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Abstract

I investigate cointegrating relationships such that, even though the long-run at-

tractors are assumed to be linear, the dynamics of the equilibrium errors depends on

the business cycle. I postulate a Markov-switching common stochastic trends model to

study both the short-run responses to permanent shocks and the effects of recessions

in the long-run growth. I apply these findings to explore the short-run and long-run
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1 Introduction

Many nonstationary variables, even though may behave separately in the short-run, present

a closely related long-run pattern. Engle and Ganger (1987) describe these variables as

being in a long-run equilibrium, in the sense that a linear combination of their levels be-

haves as an attractor. Thus, while most of the time the system is out of equilibrium,

economic forces such as market mechanisms or government interventions, tend to correct

these equilibrium errors. One drawback of the Engle-Granger approach is that it implicitly

imposes symmetry in the dynamics of the equilibrium errors. This leads recent studies to

consider that market mechanisms and government interventions may also lead to asym-

metric dynamics of the equilibrium errors. On the one hand, Caballero and Hammour

(1994) argue, within a creative-destruction framework, that there are market mechanisms

moving the economy from a deep recession into the attractor more aggressively that it

falls from expansions. On the other hand, the asymmetric adjustment may also be due to

policy interventions. During recessions, policy authorities usually react more drastically

against the adverse economic situation, accelerating the convergence toward the attractor.

Even though we assume similar initiative for mitigating the effects of expansions and re-

cessions, many authors have postulated the existence of a convex aggregate supply curve

implying that monetary policy would have stronger effects within recessions. Garcia and

Schaller (2002) have found empirical evidence supporting this view.

The examination of this nonlinear adjustment mechanism has been one important de-

velopment in recent time-series literature. The natural way of dealing with this problem

has been by incorporating nonlinear econometric techniques to both the vector error correc-
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tion model of Engle and Ganger (1987) and the common stochastic trends representation

of Stock and Watson (1988a). Within the former, examples are the Markov-switching ap-

proach of Krolzig (1997, 1999), Krolzig and Toro (1999), Psaradakis et al. (2001), Krolzig

et al. (2002) and Francis and Owyang (2003), the threshold approach of Balke and Fomby

(1997) and Enders and Siklos (2001), the bilinear model approach of Peel and Davidson

(1998), and the smooth transition regression approach of van Dijk and Franses (2000),

and Rothman et al. (2001). Within the latter, examples are the dynamic factor regime

switching model of Kim and Piger (2002), and the Markov-switching bayesian approach

of Paap and van Dijk (2003).

In this paper, I contribute to the growing literature on nonlinear long-run adjust-

ment by developing an alternative representation to the Markov-switching vector error

correction model stated in Krolzig (1997, 1999): the Markov-switching common trends

representation. For this attempt, I incorporate the asymmetric adjustment to the long-

run equilibrium by assuming that the dynamics of the equilibrium errors is subject to

regime switching business-cycle pattern. I show that this is closely related to a Markov-

switching extension of the common stochastic trends representation developed by Stock

and Watson (1988a). This leads to a decomposition of the series into permanent and

transitory components that behave asymmetrically within the business cycles. In line

with the dynamic factor model of Kim and Piger (2002), my specification captures two

types of business-cycle asymmetries. According to the asymmetry advocated by Hamilton

(1989), the long-run component is viewed as combinations of random walks whose rates of

growth are state-dependent. According to the asymmetry suggested by Friedman (1993),

the short-run component presents Markov-switching coefficients and exhibits asymmetric
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deviations of the variables from the trend component.

I apply these findings to examine the short-run and long-run relationships among

output, consumption and investment and compare my results with those of the linear

approach of King, Plosser, Stock and Watson (1991), henceforth KPSW. This empirical

analysis leads to the following interesting results. First, I find empirical evidence in favor

of the claim that the equilibrium errors dynamics exhibits business-cycle asymmetries.

Second, the estimated Markov-switching common trends representation presents lower in-

sample one-step ahead forecast mean squared error than the linear approach. Several tests

confirm the superior predicting accuracy of the nonlinear model. Third, I find that the

estimated model may help to characterize the US business cycle features. In particular, I

show that the estimated probability that the economy is contracting strongly corresponds

to the 20th century NBER recessionary dates. This allows me to consider the date of

the through of the first new century’s recession, that has not been officially announced

by the NBER yet. According to Chauvet (2002), my model indicates that this recession

ended in the first quarter of 2002. Fourth, even though I consider a nonlinear specification,

my conclusions about the effects of permanent shocks to business cycles fluctuations are

comparable to those of KPSW. Finally, in line with Kim et al. (2002) but in contrast

to Kim and Piger (2002), even though I consider asymmetries with both permanent and

transitory effects, I find that the trend growth rate falls during recessions and hence, that

there are permanent decreases in the trend of the series from their position before the

recession began. In addition, I obtain that the consequence for the long-run level of the

trend is a 1.68% drop in this trend, that is roughly the half of the value obtained by

Hamilton (1989). Following the Kim and Piger (2002) conclusions, this difference may be
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due to the lack of a mechanism to capture transitory types of asymmetry in the Hamilton’s

model.

I organize the paper as follows. Section 2 provides statistical relationships that link

the concepts of asymmetric equilibrium errors and common stochastic trends. Section

3 develops a framework for estimating the current responses to preceding shocks in a

context of business cycles asymmetries. Section 4 applies this methodology to investigate

the asymmetries in the equilibrium errors dynamics and the long-run effects of business

cycle fluctuations. Concluding remarks appear in the last section.

2 Markov-switching equilibrium errors and common stochas-

tic trends

In a context of cointegrated variables, this section examines the dynamics of equilibrium

errors that may depend on the phase of the business cycle. That is, in line with Engle and

Granger (1987), I consider a set of n nonstationary variables xt generating r stationary

combinations zt = β0xt, with β being the (n×r) cointegrating matrix. In contrast to these

authors, I postulate that the equilibrium errors may follow the Markov-Switching Vector

Autoregressive (MS-VAR) model:

zt = mst +Ast(L)zt−1 + et, (1)

where mst is the vector of Markov-switching intercepts, Ast(L) = (A1st + ... + A
p
stL

p−1)

and et|st ∼ N(0, V ). To complete the statistical specification, it is standard to assume

that these varying parameters depend upon an unobservable state variable st that evolves

according to an irreducible q-state Markov process. This is defined by the transition
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probabilities

p
¡
st = j|st−1 = i, st−2 = k, ...,χt−1

¢
= p (st = j|st−1 = i) = pij , (2)

where i, j = 1, 2, ..., q, and χt = (zt, , zt−1, ....). In addition, it is convenient to collect them

in the (q × q) transition matrix P , whose columns sum to unity. Finally, Yao (2001) and

Francq and Zakoïan (2001) show that a sufficient condition for second-order stationarity

of zt is that the spectral radius of the matrix

f =



p11 (A1 ⊗A1) · · · pq1 (A1 ⊗A1)

p12 (A2 ⊗A2) · · · pq2 (A1 ⊗A1)
... · · · ...

p1q (Aq ⊗Aq) · · · pqq (Aq ⊗Aq)


, with Aj =



A1
j
A2
j
· · · Ap−1

j
Ap
j

In 0 · · · 0 0

...
... · · · ...

