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A PROPOSAL OF PORTFOLIO CHOICE FOR INFINITELY 

DIVISIBLE DISTRIBUTIONS OF ASSET RETURNS 

Paweł KLIBER
*
 

Abstract.  In the paper we present a proposal of augmenting portfolio analysis for the 

infinitely divisible distributions of returns - so that the prices of assets can follow Lévy 

processes. In the classical portfolio analysis (by Markovitz or Sharp) the portfolio is 

evaluated according to two criteria: mean return and variance of returns. Such an approach 

is cumbersome second moments of assets’ returns do not exist or if the interdependence 

between the returns of different assets can not be described only by covariation. In this 

article we propose a model in which asset prices follow multidimensional Lévy process and 

the interdependence between assets are described by covariance (Gaussian part) and 

multidimensional jump measure (Poisson part). Then we propose to choose the optimal 

portfolio based on three criteria: mean return, total variance of diffusion and a measure of 

jump risk. We also consider augmenting this multi-criteria choice setup for the costs of 

possible portfolio adjustments. 

Keywords: portfolio analysis, Lévy processes, jump-diffusion models. 

1. Introduction 

Classical portfolio analysis (as proposed in [14] or [19]) is based on the assumption that 

returns are normally distributed. Although this assumption is not explicit, it is hidden in the 

fact that the distributions of returns are given by means and variances only. The empirical 

research however reveals that distribution of stocks’ returns is vary from being normal (see 

[4], [12],  [13]). It is believed that the stock prices can be better described using Lévy 

processes (and infinitely divisible distributions) instead of Wiener processes (and Gaussian 

distributions). Recently more and more papers have been appearing that uses this new 

method in modelling stock prices (see for example [1], [4], [5], [6], [8], [10], [11], [16], 

[18]). 

There are two main problems connected with augmenting portfolio analysis for the 

infinitely divisible distributions of returns. Firstly, the criteria of the classical portfolio 
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analysis are not adequate now. The criteria are based on moments (first and second) and 

they can be undefined in the case of Lévy processes. Thus the problem arises how to 

measure the risk of the portfolio. Secondly, the covariances do not suffice to describe 

interdependences between returns of different assets. For example the covariance matrix for 

several Lévy processes can be diagonal although the processes are not independent (because 

the jumps of these processes are dependent). 

The article consists of five sections. In the section two we remind some basic 

information about Lévy processes and jump-diffusion model. In particular we present there 

Lévy-Itô decomposition. In the section three we deal with the problem of modelling 

interdependences between asset returns and present some usually used solutions. In the 

section four we present our proposal how to deal with the jump-diffusion models in 

portfolio analysis. The section five contains exemplary computations for generalized 

portfolio analysis. 

2. Lévy processes and jump-diffusion models 

Lévy process tL  is a stochastic cadlag
1
 process which starts at zero ( 00 =L ) and fulfils the 

following conditions. 

1. Its increments are independent and stationary, i.e. for any nttt <<< ...21  the 

variables
12 tt LL − , ..., 

1−
−

nn tt LL  are independent and the distribution of  tht LL −+  

depends only on h  (not on t ). 

2. The process is stochastically continuous, that is 0>∀ε ( ) 0lim
0

=≥−+
→

εtht
h

LLP , 

which means that the jumps of the process are random – the probability that the 

process jumps at any given moment t  equals 0. 

