t t t t ty y y y O T y y O T

              ( )2 2
1σ −= +∑ ty O T T . 

Hence: 
1

2 2 4 2
12

1 0

1
( )ε σ

=

⇒∑ ∫
T

t t
t

y W t dt
T

 . 

5) ( )2 2 2 2
1 1 1 1 2

2 2 2

ε ε σ σ− − −
= = =

= − + = +∑ ∑ ∑ ∑ ∑
T T T

t t t t t
t t t

ty ty ty . Applying (B7), Appendix 

B, we get: ( )2

1
=∑ O T . Using the fact that 

1
3

12 2
0

1
( )σ⇒∑ ∫ tW t dt

T T
 (see e.g. 

Maddala and Kim 1998), we get statement 5). 

End of proof. 

 

Proof of Theorem 1.  

 (i). Under the DGP 1, that is, (11), and the null of 0=b  the t-ratio (5) for Test 1 

given by (6) becomes: 

( )

1 1 1 1
2 2

ˆ
2 2 2

1 1 1 1
2 2

ˆ ˆε ε

ε ε

σ σ ε

− − − −
= =

− − − −
= =

∆ ∆
= =

⋅ ∆ ⋅

∑ ∑

∑ ∑

T T

t y t t t t
t t

b T T

t y t t
t t

y y y y
t

y y y

,      

where 0 0=y , 
1
ε

=
= ∑ t

t jj
y , 1≥t and ( ) 1

ε
≥k k

 is IID sequence with zero odd moments 

and variance 2σ . 

Applying Lemma C, 1) and 4), we get (13). End of proof of (i). 

(ii). Under the null, the t–ratio (9) for Test 3 given by (10), becomes: 
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                     (C1) 

where 
1

1
ε ε

=

= ∑
T

t
tT

 and ty  and ( ) 1
ε

≥k k
 are defined as in (i). 
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Bearing in mind the DGP 1 given by (11) consider expression in curly brackets in the 

numerator of (C1): 

1 1 1 1
2 2 2

( 1) ( )ε ε ε ε ε− − −
= = =

   
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t t
y

y O T  and ( )
2

ε
=
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O T , 

which implies that  

( )1 =A O T T .                   (C2) 

Next, consider expression in curly brackets in the denominator of (C1): 

2
2 2
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2 2
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t t t t
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Analogously with 1A  we have: 

( )2
1 =B O T .                   (C3) 

Applying 1) and 4) from Lemma C and substituting (C2) and (C3) into (C1), we get: 
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   , 

which gives (13). For Test 2, the proof is analogous. 

End of proof of Theorem 1. 

Proof of Theorem 2. Consder DGP 2 given by (12). For Test 3, Under the 

null of 0=b the t- ratio (9) becomes: 
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where ε  is defined as in Theorem 1. Under the null of b = 0 and the DGP 2 (12) the 

process yt may be written as µ= +t ty t S , where 
1

ε
=

= ∑
t

t k
k

S  and ( ) 1
ε

≥k k
 is IID 

sequence with zero odd moments and variance 2σ . Consider the numerator in (C4). 

Applying 1) from Lemma C we may represent the first term as: 
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Consider the term 2A  that gives the expression in curly brackets in the numerator of 

(C4). Analogously with the previous derivation we get: 

( )2
2 =A O T                    (C6) 

Next, consider the denominator in (C4). Under DGP 2 (12) we have:  
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Applying 4) and 5) from Lemma C for the later formula we get: 
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Analogously with the previous derivations we get that expression in curly brackets in 

the denominator of (C4) has the asymptotic: 

( )3
2 =B O T  .                   (C8) 

Finally, substituting, (C5)-(C8) into (C4), we receive: 
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which gives (14). For Tests 1 and 2 the proofs are analogous. 

End of proof of Theorem 2. 
 
 



 

 Appendix 3: Empirical results 
 

Table D1: Descriptive statistics for GARCH -adjusted returns  
 
code   No.obs.  M.cor.f.  mean    st.dev       skewness         kurtosis 
                                            coef    p-value   coef  p-value 
 