...

0 0 · · · In 0


(3)

be less than one.1

As shown in Appendix A, the asymmetric dynamics of the equilibrium errors leads to

the Markov-Switching Vector Error-Correction Model (MS-VECM):

∆xt = µst + αstzt−1 + πst(L)∆xt−1 + ²t, (4)

where πst(L) = (π
1
st + ... + πpstL

p−1), and ²t|st ∼ N(0,Σ). Note that, whereas I initially

consider a state-independent long-run attractor (represented by the matrix β), the non-

linear dynamics of the equilibrium errors cause that both the strength with which the

equilibrium errors are corrected (measured by the matrix αst) and the short-run dynamics

1From now on, I will refer to the term stationary equilibrium errors in the sense of the second-order

stationarity of Yao (2001) and Francq and Zakoïan (2001).
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of the endogenous variables (measured by the matrices πist) vary across regimes.
2

The cointegrated process xt has an alternative representation in terms of a reduced

number of common nonlinear stochastic trends. To see this, I state in Appendix B that

the stationary change in xt will have the switching moving average representation

∆xt = δst + Cst↓(L)²t, (5)

where δst is the conditional mean of∆xt, and Cst↓(L) = (I+C
1
stL+C

2
st,st−1L

2+C3st,st−2L
3+

...). What I mean with Cst↓(L) is that parameters in C(L) depend not only on st but

also on st−1, st−2, ..., and what I mean with Cjst,st−(j−1) is that the matrix C
j depends

on the sequence of states st, st−1, ..., st−(j−1). In addition, I show in Appendix C that the

moving average polynomial Cst↓(L) can always be expressed as C(1) + (1 − L)C∗st↓(L),

where C(1) refers to (I +C1 +C2 + ...), with Cj =
qP

i0=1
...

qP
i(j−1)=1

P (st = i0, ..., st−(j−1) =

ij−1)Cjst,st−(j−1) , and where C
∗j
st,st−(j−1) = −C(1) + I + C1st−(j−1) + C2st−(j−2) ,st−(j−1) + ... +

Cjst ,st−(j−1) . Thus, substituting recursively and assuming ²0 = 0, it is easy to see that the

moving average expression becomes

xt = x0 +
tX
j=1

δsj + C(1)
tX
j=1

²j +C
∗
st↓(L)²t. (6)

Stock and Watson (1988a) suggest that, since the equilibrium errors are stationary by

assumption, it should be true that β0C(1) = 0, and β0δsj = 0 for all sj = 1, ..., q. This

implies that each δsj lies in the column space of C(1) and therefore can be written as

δsj = C(1)ρsj , where ρsj is an (n × 1) vector. Thus, since cointegration implies that

rank [C(1)] = k = n − r, there is a (n × r) matrix Γ−1r such that C(1)Γ−1r = 0 for all t.

2See Krolzig (1997, 1999), Krolzig and Toro (1999), Psaradakis et al. (2001), and Krolzig et al. (2002)

for comparable proposals.

7



Define the (n× k) matrix Υ = C(1)Γ−1k such that the k columns of Γ−1k are orthogonal to

the columns of Γ−1r . This means that C(1)Γ−1 = ΥSk, where Γ−1 =
¡
Γ−1k Γ

−1
r

¢
and Sk is

the (k × n) selection matrix [Ik0k×r].

Using these properties, expression (6) may be transformed into:

xt = x0 +Υ

SkΓ
tX
j=1

³
ρsj + ²j

´+ C∗st↓(L)²t. (7)

To interpret the expression in curly brackets, I follow Granger et al. (1997) to introduce

the notion of nonlinear stochastic trends. Specifically, I consider a wider class of trend-

generating k dimensional vector τ t of random walks with switching drift ϑst and white

noise innovations ϕt, such that:

τ t = ϑst + τ t−1 + ϕt =
tX
j=1

¡
ϑsj + ϕj

¢
. (8)

The standard literature usually assumes that the common trend follows a random walk

processes with drift that is decomposed into the sum of a linearly deterministic trend plus

the sum of persistent errors. However, in my nonlinear context, the dynamics of the vari-

ables is state-dependent, which seems to be associated with trends whose “deterministic”

growth is not constant along time but rather shifting among regimes.

A trivial verification shows that the expression in braces appearing in (7) can be seen

as the switching common stochastic trends, where ϑsj = SkΓρsj , and ϕj = SkΓ²j . This

leads to the Markov-Switching Common Trends Model (MS-CTM), that is an extension

of the Stock and Watson (1988a) common trend representation:

xt = x0 +Υτ t + C
∗
st↓(L)²t, (9)

with Υτ t and C∗st↓(L)²t representing the permanent and transitory components, both
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depending on the sequence of the states. In line with Kim and Piger (2002), when the se-

quence of states refers to the business cycle phases, this expression allows for two different

types of business cycle asymmetries. First, this allows for the Hamilton’s type of asymme-

try (that is related to permnent effects of recessions) by assuming the regime-dependence

of the trends growth rates. Second, this allows for the Friedman’s type of asymmetry

(that is related to transitory effects of recessions) by assuming the regime-dependence of

the transitory component. Consequently, this expression admits the possibility that severe

recessions may cause not only temporary deviations from the trends but, in addition, a

deterioration in the long-run growth.