The Lévy processes are closely connected with infinitely divisible distributions, i.e. with 

distributions that can be represented as a sum n  of identically distributed random variables 

for all n . The infinitely divisible distributions are the broadest class of distributions that 

can appear in limit theorems for the sum of independent variables
2
. It is true that the 

distribution of Lévy process at any moment of time is infinitely divisible
3
.  On the other 

hand – for any infinitely divisible distribution f  there is such a Lévy process tL  that 

1X ~ f  (the distribution of random variable 1X  is f ). Thus the Lévy processes are the 

widest class of processes which can be interpreted as a result of many small and 

independent random increments. 
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2.1. Lévy-Khinchin representation 
According to Lévy-Khnitchin theorem (see [2], [4], [11]) any Lévy process tL  is 

completely described by its characteristic exponent, that is by the logarithm of the 

characteristic function of 1L . We have 

)(][ utiuL
eeE t ψ= ,      (1) 

where the function ψ  (characteristic exponent) is given by 

( )∫ ≤−−++−=
R

x

iux xdviuxeuiuu )(11
2

1
)(

1

22 µσψ ,    (2) 

where +∈R
2σ , R∈µ , and v  is a measure on R  (so called Lévy measure) which fulfils 

∞<∫
≤1

2 )(

x

xdvx    and   ( ) ∞<−−∞∪∞ ]1,(),1[v .   (3) 

The measure v  describes jumps of the process – the value )(Rv  is the number of jumps 

in the unit of time. The value ]),([ dcv  denotes relative frequency of jumps in the  size 

between c  and d . If the v  fulfils 

∞<∫
≤1

)(

x

xdvx ,     (4) 

then  (2) can be reformulated as 

( )∫ −++−=
R

iux xdveuiuu )(1
2

1
)( 22 µσψ    (5) 

and µ  denotes drift of the process. 

2.2. Lévy-Itô decomposition 

According to Lévy-Itô theorem (see [2], [4], [11]) any Lévy process can be decomposed 

into a sum of a linear trend, a Wiener process, a Poisson process of large jumps and a 

completely discontinuous martingale: 

 d

tttt MPWtL +++= σµ , (6) 

where W  is a standard Wiener process, P  is a Poisson process with jumps in 

),1[]1,( ∞∪−∞  and dM  is a completely discontinuous martingale with jumps in (-1,1) If 

the  Lévy  measure fulfils (4), then we can rewrite (6) as 

 ∑
≤

∆++=
ts

ttt LWtL σµ , (7) 

where 
−→

−=∆
ts

stt LLL lim . 



 

2.3. Jump-diffusion models 

We assume that a asset return process is a Lévy process. Thus the asset price at the moment 

t  equals )exp(0 tt LSS = . Alternatively, one can assume that the asset price is stochastic 

exponent of Lévy process and fulfils stochastic differential equation  ttt dLSdS −=  (where 

u
tu

t SS
−→

− = lim ). It was shown in [9] that both approaches are equivalent. In both cases 

logarithmic returns of asset are infinitely distributed. 

Both approaches are referred to as jump-diffusion models. Although in the literature this 

term denotes most often models with finite measure of jumps ( ∞<)(Rv ), we understand 

this term more broadly. Examples of such models are Merton model (see [15]) or Kou 

model (see [10]). In jump-diffusion models the returns of asset are described by three 

parameters: mean µ , variance of Gaussian part 2σ  and jump measure v . The method of 

portfolio analysis proposed in this paper can be applied also if distributions of returns are α-

stable or are Student-distributed or belong to generalized hyperbolic family of distributions 

(these assumptions are frequent in financial literature and models based on them fit to data 

very good, see for example [12] or [13]).  

3. Interdependence between assets’ returns 

In portfolio analysis one has to take into account interdependences between returns of 

assets. In classical approach it suffices to take into account covariances between returns of 

assets. However if there are jumps in the processes of returns, one should also model 

interdependences of jumps. 

To describe interdependences between n  Lévy processes we should specify covariance 

matrix Ω  and joint measure of jumps v .  Matrix Ω  contains covariances for Gaussian 

parts of processes and v  is a measure on nR  which describe intensity of jumps for 

multidimensional process ),...,,( 21 nLLL . The margins of v  are the jump measure for one-

dimensional processes 1L , …, nL . There are two methods of specifying such measure. 