ARG    1100      0.078    0.000    0.008   -0.225    0.002    8.524    0.000 
AUS1   1100      0.026    0.000    0.004   -0.254    0.001    5.954    0.000 
AUS2   1100      0.021    0.000    0.004   -0.933    0.000    5.726    0.000 
BEL    1100      0.026    0.000    0.004   -0.296    0.000    2.304    0.000 
BRA    1100      0.024    0.000    0.008    0.289    0.000   15.000    0.000 
CAN    1100      0.034    0.000    0.004   -0.919    0.000    7.335    0.000 
CHIN   1100      0.032    0.000    0.009   -0.240    0.001    4.006    0.000 
DEN    1100      0.047    0.000    0.004   -0.617    0.000    6.789    0.000 
FIN    1100      0.052    0.001    0.008   -0.381    0.000    4.059    0.000 
FRA    1100      0.023    0.000    0.005   -0.276    0.000    3.029    0.000 
GER    1100      0.040    0.000    0.005   -0.703    0.000    3.892    0.000 
GRE    1100      0.039    0.001    0.008   -0.093    0.209    3.378    0.000 
HK     1100      0.050    0.000    0.008    0.214    0.004   10.943    0.000 
INDO   1100      0.028    0.000    0.012    1.501    0.000   16.494    0.000 
IRE    1100      0.070    0.000    0.005   -0.632    0.000    9.310    0.000 
ITA    1100      0.051    0.000    0.006   -0.098    0.186    2.696    0.000 
JAP    1100      0.045    0.000    0.005    0.131    0.077    2.697    0.000 
KOR    1100      0.053    0.000    0.011    0.384    0.000    2.741    0.000 
LUX    1100      0.056    0.000    0.003    0.055    0.454   11.585    0.000 
MAL    1100      0.053   -0.000    0.010    0.669    0.000   26.595    0.000 
MEX    1100      0.041    0.000    0.006    0.168    0.023    6.739    0.000 
NETH   1100      0.048    0.000    0.005   -0.439    0.000    2.870    0.000 
NZEL   1100      0.041    0.000    0.004   -1.434    0.000   34.681    0.000 
NOR    1100      0.039    0.000    0.005   -0.517    0.000    6.133    0.000 
PHI    1100      0.034   -0.000    0.007    0.124    0.095    4.758    0.000 
POL    1100      0.051    0.000    0.008   -0.222    0.003    3.111    0.000 
POR    1100      0.038    0.000    0.005   -0.656    0.000    8.911    0.000 
SING   1100      0.051    0.000    0.006    0.324    0.000    5.745    0.000 
SAFR   1100      0.042    0.000    0.006   -1.554    0.000   16.076    0.000 
SPA    1100      0.048    0.000    0.005   -0.556    0.000    4.743    0.000 
SWE    1100      0.053    0.000    0.006    0.152    0.039    6.878    0.000 
SUE    1100      0.041    0.000    0.005   -0.443    0.000    3.719    0.000 
TAI    1100      0.029    0.000    0.007    0.073    0.322    2.540    0.000 
THA    1100      0.040   -0.000    0.011    0.893    0.000    3.946    0.000 
TUR    1100      0.053    0.001    0.014   -0.173    0.019    2.791    0.000 
UK     1100      0.096    0.000    0.004   -0.195    0.008    1.841    0.000 
US     1100      0.020    0.000    0.004   -0.523    0.000    4.775    0.000 
VEN    1100      0.062    0.000    0.010   -0.393    0.000   23.868    0.000 
CHIL   1100      0.050   -0.000    0.005    0.157    0.034    4.376    0.000 
COL    1100      0.055    0.000    0.006    0.691    0.000    9.939    0.000 
EGY    1100      0.065    0.000    0.005    0.973    0.000    6.028    0.000 
HUN    1100      0.025    0.001    0.010   -0.776    0.000    9.919    0.000 
INDIA  1100      0.047    0.000    0.007    0.143    0.053    2.495    0.000 
ISR    1100      0.038    0.000    0.005   -0.355    0.000    5.758    0.000 
JORD   1100      0.050   -0.000    0.003    1.675    0.000   15.442    0.000 
MOR    1100      0.049    0.000    0.002    0.219    0.003    4.377    0.000 
PAK    1100      0.056   -0.000    0.010   -0.519    0.000    7.382    0.000 
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code   No.obs.  M.cor.f.  mean    st.dev       skewness         kurtosis 
                                            coef    p-value   coef  p-value 
 