3 Propagation of shocks

In this nonlinear context, the analysis of the dynamic responses is not straightforward for

several reasons. First, even though the moving average matrices Chst,st−(h−1) and the se-

quence of states were known with certainty, they do not identify the reaction to exogenous

shocks, due to the presence of correlations among the statistical errors. One of the mayor

contributions in KPSW is to realize that an intuitive way to identify the system is to

look for the matrix Γ stated in Section 2. This relates structural-form and reduced-form

responses as long as the relation Rst↓(L) = Cst↓(L)Γ
−1 holds. Hence, under the assump-

tion that Rst↓(1) = (Υ, 0), shocks that occur at time t − h, with h large enough, may

be decomposed into permanent-effect shocks (first k shocks) and transitory-effect shocks

(last r shocks). On the one hand, KPSW show that the effects of permanent shocks

may be approximated by the (k × n) matrix Γk = (Υ0Υ)−1Υ0C(1). Specifically, these au-
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thors suggest that Υ may be obtained by imposing identifying restrictions on the system

ΥΥ0 = C(1)ΣC(1), with β0Υ = 0. On the other hand, to examine the dynamic effects of

the transitory shocks, I refer the reader to the linear approach of Mellander et al. (1992),

and Gonzalo and Ng (2001), and the nonlinear works of Camacho (2001), and Krolzig et

al. (2002).

Second, the nonlinear nature of my approach implies the history dependence of the

responses as described in Koop et al. (1996). That is, given the information up to

time t, any matrix Rhst,st−(h−1) , collecting the reactions of the endogenous variables at

time t to one standard deviation structural shocks at t − h, depends on the sequence

of unknown states. To estimate these backward-looking responses, I use the approach of

Balke and Fomby (1997) and Krolzig (1997, 1999), who suggest a two-stage procedure to

estimate the parameters of cointegrated nonlinear models. In the first stage, they suggest

to determine the cointegration rank and to deliver an estimation on the cointegrating

matrix β using the standard Johansen’s approach. However, Coakley and Fuertes (2001)

have recently documented that the Johansen’s method may fail to detect cointegration due

to misspecification problems when the true nature of the adjustment process is nonlinear.

In this case, these authors suggest the use of the nonparametric cointegration analysis

advocated by Bierens (1997) whose results are independent of the data-generating process

due to the nonparametric nature of this approach.3 In the second stage, the remaining

parameters of the MS-CTM specification are estimated with the methods developed for

Markov-switching models. For this attempt, I extend to the Markov-switching context

3The Bierens’ approach is based on a nonparametric generalized eigenvalue problem in the same spirit

as the Johansen’s method.
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the method proposed by Warne (1993), who uses an intermediate restricted model to

obtain the estimates of C(1) and Σ. That is, let yt be the stationary transformation of

the endogenous variables
¡
β†(1− L),β¢0 xt. I estimate the so-called Markov-Switching

Restricted VAR (MS-RVAR) model

yt = µ
∗
st +Bst(L)yt−1 + ²

∗
t , (10)

which comes from an appropriate manipulation of MS-VECM, with Bst(L) = B
1
st + ...+

BpstL
p−1 and ²∗t |st ∼ N(0,Ω). This allows me to obtain the appropriate estimates of

Bst(L), Ω, and P , and to propose, as Appendix B shows, the moving average representation

yt = ςst +Fst↓(L)²
∗
t , with ςst being the conditional mean of yt, and Fst↓(L) = (I +F

1
stL+

F 2st,st−1L
2+F 3st,st−2L

3+ ...). In Appendix D, I follow the linear approach of Warne (1993)

to suggest a way to estimate the moving average parameters F j , and an iterative method

to calculate the backward-looking responses as:

Rj =

qX
i0=1

...

qX
i(j−1)=1

P (st = i0, ..., st−(j−1) = ij−1)Rjst,st−(j−1) . (11)

These matrices describe the estimates of the current responses to previous structural shocks

as the weighted average of the estimated responses in each state, where the weights are

the estimated probabilities of being in each of these states. The backward-looking impulse

responses may be related to alternative approaches to deal with impulse responses in the

context of Markov-switching suggested in the literature. Ehrmann (2000), Ehrmann et

al. (2001, 2003), and Krolzig et al. (2002) compute how fundamental disturbances affect

the variables in the model dependent on the Markov-regime. Their regime-dependent re-

sponses have the appeal that, conditional on a given regime, present the standard form

11



of traditional linear responses and allow for a simple analysis of asymmetries in the re-

sponses.4 However, as Ehrmann et al. (2003) point out, the validity of regime conditioning

depends on the horizon of the impulse response and the expected duration of the regime.

This leads me to consider the alternative backward-looking responses to examine the es-

timated effect of shocks hitting the economy with a lag of 25 quarters as in KPSW.5 In

addition, one can obtain the backward-looking responses for the levels of the variables by

just adding the matrices Rj , and the backward-looking variance decomposition by using

standard manipulations on these matrices. Finally, following Ehrman et al. (2001), confi-

dence bands may be computed by Monte Carlo methods to infer the distributions of the

responses.6

4 Empirical analysis

In this section, I consider an application to real data that illustrates the aforementioned

procedures. I employ an updated version of the database used by KPSW to gain insights

by comparing the results from their linear and my nonlinear approaches. Whereas they

develop both a three-variable and a six-variable models, I only consider their three-variable

model of output, consumption and investment to reduce the number of parameters to be

4Note that, when we assume that the economy remains in a given state after the shock, the backward-

looking responses reduce to the regime-dependent responses by imposing that the probability of this state

is one at any date.
5According to the NBER, the average duration of recessions in the US economy during the period

1945-1991 (9 cycles) is 11 moths.

6 In the empirical analysis, computations have been developed with maximum j of 50 since
jP

s=1

Rs =

(Υ, 0) reasonably holds.
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estimated within the nonlinear approach. For this attempt, I use the quarterly series

y, c and i referred to the logarithms of per capita private gross national product, real

consumption expenditures and gross private domestic fixed investment.7 The effective

sample runs over the period 1953.1-2002.3 with previous observations being left as initial

values.

4.1 Preliminary data analysis

The findings of KPSW are based on neoclassical growth models with uncertainty. In

these models, the logarithms of output, consumption and investment are assumed to be

integrated of order one. In addition, these variables share a common stochastic trend and

the great ratios of consumption over output and investment over output are stationary

stochastic processes along the steady state. This leads KPSW to propose the theoretical

cointegrating vectors (−1, 1, 0) and (−1, 0, 1). In this section, I try to find empirical

evidence regarding the integration and cointegration properties of the data.

The analysis of stationarity is addressed in Panel A of Table1. The first two columns

show the results of the augmented Dickey-Fuller and Phillips-Perron tests of the null of

non stationarity. The last two columns of this table show the results of the KPSS and

Lobato-Robinson tests of the null of stationarity, and both are based on nonparametric

results. All of these tests are consistent with the presence of one unit root in the logarithms

of the three variables that is removed by taking first differences.