In the first method (see [4]) one decomposes jumps of assets into “market” and 

idiosyncratic parts. The jump processes are thus given by 
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   (8) 

where  d

iL  is discontinuous part of  returns for asset i , dR  describes “market” jumps and 

d

iS  describes jumps connected with specific asset i (idiosyncratic jumps). 



 

The second method consists on application of Lévy copulas (see [4]). If )(1 xU  and 

)(2 xU  are upper tails of  jump measures 1v  and 2v  (that is ∫
∞

=
x

i dyvxU )()( ) and  

),( 21 xxU  is upper tail of joint measure v  ( ∫ ∫
∞ ∞

=
1 2

),(),( 21
x x

dzdyvxxU ) then there exists a 

function ++F  (Lévy copula) such that ( ))(),(),( 221121 xUxUFxxU
++= . To fully describe 

interdependence of jumps for two processes we need to specify four copulas – for positive 

tails ( ++F ) , for negative tails ( −−F ) and for “mixed” tails ( −+F , +−F ). If there are more 

processes we have to specify more copulas and the method becomes rather cumbersome. 

4. Portfolio analysis 

Let ),...,,( 21 nαααα =  denote the structure of the portfolio, that is the value iα  denotes the 

parts of investor’s wealth invested in asset i . Of course 1
1

=∑
=

n

i

iα . 

In the classical portfolio analysis by Markowitz or  Sharpe ([14], [19]) the portfolio is 

evaluated according to two criteria: mean return and variance of return. We propose to 

introduce third, additional, criterion connected with possible jumps of portfolio’s value. Let 

the measure v  on 
nR  describes intensity of jumps for all assets. For a given portfolio 

structure α  let us define the mapping nn RRF →:α  as follows: 

( )nnn xxxxxxF αααα
,...,,),...,,( 221121 = . By αv  we denote a measure on nR  defined as 

( )( ) { }( )BxFRxvBFvBv n ∈∈==
−

)(:)()(
1 ααα . 

The jump measure for the returns of the whole portfolio is a measure αη  on R  defined 

as follows: 

∫ ∫ ∫ ∫
−

∞

∞−

∞

∞−

∞

∞−

−−− −−−=
B

n

nnn dxdxdxdxdxdxvdxdxdxdxB

444444444444 3444444444444 21
1

11121121 )...,,...,,(...)( ααη  

Let +→ RRu : be a function which describes investor’s attitude toward sudden changes 

of asset prices. We interpret it so that the higher the value of u  the worst it is for investor. 

We propose that investor should rate his or her portfolio according to following three 

criteria. 

1. Mean return: 

 ∑
=

=
n

i

iiK
1

1 )( µαα . 

2. Variance of return: 
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= =

=
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ijjiK
1 1
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3. Jumps’ risk: 

 ∫
∞

∞−

= )()()(3 dxxuK
αηα . (9) 

Portfolio optimization starts with finding the set of effective portfolios (that is the 

portfolios for which one cannot improve any criterion 1K , 2K , 3K  without worsen some 

other criterion – we try to maximise criterion 1K  and to minimize criteria 2K  and 3K ). 

Then the investor has to choose portfolio from this set according to his or her preferences 

(which include his or her attitude toward risk and/or desirable mean return). 

Alternatively, we can search the solution to the problem 

 )()()(max 33221 αλαλα
α

KKK −− , (10) 

subject to  

         1
1

=∑
=

n

i

iα ,   (11) 

where constants 2λ  and 3λ describe investor’s attitude toward risk of diffusion and risk of 

jumps. (If short sale is not allowed, then we should add 0≥α  to the constrain (11)). 

The third criterion 3K can be sometimes hard in computation when using the 

formula (9). We can propose two possible solutions. Sometimes it is possible to find the 

analytical formula for 3K . In other cases one can use Monte Carlo simulations. 