RUS    1100      0.041    0.000    0.018   -0.398    0.000    6.511    0.000 
SRIL   1100      0.034   -0.000    0.005   -0.098    0.187    5.472    0.000 
EST    0752      0.070   -0.000    0.015   -0.807    0.000    8.858    0.000 
LAT    0491      0.060   -0.001    0.009   -1.387    0.000    8.365    0.000 
LIT    0491      0.051   -0.000    0.008   -0.426    0.000   10.971    0.000 
MALT   1014      0.033    0.000    0.005    0.790    0.000   10.164    0.000 
BANG   1100      0.034   -0.000    0.012    1.229    0.000   58.358    0.000 
CROA   0578      0.066   -0.001    0.011   -0.116    0.256    7.353    0.000 
CYPR   1100      0.040    0.001    0.007    4.430    0.000   58.316    0.000 
CZE    1100      0.077   -0.000    0.006   -0.366    0.000    7.766    0.000 
ICE    1100      0.050    0.000    0.002   -0.645    0.000   22.352    0.000 
KEN    1100      0.032   -0.000    0.003    0.083    0.258    7.620    0.000 
MAU    1100      0.043    0.000    0.002   -0.893    0.000   22.577    0.000 
OMAN   0803      0.027    0.000    0.006    3.685    0.000  100.960    0.000 
ROM    0565      0.047   -0.000    0.010    0.152    0.141    4.061    0.000 
SLOVA  1099      0.047   -0.000    0.004    0.013    0.856    1.867    0.000 
SLOVE  1100      0.067    0.000    0.006   -0.582    0.000    7.908    0.000 
ZIMB   1100      0.051    0.000    0.005   -0.056    0.450   13.967    0.000 
 

Table D2 :Stable distribution estimates for returns  
 

              code   No.obs.  alpha    sd(alpha) beta    sd(beta) 
 

ARG    1100      1.407    0.057   -0.093    0.096 
AUS1   1100      1.728    0.083    0.030    0.183 
AUS2   1100      1.477    0.060   -0.099    0.100 
BEL    1100      1.541    0.066   -0.183    0.115 
BRA    1100      1.340    0.055   -0.139    0.092 
CAN    1100      1.542    0.065   -0.164    0.116 
CHIN   1100      1.383    0.057    0.137    0.094 
DEN    1100      1.377    0.056   -0.095    0.095 
FIN    1100      1.582    0.069   -0.158    0.132 
FRA    1100      1.616    0.072   -0.066    0.144 
GER    1100      1.594    0.073   -0.346    0.146 
GRE    1100      1.393    0.057    0.087    0.096 
HK     1100      1.341    0.054   -0.048    0.095 
INDO   1100      1.138    0.049    0.114    0.086 
IRE    1100      1.467    0.059    0.096    0.099 
ITA    1100      1.564    0.067    0.072    0.125 
JAP    1100      1.517    0.061    0.024    0.109 
KOR    1100      1.300    0.054    0.118    0.090 
LUX    1100      1.377    0.057    0.184    0.092 
MAL    1100      1.290    0.052   -0.021    0.093 
MEX    1100      1.548    0.066    0.154    0.118 
NETH   1100      1.557    0.068   -0.241    0.121 
NZEL   1100      1.586    0.068   -0.014    0.133 
NOR    1100      1.449    0.059   -0.083    0.099 
PHI    1100      1.357    0.054   -0.003    0.097 
POL    1100      1.510    0.061   -0.065    0.106 
POR    1100      1.374    0.056    0.110    0.094 
SING   1100      1.503    0.060   -0.014    0.105 
SAFR   1100      1.417    0.057   -0.089    0.097 
SPA    1100      1.566    0.067   -0.061    0.126 
SWE    1100      1.747    0.085   -0.206    0.204 
SUE    1100      1.470    0.061   -0.199    0.096 
TAI    1100      1.452    0.060    0.163    0.096 
THA    1100      1.354    0.056    0.155    0.092 
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  code   No.obs.  alpha    sd(alpha)  beta    sd(beta) 

 
TUR    1100      1.547    0.066    0.137    0.118 
US     1100      1.551    0.066   -0.169    0.119 
VEN    1100      1.424    0.057    0.051    0.099 
CHIL   1100      1.605    0.073    0.257    0.144 
COL    1100      1.278    0.052    0.056    0.091 
EGY    1100      1.038    0.046    0.125    0.084 
HUN    1100      1.442    0.057    0.020    0.101 
INDIA  1100      1.669    0.078    0.242    0.172 
ISR    1100      1.420    0.058   -0.089    0.097 
JORD   1100      0.778    0.036   -0.028    0.090 
MOR    1100      1.377    0.058    0.216    0.091 
PAK    1100      1.331    0.054   -0.057    0.094 
PER    1100      1.374    0.056    0.122    0.094 
RUS    1100      1.357    0.054    0.003    0.097 
SRIL   1100      1.309    0.054   -0.094    0.092 
EST    0752      1.261    0.062    0.078    0.109 
LAT    0491      1.388    0.089   -0.273    0.134 
LIT    0491      1.331    0.079    0.003    0.144 
MALT   1014      1.227    0.054    0.188    0.089 
BANG   1100      0.948    0.041   -0.003    0.089 
CROA   0578      1.174    0.068   -0.096    0.121 
CYPR   1100      1.242    0.057    0.351    0.078 
CZE    1100      0.922    0.040   -0.003    0.089 
ICE    1100      0.853    0.043    0.189    0.082 
KEN    1100      1.370    0.055    0.041    0.096 
MAU    1100      1.049    0.045    0.069    0.087 
OMAN   0803      0.893    0.046   -0.008    0.104 
ROM    0565      1.474    0.082    0.025    0.143 
SLOVA  1099      1.542    0.065   -0.144    0.116 
SLOVE  1100      1.321    0.053    0.046    0.094 
ZIMB   1100      1.322    0.053    0.042    0.094 