7Following KPSW, the Citibase series used are GNPC96 minus GGEC96 for output, PCEC96 for

consumption and FIPC96 for investment. They are transformed into per capita data with the series

CNP16ov.
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The cointegration properties of the series are investigated in Panel B of Table 1 by

using the nonparametric cointegration analysis advocated by Bierens (1997). The first

three rows of this table show the results of the lambda-min test, that is the nonparametric

version of the Johansen’s maximum eigenvalue statistics This test tests the null hypothesis

that there are r cointegrating vectors against the alternative of r+1 cointegrating vectors.

In this approach, the null is rejected whenever the test statistics is smaller than the

critical value. Using this test, I reject the null of zero (versus one) and one (versus two)

cointegrating vectors since the test statistics (0.0001 and 0.0013) are smaller than their

respective 5% critical values (0.0084 and 0.0017). However, I do not reject the null of two

(versus three) cointegrating vectors, since the test statistic becomes 0.42 that is greater

than its 5% critical value of 0.11. In addition, the last row of this table presents the results

of testing the null hypothesis that the cointegrating vectors are (−1, 1, 0) and (−1, 0, 1).

According to the Bierens’ results, the null is rejected whenever the test statistics is greater

than the corresponding critical value. Hence, this restriction cannot be rejected at the 5%

level (test statistics of 3.63 versus critical value of 4.36). These results suggest that the

economic theory predictions are consistent with the data.

4.2 Markov-switching equilibrium errors

In this section, I examine the asymmetric short-run adjustment to the long-run equilibrium

by analyzing the dynamics of the equilibrium errors. In this attempt, Figure 1 depicts the

particular dynamics of the equilibrium errors: while they fluctuate around their respective

means, the broad changes of direction in the series seem to mark quite well the NBER-

referenced business cycles. During recessions, the value of the first equilibrium error
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is usually high, due to the smoothness of consumption that falls less than output. By

contrast, the value of the second equilibrium error declines within recessions due to the

higher volatility of investment that falls more than output. In this respect, the first four

rows of Table 2 show evidence of this particular dynamics. Using the NBER recessionary

data, the first (second) equilibrium error presents a mean that is higher (smaller) than the

mean computed using the complete sample, and just the opposite occurs with the mean

within expansions. A simple test of the null of no different within-recessions and within-

expansions means is clearly rejected for both cointegrating errors (p-values of 0.001 and

less than 0.001, respectively). As a final check to confirm that equilibrium errors share this

business cycle pattern, the last two rows of Table 2 show the p-values of the following test.

First, I generate a dummy variable Dt, that equals 1 if t corresponds to NBER recessions

and 0 elsewhere. Second, I include this dummy in AR and VAR specifications of the

cointegrating errors, with the lag lengths selected by BIC. Third, I test the significance of

this dummy in

ot = a+ bDt + cp(L)ot−1 + dp(L)ot−1Dt + e1t, (12)

where o is either c− y or i− y in the AR case for each equilibrium error (fifth row), or a

vector of both equilibrium errors in the VAR case (sixth row). In each of these cases, the

parameter estimates of the dummy are statistically significant (p-values less than 0.001),

indicating that, even though the long-run attractors are assumed to be linear, the dynamics

of the equilibrium errors depends on the business cycle.

A natural approach to handle with these findings is the Markov-switching model pro-

posed in (1), with a number of states equal to two.8 In order to consider (−1, 1, 0) and
8Following the BIC criterium, I selected a lag length of six. Parameters estimates are available upon
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(−1, 0, 1) as cointegrating vectors generating Markov-switching equilibrium errors, I exam-

ine the stationarity condition expressed in (3). In this respect, I find that spectral radius

of matrix f is 0.98, which guarantees that the Markov-switching dynamics followed by

ct− yt and it− yt is stationary in the sense of Yao (2001) and Francq and Zakoïan (2001).

As a robustness check of the Markov-switching assumption, I obtain that the p-value of

the standard likelihood ratio test of one state is 0.007. Garcia (1998) shows that the

asymptotic distribution of this statistics depends on nuisance parameters, and presents

critical values for several univariate specifications. Unfortunately, multivariate models are

not treated by this author, but the test statistics is so much higher than the standard 5%

critical value to consider that, even though the standard test is not strictly applicable, a

rejection of the null appears unavoidable. Finally, Figure 2 displays the filtered probabili-

ties of being in state 2 that comes from this model, along with the NBER recessions. It is

easy to interpret state 2 as recessions and the series plotted in this chart as probabilities

of being in recession.

4.3 Markov-switching common trends

I have stated in Section 2 that a set of Markov-switching equilibrium errors leads to a

Markov-switching common trends representation of the variables. In this section, I use

this representation to examine the interaction business cycle fluctuations and between

secular movements in four stages.

First, is there evidence that the three endogenous variables present asymmetric pat-

terns? In this respect, Figure 3 plots the logarithms of output, consumption and invest-

request.
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ment over the effective sample period. Clearly, these variables present an upward trend.

However, this trend does not seem to be a smooth curve but rather a sequence of up-

turns and downturns that are closely related to the NBER business cycles phases. In this

respect, the first three rows of Table 2 reveal that the overall average growth rates of

these series are positive (0.49, 0.52, and 0.58, respectively). However, the average growth

rates of these series are negative during the NBER recessions (-0.83, -0.06, and -4.11,

respectively). In addition, fourth row of Table 2 confirms that the mean growth rates of

these three variables are statistically lower in periods of NBER recessions than in periods

of NBER expansions (the p-values of the null of no different means are always less than

0.001). Finally, last two rows of Table 2 analyze the significance of the NBER dummy in

(12), where o is ∆y, ∆c, and ∆i in the univariate specifications (fifth row) and a vector

formed by these three variables in the multivariate specification (sixth row). This points

out that the official business cycle phases seem to affect the dynamics of these variables,

since in each of these cases the p-values of the null of no significance of the NBER-dated

dummy is always less than 0.001.

Second, is my Markov-switching common trends representation detecting the main

characteristics of the US business cycle features? and what are its advantages, measured

in terms of within-sample performance, with respect to the KPSW linear representation?

Based on eights lags of ∆xt (this is the lag length selected by KPSW), the estimates of
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the Markov-switching model are
yt

ct

it

 =


0.03
(0.01)

0.03
(0.01)

0.03
(0.01)


τ t + bC∗st↓(L)b²t, with


τ t = 0.23

(0.02)
+ τ t−1 + bϕt, if st = 1

τ t = −0.76
(0.09)

+ τ t−1 + bϕt, if st = 2 , (13)

where standard errors appear in parentheses. In addition, the estimates of the transition

probabilities are bp11 = 0.95 (standard error of 0.02) and bp22 = 0.68 (standard error of

0.10).

