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Abstract

Delta hedging, which plays a crucial rôle in modern financial engi-
neering, is a tracking control design for a “risk-free” management. We
utilize the existence of trends for financial time series (Fliess M., Join C.:
A mathematical proof of the existence of trends in financial time series,
Proc. Int. Conf. Systems Theory: Modelling, Analysis and Control,
Fes, 2009. Online: http://hal.inria.fr/inria-00352834/en/) in order
to propose a model-free setting for delta hedging. It avoids most of the
shortcomings encountered with the now classic Black-Scholes-Merton set-
ting. Several convincing computer simulations are presented. Some of
them are dealing with abrupt changes, i.e., jumps.

Keywords—Delta hedging, trends, quick fluctuations, abrupt changes,
jumps, tracking control, model-free control.
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1 Introduction

Delta hedging, which plays an important rôle in financial engineering (see, e.g.,
[24] and the references therein), is a tracking control design for a “risk-free” man-
agement. It is the key ingredient of the famous Black-Scholes-Merton (BSM)
partial differential equation ([3, 22]), which yields option pricing formulas. Al-
though the BSM equation is nowadays utilized and taught all over the world
(see, e.g., [18]), the severe assumptions, which are at its bottom, brought about
a number of devastating criticisms (see, e.g., [6, 16, 17, 20, 25, 26] and the ref-
erences therein), which attack the very basis of modern financial mathematics
and therefore of delta hedging.

We introduce here a new dynamic hedging, which is influenced by recent
works on model-free control ([8, 10]), and bypass the shortcomings due to the
BSM viewpoint:

• In order to avoid the study of the precise probabilistic nature of the fluc-
tuations (see the comments in [9, 11]), we replace the various time series
of prices by their trends [9], like we already did for redefining the classic
beta coefficient [12].

• The control variable satisfies an elementary algebraic equation of degree 1,
which results at once from the dynamic replication and which, contrarily
to the BSM equation, does not need cumbersome final conditions.

• No complex calibrations of various coefficients are required.

Remark 1.1 Connections between mathematical finance and various aspects of
control theory has already been exploited by several authors (see, e.g., [2, 23] and
the references therein). Those approaches are however quite far from what we
are doing.

Our paper is organized as follows. The theoretical background is explained in
Section 2. Section 3 displays several convincing numerical simulations which

• describe the behavior of ∆ in “normal” situations,

• suggest new control strategies when abrupt changes, i.e., jumps, occur,
and are forecasted via techniques from [13] and [11, 12].

Some future developments are listed in Section 4.

2 The fundamental equations

2.1 Trends and quick fluctuations in financial time series

See [9], and [11, 12], for the definition and the existence of trends and quick
fluctuations, which follow from the Cartier-Perrin theorem [4].1 Calculations
of the trends and of its derivatives are deduced from the denoising results in
[14, 21] (see also [15]), which generalize the familiar moving average techniques
in technical analysis (see, e.g., [1, 19]).

1The connections with technical analysis (see, e.g., [1, 19]) are obvious (see [9] for details).
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2.2 Dynamic hedging

2.2.1 The first equation

Let Π be the value of an elementary portfolio of one long option position V and
one short position in quantity ∆ of some underlying S:

Π = V − ∆S (1)

Note that ∆ is the control variable: the underlying asset is sold or bought. The
portfolio is riskless if its value obeys the equation

dΠ = r(t)Πdt

where r(t) is the risk-free rate interest of the equivalent amount of cash. It
yields

Π(t) = Π(0) exp

∫ t

0

r(τ)dτ (2)

Replace Equation (1) by

Πtrend = Vtrend − ∆Strend (3)

and Equation (2) by

Πtrend = Πtrend(0) exp

∫ t

0

r(τ)dτ (4)

Combining Equations (3) and (4) leads to the tracking control strategy

∆ =
Vtrend − Πtrend(0)e

R
t

0
r(τ)dτ

Strend
(5)

We might again call delta hedging this strategy, although it is of course an
approximate dynamic hedging via the utilization of trends.

2.2.2 Initialization

In order to implement correctly Equation (5), the initial values ∆(0) and Πtrend(0)
of ∆ and Πtrend have to be known. This is achieved by equating the logarithmic
derivatives at t = 0 of the right handsides of Equations (3) and (4). It yields

∆(0) =
V̇trend(0) − r(0)Vtrend(0)

Ṡtrend(0) − r(0)Strend(0)
(6)

and
Πtrend(0) = Vtrend(0) − ∆(0)Strend(0) (7)

Remark 2.1 Let us emphasize once more that the derivation of Equations (5),
(6) and (7) does not necessitate any precise mathematical description of the sto-
chastic process S and of the volatility. The numerical analysis of those equations
is moreover straightforward.
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2.3 A variant

When taking into account variants like the cost of carry for commodities options
(see, e.g., [27]), replace Equation (3) by

dΠtrend = dVtrend − ∆dStrend + q∆Strenddt

where qSdt is the amount required during a short time interval dt to finance the
holding. Combining the above equation with

dΠtrend = rΠtrend(0)

(

exp

∫ t

0

r(τ)dτ

)

dt

yields

∆ =
V̇trend − rΠtrend(0)

(

exp
∫ t

0 r(τ)dτ
)

Ṡtrend − qStrend

The derivation of the initial conditions ∆(0) and Πtrend(0) remains unaltered.

3 Numerical simulations

3.1 Two examples of delta hedging

Take two derivative prices: one put (CFU9PY3500) and one call (CFU9CY3500).
The underlying asset is the CAC 40. Figures 1-(a), 1-(b) and 1-(c) display the
daily closing data. We focus on the 223 days before September 18th, 2009.
Figures 2-(a) and 2-(b) (resp. 3-(a) and 3-(b)) present the stock prices and
the derivative prices during this period, as well as their corresponding trends.
Figure 3-(c) shows the daily evolution of the risk-free interest rate, which yields
the tracking objective. The control variable ∆ is plotted in Figure 3-(d).

3.2 Abrupt changes

3.2.1 Forecasts

We assume that an abrupt change, i.e., a jump, is preceded by “unusual” fluc-
tuations around the trend, and further develop techniques from [13], and from
[11, 12]. In Figure 4-(a), which displays forecasts of abrupt changes, the symbols
o indicate if the jump is upward or downward.

3.2.2 Dynamic hedging

Taking advantage of the above forecasts allows to avoid the risk-free tracking
strategy (5), which would imply too strong variations of ∆ and cause some type
of market illiquidity. The Figures 4-(b,c,d) show some preliminary attempts,
where other less “violent” open-loop tracking controls have been selected.

Remark 3.1 Numerous types of dynamic hedging have been suggested in the lit-
erature in the presence of jumps (see, e.g., [5, 22, 27] and the reference therein).
Remember [7] moreover the well known lack of robustness of the BSM setting
with jumps.
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(a) Underlying asset: daily values of the CAC from

28 April 2000 until 18 September 2009
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(b) Option: CFU9PY3500 daily prices from 9 May

2009 until 18 September 2009
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(c) Option: CFU9CY3500 daily prices from 9 May

2009 until 18 September 2009

Figure 1: Daily data

4 Conclusion

Lack of space prevented us from examining more involved options, futures, and
other derivatives, than in Section 2.3. Subsequent works will do that, and also
introduce several time scales thanks to the nonstandard analytic framework of
the Cartier-Perrin theorem [4].

Acknowledgement. The authors would like to thank Frédéric Hatt for stim-
ulating discussions.

References
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