 
 

Table D3: Joint confirmation of the unit root tests 
 

Leybourne DFmax                       KPSS 
code     signif. max.aug. B/F            signif.     AC length 

 
ARG        0        1     back             +++              0 
AUS1       0        4     forw             +++              0 
AUS2       0        8     back             +++              0 
BEL        0        5     back             +++              0 
BRA        0        8     forw             +++              0 
CAN        0        1     back             +++              0 
CHIN       0        5     back             +++              0 
DEN        0        5     back             +++              0 
FIN        0        7     forw             +++              0 
FRA        0        7     forw             +++              0 
GER        0        6     back             +++              0 
GRE        0        1     forw             +++              0 
HK         0        4     forw             +++              0 
INDO       0        7     forw             +++              0 
IRE        0        4     back             +++              0 
ITA        0        7     forw             +++              0 
JAP        0        6     forw             +++              0 
KOR        0        5     forw             +++              0 
LUX        0        2     back             +++              0 
MAL        0        6     back             +++              0 
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                   Leybourne Dfmax                        KPSS 
        code     signif.  max.aug. B/F           signif.       AC length 

 
MEX        0        7     back             +++              0 
NZEL       +++      2     back             +++              0 
NOR        0        4     back             +++              0 
PHI        0        1     back             +++              0 
POL        0        1     back             +++              0 
POR        0        8     back             +++              0 
SING       0        5     forw             +++              0 
SAFR       0        2     back             +++              0 
SPA        0        2     back             +++              0 
SWE        0        7     forw             +++              0 
SUE        0        7     back             +++              0 
TAI        0        4     back             +++              0 
THA        0        1     back             +++              0 
TUR        0        7     back             +++              0 
UK         0        5     back             +++              0 
US         0        7     back             +++              0 
VEN        0        8     back             +++              0 
CHIL       0        7     back             +++              0 
COL        0        7     back             +++              0 
EGY        0        5     back             +++              0 
HUN        0        3     back             +++              0 
INDI       0        7     forw             +++              0 
ISR        0        1     forw             +++              0 
JORD       0        1     back             +++              0 
MOR        0        3     back             +++              0 
PAK        0        7     back             +++              0 
PER        0        3     back             +++              0 
RUS        0        6     back             +++              0 
SRIL       0        8     forw             +++              0 
EST        0        7     forw             +++              0 
LAT        0        8     back             +++              0 
LIT        0        7     back             +++              0 
MALT       0        5     forw             +++              0 
BANG       0        8     forw             +++              0 
CROA       0        7     back             +++              0 
CYPR       0        8     forw             +++              0 
CZE        0        7     forw             +++              0 
ICE        0        8     back             +++              0 
KEN        0        4     forw             +++              0 
MAU        0        3     back             +++              0 
OMAN       0        5     back             +++              0 
ROM        0        3     back             +++              0 
SLOV       0        8     forw             +++              0 
SLOV       0        7     forw             +++              0 
ZIMB       0        8     back             +++              0 
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Table D4: Bilinear test results 

 
 

       country     Nr.obs.          URB test       signif.      max. aug. 
 