On the one hand, the ability of the MS-CTM representation to characterize the US

business cycle features is examined as follows. Figure 4 plots the filtered probabilities

that the economy was in regime two as implied by my nonlinear model, along with shaded

areas that represent the NBER recessions. It is interesting that the traditional business

cycle dates correspond fairly closely to the inferences about the unobservable state vari-

able. In addition and in contrast to the studies in nonlinear cointegration discussed in

the introduction, my up-to-date sample period allow me to infer some conclusions about

the new century’s first recession. The NBER dating procedure requires the examination

of numerous ex-post data series so their decisions about the business-cycle turning points

are usually slow in forthcoming. In this respect, they announced the last peak of March

2001 in November 2001, but they have not announced the official trough yet. However,

I may use the MS-CTM specification to asses when the last recession is over. For this

attempt, I follow Hamilton (1989) to split the sample in two subsamples: the recessionary

subsample, characterized by periods with probability of recession greater than 0.5, and

the expansionary subsample, characterized by periods with probability of recession smaller
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than 0.5. In addition, I follow Harding and Pagan (2003) to identify the business-cycle

peaks and troughs as the last periods of expansions and recessions, respectively. Using

this strategy, Table 3 shows reasonable matches between the turning points selected by

the MS-CTM specification and the peaks and troughs documented by the NBER, spe-

cially in the last five recessions.9 In particular, the MS-CTM estimates show evidence

to consider that the last US recession ended in the first quarter of 2002, which coincides

with the date of the last trough suggested by Chauvet (2002) in an independent work.

Finally, another interesting implication of the Markov framework is that one can derive

the expected number of quarters that a recession prevails. Conditional on being in state

2, the expected duration of a typical US recession is (1− bp22)−1 or 3.12 quarters, and the
expected duration of an expansion is likewise (1− bp11)−1 or 20 quarters. These estimates
are close to the historical average duration of recessions (3.66 quarters) and expansions

(19.37 quarters) according to the NBER figures.10

On the other hand, the MS-CTM within-sample performance is evaluated in the first

row of Table 4. This shows that the one-quarter-ahead forecast relative mean squared

errors of the nonlinear model over the linear model are 0.66, 0.75, and 0.70 for each of

the three variables. In addition, to avoid the possibility of getting a spuriously good fit,

I compute several tests to evaluate the ability of these models to predict the endogenous

variables. In particular, rows two to six of Table 4 display the p-values of the following

tests of the null of no difference in the accuracy of the competing linear and nonlin-

9On average, the MS-CTM specification identifies the peaks with a lag of 0.4 quarters and the troughs

with a lead of 0.6 quarters.
10According to Chauvet (2002), in these computations I use that the last trough was in 2002.1.
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ear forecasts: the Diebold-Mariano, Modified-Diebold-Mariano, Wilcoxon, naive F test,

Morgan-Granger-Newbold, and Meese-Rogoff tests, all of them described in Diebold and

Mariano (1995) and Harvey et al. (1997). The p-value of each of these tests is sufficiently

low to confirm the superior predicting ability of the nonlinear model. In addition, last

row of Table 4 presents the p-values of the forecast encompassing test based on testing the

significativity of α1 in the OLS regression

lt − blt,sw = α0 + α1blt,lin + e2t, (14)

where lt is one of the endogenous variables, and blt,sw (blt,lin) is its one-step-ahead in-sample
forecast computed from the Markov-switching (linear) common trends model. These p-

values indicate that forecasts from the nonlinear model encompass the forecasts from the

linear model.

Third, how does the model capture the asymmetric adjustment between recessions and

expansions to the long run equilibrium? In the introduction, I postulate that the dynamics

of the error correction mechanism may be asymmetric within the business cycle due to both

market mechanisms and policy interventions. I introduce this possibility by allowing the

loading matrix αst in the MS-VECM to be state dependent. This matrix can be interpreted

as a measure of the speed by which the system correct last period’s equilibrium errors.

In this respect, Table 5 contains the estimated parameters and standard errors for this

matrix in each state. These estimates show two types of business cycle asymmetries in

the error correction. First, asymmetries in the sign of the adjustment since the loading

matrix reverses the sign when the phase of the business cycle changes. This may be due

to the business-cycle dynamics of the equilibrium errors: during recessions c − y tends

20



to rise and i − y tends to fall, whereas during expansions c − y tends to fall and i − y

tends to rise. Second, and most interesting, asymmetries in the strength of convergence

towards the equilibrium since the absolute size of the loading matrix parameters is bigger

in the second state compared with the first state. This finding supports the view that

the economy reacts more drastically against the adverse economic situation of recessions,

than it reacts to correct the deviations from the equilibrium associated with expansions.

Fourth, is my nonlinear model able to detect the impacts of trend shocks over business

cycle horizons obtained by the KPSW standard approach? Figure 5 shows the naïve

estimates of the backward-looking responses together with the one standard deviation

confidence intervals. In order to facilitate comparisons with the KPSW results and due to

the history dependence of the backward-looking responses, this figure reports the responses

to a shock hitting the system in 1988.4. My backward-looking responses are comparable

to the linear responses of KPSW, specially for output and investment.11 That is, the

responses in 1988.4 are maximum for shocks hitting the system in 1988.4 − 1988.1, are

declining for shocks produced between 1988.1 and 1986.2, and reach the long-run level for

shocks occurring before 1986. In addition, these estimates imply a variance decomposition

(not shown) for which shocks produced about three or four years prior to 1988.4 are able

to explain between 60 and 80 per cent of the current variation in the endogenous variables,

which agrees with the linear findings of KPSW.

Finally, how strong are the permanent effects of business-cycle fluctuations? On the one

hand, the MS-CTM proposal shows that the common stochastic trend shared by output,

11Note that, for linear models, the responses at t to shocks in t− j coincide with the responses at t+ j

to shocks in t.
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consumption and investment, is characterized by regime switching in its growth rate. This

Hamilton type of asymmetry implies that during a recession the economy is hit by large

negative shocks pushing the trend growth rate down. Specifically, in line with Kim et al.

(2002) but in contrast to Kim and Piger (2002), I find that the growth rate is negative

(−0.76) during recessions which implies that when the negative recessionary shocks vanish,

the trend level is lower than if the recession had never occurred. To illustrate the effects of

incorporating these slowdowns in the trend during recessions, Figure 6 plots the estimates

of the Markov-switching common trend, along with the NBER schedule. On the other

hand, Hamilton (1989) propose a measure of the permanent effects of recessions in the

level of the common trend. In this respect, if the economy is currently in a recession rather

than in an expansion, the consequences for the long-run future level of the trend are given

by the expression:

H =
(ϑst=2 − ϑst=1) (−1 + p11 + p22)

2− p11 − p22 . (15)

Using the MS-CTM estimates, I obtain that a typical recession leads to a 1.68% permanent

drop in the common trend that is roughly the half of the value reported by Hamilton (1989).

Kim and Piger (2002) and Kim et al. (2002) suggest that a possible explanation for the

higher negative effects of recessions detected by the Hamilton model may be its lack of a

mechanism to capture transitory types of asymmetry.

5 Conclusion

As pointed out by Stock and Watson (1988b), the literature on multivariate empirical

analysis suggests that trends and business cycle movements appear to be related. If this is
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the case, theories explaining only growth or only cycles cannot provide adequate insights.

In this respect, KPSW have shown that innovations in trends play an important role in

macroeconomic variables at business cycle horizons. This paper extends the Stock-Watson

common trends representation to allow for Markov-switching business cycle asymmetries

in both its permanent component and its transitory component. Within this framework,

I investigate the long-run consequences of business cycle fluctuations.

To address this question, I start by considering equilibrium errors that, even though

they fluctuate around a linear long-run attractor, the dynamic adjustment toward the

attractor may present business cycle asymmetries. I show that this particular dynamics

of the equilibrium errors lead to a Markov-switching common trend representation of the

variables that is able to consider the bidirectional relationship between trends and business

cycle fluctuations. According to the standard linear analysis, I find that trend shocks cause

important effects in the variables within the business cycle horizon. In addition, I conclude

that severe recessions will also damage the long-run growth.

I end this conclusion with some suggestions for further research in nonlinear long-run

adjustment mechanisms to long-run equilibriums. Among others, Krolzig (1997, 1999),

Krolzig and Toro (1999), Psaradakis et al. (2001), and Krolzig et al. (2002) incorporate the

asymmetric adjustment to linear vector error equilibrium models by allowing for Markov-

switching parameters. In this paper, I discuss the alternative Markov-switching common

trends representation. I consider that a natural direction for further research is analyzing

the nonlinear common trends representations that may be derived from other nonlinear

equilibrium error models suggested in the literature: the threshold approach of Balke and

Fomby (1997), the bilinear model approach of Peel and Davidson (1998), and the smooth
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transition regression approach of Rothman et al. (2001).
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Appendix A: Switching equilibrium errors lead to switching VECM.

Let me assume that xt is a (n × 1) vector of nonstationary variables and that β is

the (n × r) cointegrating matrix such that zt = β0xt is the stationary (r × 1) vector

of equilibrium errors that follows the stationary MS-VAR zt = mst + Ast(L)zt−1 + et

appearing in Section 2. I can always choose an (n× k) matrix β† such that β†0β = 0 and

β†0β† = Ik. Let wt be the (k×1) vector β†0xt such that ∆wt = n+G(L)∆wt−1+ηt, where

∆ = (1−L), G(L) = (G1+ · · ·+GpLp−1), and ηt ∼ N(0, Ik), is regime-independent. Note

that, as in Psaradakis et al. (2001), it is not necessary the extra assumption that ∆wt is

a MS-VAR.

It follows that, after a little of algebra, Ast(L) can be written as Ast(1)+A
∗
st(L)(1−L),

where Ast(1) =
pP
i=1
Aist , A

∗
st(L) = A

∗1
st +...+A

∗p−1
st Lp−2, and A∗jst = −

p+1P
i=j+1

Aist . This allows

me to show that the expression

β0∆xt = mst +A
∗
st(L)β

0∆xt−1 + [Ast(1)− Ir] zt−1 + et (A.1)

holds. On the other hand, I can establish that

β†0∆xt = n+G(L)β†0∆xt−1 + ηt. (A.2)

To simplify notation, I use the symbols Θ and Ξst for
¡
β,β†

¢0
and

¡
m0
st , n

0¢0 respectively.
Thus, expressions (A.1) and (A.2) immediately lead to the MS-VECM of Section 2, with

µst = Θ
−1Ξst , αst = Θ−1

¡
(Ast(1)− In)0 , 00

¢0
, ²t = (e0t, η0t)

0,and

πst(L) = Θ
−1

 A∗st(L) 0

0 G(L)

Θ. (A.3)
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Appendix B: Moving average parameters depend on previous states.

Let yt be a (n × 1) vector of stationary variables (minus its conditional mean ςst)

evolving according to a MS-VAR(p), that is:

yt = b
1
styt−1 + ...+ b

p
styt−p + ²

∗
t . (B.1)

This may be written as a MS-VAR(1) as follows

Yt = BstYt−1 +Et, (B.2)

with the (np× 1), (np× np), and (np× 1) matrices Yt, Bst , and Et defined as

Yt =


yt

...

yt−p+1

 , Bst =



b1st b2st · · · bp−1st bpst

In 0n · · · 0n 0n

...
... · · · ...

...

0n 0n · · · In 0n


, Et



²∗t

0n

...

0n


.

Assuming stationarity, recursive substitution in expression (B.2) leads to

Yt = Et +BstEt−1 +BstBst−1Et−2 +BstBst−1Bst−2Et−3 + ..., (B.3)

which implies that the j-th moving average matrix is in fact the upper-left block of the

matrix Bst · · ·Bst−(j−1) .

Appendix C: Deriving expression Cst↓(L) = C(1) + (1− L)C∗st↓(L).