ARG        1100              4.230          +++            0 
AUS1       1100              0.573            0            4 
AUS2       1100              1.812           ++            8 
BEL        1100              6.138          +++            5 
BRA        1100              2.432          +++            8 
CAN        1100              3.699          +++            0 
CHIN       1100              0.370            0            5 
DEN        1100              1.452            +            5 
FIN        1100              1.652            +            7 
FRA        1100              2.438          +++            7 
GER        1100              2.403          +++            6 
GRE        1100              4.735          +++            0 
HK         1100              1.670           ++            4 
INDO       1100             -1.889            0            7 
IRE        1100              3.376          +++            4 
ITA        1100              1.661            +            7 
JAP        1100              0.661            0            6 
KOR        1100              3.066          +++            5 
LUX        1100              6.045          +++            2 
MAL        1100              2.620          +++            6 
MEX        1100              4.721          +++            7 
NETH       1100              2.067           ++            7 
NZEL       1100             -0.747            0            2 
NOR        1100              2.477          +++            4 
PHI        1100              7.240          +++            0 
POL        1100              6.904          +++            0 
POR        1100              5.294          +++            8 
SING       1100              3.940          +++            5 
SAFR       1100              4.185          +++            4 
SPA        1100              3.724          +++            2 
SWE        1100              3.171          +++            7 
SUE        1100              2.285           ++            7 
TAI        1100              0.826            0            4 
THA        1100              5.040          +++            0 
TUR        1100              1.139            0            7 
UK         1100              3.635          +++            5 
US         1100              0.784            0            7 
VEN        1100             -1.326            0            8 
CHIL       1100              9.272          +++            7 
COL        1100             11.674          +++            3 
EGY        1100              4.091          +++            5 
HUN        1100             -3.905            0            3 
INDIA      1100              3.047          +++            7 
JORD       1100              4.415          +++            0 
MOR        1100              8.306          +++            3 
PAK        1100              3.296          +++            7 
PER        1100              5.585          +++            3 
RUS        1100             -2.367            0            6 
SRIL       1100             10.139          +++            8 
EST        0752             -2.188            0            7 
LAT        0491              1.513            +            8 
LIT        0491              1.725           ++            7 
MALT       1014              6.769          +++            5 
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country   Nr.obs.         URB test       signif.       max. aug. 

 
BANG       1100              2.831          +++            8 
CROA       0578              0.488            0            7 
CYPR       1100              3.912          +++            7 
CZE        1100              3.845          +++            7 
ICE        1100              3.746          +++            8 
KEN        1100              4.599          +++            4 
MAU        1100              3.199          +++            3 
OMAN       0803              2.744          +++            5 
ROM        0565              8.841          +++            3 
SLOVA      1099             -1.252            0            8 
SLOVE      1100             11.178          +++            7 
ZIMB       1100              1.976           ++            8 

 
Country Codes 

 
ARGENTINA                                         ARG 
AUSTRALIA                                        AUS1 
AUSTRIA                                          AUS2 
BELGIUM                                           BEL 
BRAZIL                                            BRA 
CANADA                                            CAN 
CHINA                                            CHIN 
DENMARK                                           DEN 
FINLAND                                           FIN 
FRANCE                                            FRA 
GERMANY                                           GER 
GREECE                                            GRE 
HONG KONG                                          HK 
INDONESIA                                        INDO 
IRELAND                                           IRE 
ITALY                                             ITA 
JAPAN                                             JAP 
KOREA, REPUBLIC OF                                KOR 
LUXEMBOURG                                        LUX 
MALAYSIA                                          MAL 
MEXICO                                            MEX 
NETHERLANDS                                      NETH 
NEW ZEALAND                                      NZEL 
NORWAY                                            NOR 
PHILIPPINES                                       PHI 
POLAND                                            POL 
PORTUGAL                                          POR 
SINGAPORE                                        SING 
SOUTH AFRICA                                     SAFR 
SPAIN                                             SPA 
SWEDEN                                            SWE 
SWITZERLAND                                       SUE 
TAIWAN, PROVINCE OF CHINA                         TAI 
THAILAND                                          THA 
TURKEY                                            TUR 
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UNITED KINGDOM                                     UK 
UNITED STATES                                      US 
VENEZUELA                                         VEN 
CHILE                                            CHIL 
COLUMBIA                                          COL 
EGYPT                                             EGY 
INDIA                                           INDIA 
ISRAEL                                            ISR 
JORDANIA                                         JORD 
MOROCCO                                           MOR 
PAKISTAN                                          PAK 
RUSSIA                                            RUS 
SRI LANKA                                        SRIL 
ESTONIA                                           EST 
LATVIA                                            LAT 
LITHUANIA                                         LIT 
MALTA                                            MALT 
BANGLADESH                                       BANG 
CROATIA                                          CROA 
CYPR                                             CYPR 
CZECH REPUBLIC                                    CZE 
ICELAND                                           ICE 
KENYA                                             KEN 
MAURITIUS                                         MAU 
OMAN                                             OMAN 
ROMANIA                                           ROM 
SLOVAKIA                                        SLOVA 
SLOVENIA                                        SLOVE 
ZIMBABWE                                         ZIMB 
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