Recall the state-dependent parameters of the moving average expression

Cst↓(L) = (I + C
1
stL+C

2
st,st−1L

2 + C3st,st−2L
3 + ...). (C.1)

Le me define C(1) as follows

C(1) = I +C1 +C2 +C3 + ..., (C.2)
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where Cj =
qP

i0=1
...

qP
ij−1=1

P (st = i0, ..., st−(j−1) = ij−1)C
j
st,st−(j−1) . Thus, expression (C.1)

may be rewritten as

Cst↓(L) = C(1) +

(−C(1) + I)| {z }
C∗0

− (−C(1) + I)| {z }
C∗0

L

+

¡−C(1) + I +C1st¢| {z }L

C∗1st

−
³
−C(1) + I + C1st−1

´
| {z }L2

C∗1st−1

+

³
−C(1) + I + C1st−1 + C2st,st−1

´
| {z }L2

C∗2st,st−1

−
³
−C(1) + I +C1st−2 + C2st−1,st−2

´
| {z }L3

C∗2st−1,st−2

+ ...
(C.3)

This implies that expression Cst↓(L) = C(1) + (1− L)C∗st↓(L) holds, with

C∗jst,st−(j−1) = −C(1) + I + C1st−(j−1) + C2st−(j−2) ,st−(j−1) + ...+ C
j
st ,st−(j−1)

. (C.4)

Appendix D: Moving average parameters and backward-looking responses.

To deduce the proof, let me define some additional notation to those stated in Sections

2 and 3. Let me define ξt/t as the (q×1) vector whose i-th element is P (st = i|χt), with χt

the information set up to t, ξt/t−h as Phξt−h/t−h, and e0j the (1× q) row j of the identity

matrix. For any (a× b) matrix W let me define the (anp× bnp) matrix W ∗ = (W ⊗ Inp) .

In this way, I introduce the matrices P 0∗, ξ∗t/t, and eξ∗h/h−1, with eξt/t−1 being the (q × q)
diagonal matrix whose j-th diagonal element is e0jξt/t/e

0
jξt/t−1. LetM be the (n×n)matrix¡

β†,β
¢0
, and D be the (n×n) matrix with ones in the last r elements of its main diagonal

and zeroes elsewhere. Let me consider the (np × np) matrix Bj defined in Appendix B,

the (np× npq) matrix b = (B1, ...Bq), and the (npq× npq) block-diagonal matrix B, with
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b in its main block diagonal and zeros elsewhere. Finally, let me define the (npq × npq)

matrix

Φt/t−j+1 = eξ∗t/t−1P 0∗Beξ∗t−1/t−2P 0∗B...eξ∗t−(j−1)/t−jP 0∗B. (D.1)

For this attempt, I note that assuming stationarity and a conditional expectation equal

to zero, Appendix C allows me to write the MS-RVAR specification as

yt = ²
∗
t + F

1
st²
∗
t−1 + F

2
st,st−1²

∗
t−2 + ..., (D.2)

where F jst,st−j+1 = JBstBst−1 · · ·Bst−j+1J 0, and J is the (n × nq) matrix (In0...0). The

natural estimator of Bst ...Bst−j is the expression

qX
i0=1

· · ·
qX

ij=1

P (st−j = ij , ..., st = i0|χt)Bst ...Bst−j , (D.3)

where the joint probabilities, using the properties of a Markov structure, may be expressed

as

P (st−j = ij , ..., st = i0|χt)

=
³
e0i0ξt/t

´ ¡e0i0P 0ei1¢ ³e0i1ξt−1/t−1´³
e0i0ξt/t−1

´ · · ·
³
e0ij−1P

0eij
´³
e0ijξt−j/j−1

´
³
e0ij−1ξt−j+1/t−j

´ . (D.4)

Thus, (D.3) leads to the moving average parameters of the MS-RVAR estimates

F j = JbΦt/t−j+1ξ∗t−j+1/t−j+1J
0, (D.5)

for j > 1, with F 1 = Jbξ∗t/tJ
0. Finally, following Warne (1993), the backward-looking

responses Rj may be iteratively calculated as M−1 ¡F j −DF j−1¢MΓ−1.
As an example to show you how (D.5) is recursively constructed, I derive the estimate

of
qP

i0=1

qP
i1=1

P (st−1 = i1, st = i0|χt)BstBst−1 . Using that (e1, ..., eq) = (e1, ..., eq)0 = Iq, the
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expression for the joint probabilities is

P (st−1 = i1, st = i0|χt) = P (st = i0|χt)P (st−1 = i1|χt, st = i0)

= P (st = i0|χt)P (st−1 = i1|χt−1, st = i0) =
³
e0i0ξt/t

´ P (st−1 = i1|χt−1, st = i0)
P (st = i0|χt−1)

=
³
e0i0ξt/t

´ ¡e0i0P 0ei1¢ ³e0i1ξt−1/t−1´³
e0i0ξt/t−1

´ . (D.6)

The estimates become:

X
i0

X
i1

P (st−1 = i1, st = i0|χt)Bi0Bi1

=
X
i0

Bi0

³
e0i0ξt/t

´
³
e0i0ξt/t−1

´ X
i1

¡
e0i0P

0ei1
¢
Bi1

³
e0i1ξt−1/t−1

´
| {z }

£¡
e0i0P

0e1
¢
B1, ...,

¡
e0i0P

0eq
¢
Bq
¤

e01ξt−1/t−1Inp

...

e0qξt−1/t−1Inp


£¡
e0i0P

0 (e1, ..., eq)
¢⊗ Inp¤Bξ∗t−1/t−1¡

e0i0 ⊗ Inp
¢
(P 0 ⊗ Inp)Bξ∗t−1/t−1

= (B1, ..., Bq)| {z }
b


¡ e01ξt/t
e01ξt/t−1

¢
Inp 0

...

0
¡ e0qξt/t
e0qξt/t−1

¢
Inp


| {z }eξ∗t/t−1


e01 ⊗ Inp

...

e0q ⊗ Inp


| {z }

Inpq

P 0∗Bξ∗t−1/t−1

= beξ∗t/t−1P 0∗Bξ∗t−1/t−1. (A4.7)
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Table 1. Unit root and cointegration analysis.

Panel A. Unit root tests

ADF
(−3.43)

PP
(−3.43)

KPSS
(−0.46)

LRo
(−1.96)

y -2.98 -2.85 1.72 -2.74

c -2.04 -2.25 1.73 -2.76

i -3.25 -3.21 1.63 -2.75

∆y -10.07 -10.15 0.05 -0.53

∆c -7.61 -11.35 0.06 -0.58

∆i -11.87 -11.89 0.02 -0.24

Panel B. Cointegration tests

Hypothesis statistics 5% crit val

r = 0 \ r = 1 0.0001 0.0084

r = 1 \ r = 2 0.0013 0.0017

r = 2 \ r = 3 0.4294 0.1105

β0 =

 −1 1 0

−1 0 1

 3.6328 4.3600

Notes. Panel A shows the Augmented Dickey-Fuller (ADF), Phillip-Perron (PP), KPSS

and Lobato-Robinson (LRo) unit root tests, with 5% critical values in parentheses. First

three rows of Panel B show the Bierens’ nonparametric cointegration tests (reject if statis-

tics is lower than 5% critical values). Last row shows the results of restricting the cointe-

grating matrix (reject if statistics is greater than 5% critical value).
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Table 2. Business cycles asymmetries.

c− y i− y ∆y ∆c ∆i

Mean −0.170 −1.745 0.498 0.527 0.586

Mean-E −0.174 −1.728 0.875 0.692 1.937

Mean-R −0.159 −1.803 −0.839 −0.069 −4.116

Diff. means test 0.001 < 0.001 < 0.001 < 0.001 < 0.001

AR-dummy < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

VAR-dummy < 0.001 < 0.001

Notes. Variables, ∆y, ∆c and ∆i refer to the growth rate of per capita gross national

product, real consumption expenditures and gross private domestic fixed investment. First

row shows sample means computed in the period 1949.1-1988.4. Second (third) row shows

means computed within the NBER expansions (recessions). Fourth row presents the p-

values of the test of different means in these subsamples. Finally, let Dt a dummy that

takes value 1 within the NBER recessions and 0 elsewhere. Last two rows present the

p-values of the significativity test of this dummy in

ot = a+ bDt + cp(L)ot−1 + dp(L)ot−1Dt + e1t.

In fifth row, o refers to each of the five variables c− y, i− y, ∆y, ∆c, and ∆i respectively.

In the last row, o refers to either (c− y, i− y)0 in the first entry, or (∆y, ∆c, ∆i)0 in the

second entry. In each of these regressions, p was selected by BIC.
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Table 3. Comparing business-cycle turning points.

Peaks Troughs

MS-CTM NBER MS-CTM NBER

53.3 53.2 53.4 54.2

57.3 57.3 58.1 58.2

60.2 60.2 60.3 61.1

70.3 69.4 70.4 70.4

73.3 73.4 75.1 75.1

79.4 80.1 80.4 80.3

81.4 81.3 82.3 82.4

90.3 90.3 91.1 91.1

01.2 01.1 02.1 -

Notes. This table shows the business-cycle turning points selected by the MS-CTM

specification and by the NBER, respectively. Following Harding and Pagan (2003), I

compute the peaks and troughs from the MS-CTM specification as follows. First, according

to the filtered probability being of state 2, I split the sample in recessions (whenever the

probability is greater than 0.5) and expansions (whenever the probability is smaller than

0.5). Second, I select the troughs as the last periods of recessions and the peaks as the

last periods of expansions.
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Table 4. Comparing in-sample forecasting accuracy.

y c i

RMSE 0.658 0.747 0.699

DM 0.004 0.0016 0.004

MDM 0.005 0.0017 0.005

W < 0.001 < 0.001 < 0.001

F 0.001 0.020 0.006

MGN < 0.001 < 0.001 < 0.001

MR < 0.001 0.001 < 0.001

Encompass 0.946 0.999 0.968

Notes. Variables, y, c and i refer to per capita gross national product, real consump-

tion expenditures and gross private domestic fixed investment. RMSE refers to the relative

mean squared error of the Markov-switching over the linear common trends models. En-

tries in rows two to seven show the p-values of the following test of equal forecast accuracy:

DM (Diebold-Mariano), MDM (Modified-DM), W (Wilcoxon), F (naive F test), MGN

(Morgan-Granger-Newbold), and MR (Meese-Rogoff), all of them described in Diebold

and Mariano (1995) and Harvey et al. (1997). Last row presents the p-values of the

forecast encompassing test based upon the significativity test of α1 in the OLS regression

lt − blt,sw = α0 + α1blt,lin + e2t, (16)

where lt is one of the endogenous variables and blt,sw (blt,lin) is its one-step ahead in-sample
forecast computed from the Markov-switching (linear) common trends model.

38



Table 5. Asymmetric error correction.

bαst=1 bαst=2
−0.09
(0.02)

0.08
(0.04)

−0.03
(0.01)

0.01
(0.01)

0.05
(0.02)

0.08
(0.02)

0.11
(0.03)

−0.14
(0.01)

0.02
(0.05)

−0.11
(0.05)

−0.06
(0.01)

−0.31
(0.12)

Notes. These parameters refer to the parameter estimates of the adjustment matrix

that appears in the MS-VECM specification

∆xt = µst + αstzt−1 + πst(L)∆xt−1 + ²t.

Standard errors are in parentheses.
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Notes: Smoothed probabilities of recession from a Markov-switching VAR for logarithms 
of the consumption:output (c-y) andinvestment:output (i-y) ratios. Shadedareas are NBER 
recessions.

Figure 2. Filtered probabilities of recession.

Figure 1. Evolution of equilibrium errors.

Notes. Logarithms of the consumption:output (Chart 1) and investment:output (Chart 2) 
ratios. To facilitate graphing, constants were added. Shaded areas are NBER recessions.

Chart 1. Consumption less output

53:1 56:2 59:3 62:4 66:1 69:2 72:3 75:4 79:1 82:2 85:3 88:4 92:1 95:2 98:3 01:4

Chart 2. Investment less output
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Chart 1. Ccosumption less output
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y

c
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Notes. Logarithms of private output (y), consumption (c) and investment (y). To 
facilitate graphing, constants were added. Shaded areas are NBER recessions.

Figure 3. Evolution of output, consumption and investment
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53:1 56:2 59:3 62:4 66:1 69:2 72:3 75:4 79:1 82:2 85:3 88:4 92:1 95:2 98:3 01:4

Notes. Filtered probabilites of recession from the Markov-switching common 
stochastic trends model. Shaded areas are NBER recessions.

Figure 4. Filtered probabilities of recession.
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Figure 5. Backward-looking  responses.
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Panel 2. Backward response of c to permanent shocks
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Panel 3. Backward response of i to permanent shocks
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0,015
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Notes. Backward-looking responses of output (Panel A), consumption (Panel B) and 
investment (Panel C) in1988.4 to permanent shocks hitting the systemin1988.4-1982.4. 
Dashed lines are one-standard-deviation confidence bands computed by Monte Carlo 
simulations. Horizontal lines refer to the long-run responses.

Panel 1. Backward response of y to permanent shocks
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Figure 6.Markov-switching common stochastic trend.

Notes. Shaded areas correspond to the NBER recessions.

43

53:1 55:4 58:3 61:2 64:1 66:4 69:3 72:2 75:1 77:4 80:3 83:2 86:1 88:4 91:3 94:2 97:1 99:4 02:3