Let us consider for example generalized Merton model, in which jump measure has 

multidimensional normal distribution, v ~ ),0( WN , where W  is covariance matrix. The 

measure αη  is also Gaussian: 
αη ~ ),0(

2

ασN  where 

 ∑
=

=
n

ji

ijji w
1,

2 αασ α , 

( ijw  are the elements of  the matrix W ). If we appropriately choose the function u , it is 

easy to compute 3K . For example taking 2)( xxu =   we obtain 2

3 )( ασα =K . The problem 

(10) is then a problem of quadratic programming and can be solved using standard methods. 

We can also compute 3K  using Monte Carlo simulation. If we know jump measures for 

all assets and interdependence between them, then we can generate multidimensional 

process )~,...,~( 1 nxx , which simulates the jumps of assets. The simulation of the jump for the 

whole portfolio is nn xxxx ~...~~~
2211 ααα +++= . Then we compute the value )~(xu . We 

repeat this many times and obtain numerical approximation for the true value of 3K : 



 

 ∑≈ )~(
1

)(3 xu
m

K α , 

where we sum all m  simulated values. 

5. Examples 

We give two examples of portfolio analysis with the new method. The first one concerns 

multidimensional Merton model, in which jump measure has multidimensional normal 

distribution ),0( EN . The function measuring jumps’ risk is 2
)( xxu = , so that the  criterion 

3K  is given by formula αα WK '3 = .  

 
Figure 1. The surface of effective portfolios in space of criteria – an example for 

multidimensional Merton model 

 

The figure 1 presents the surface of efficient portfolios in the space ( 1K , 2K , 3K ). The 

portfolios consist of five assets and the mean returns µ , covariance matrix Ω  and matrix 

W  were chosen randomly. The investor chooses the optimal portfolio from the set of 

efficient portfolios according to his or her attitude to risk and gain. For example if he or she 



 

wants to have mean return no lower then 0.378 with variance of diffusion part ( 2K ) no 

greater then 0.241, then according to the figure 1 mean square of jumps of the portfolio 

( 3K ) cannot be lower then 0.281. The computations were performed in Excel with package 

Solver.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
Figure 2. An exemplary isoquants of 3K  (jumps’ risk) in the Kou model 

 

The second example concerns multidimensional Kou model. We assume that jump 

measure for each asset is exponentially distributed. The interdependences between assets’ 

jumps are described using decomposition into “market” jumps and idiosyncratic jumps as 

in (8). We have analyzed portfolios of three assets. The means of their idiosyncratic jumps 

were 0.5, 0.2 and 0.4 respectively and the mean of “market” jump was 0.4. The function 

measuring jumps’ risk was 2)( xxu = . The derivation of analytical formulas for 3K  can be 

very complicated (although possible) in this model. The values of 3K  can be easily 

computed numerically with Monte Carlo method. Figure 2 presents isoquants of 3K  for 

different portfolio structures (horizontal axis represents the share of the first asset and 

vertical axis – of the second). The computations were performed in Matlab (ver. 7.0). This 

results can be used to calculate the optimal portfolio. For example if the mean returns of the 

assets are 1µ =0.3, 2µ =0.2, 3µ =0.1, the standard deviations of the diffusion parts of 

returns are 1σ =0.1, 2σ =0.2, 3σ =0.3 and correlations between the diffusion parts of returns 

are 12ρ =0.7, 13ρ =-0.5, 23ρ =-0.3, then we can calculate the optimal portfolio by solving 



 

the problem (10) with 2λ  and 3λ  chosen by investor according to his or her preferences. 

For example if 2λ =1 and 3λ =0.1, then the optimal portfolio is (0.11, 0.73, 0.16). 

6. Conclusions 

In the article we presented the method of choosing the optimal portfolio according to three 

criteria: mean return, variance of return and jumps’ risk. The choice of the portfolio can be 

made either by obtaining  the set of effective portfolios (and then choosing the portfolio 

from this set according to investor’s preferences) or by solving the problem (10) with 

appropriate weights put to all the criteria.  

While the computations of the criteria 1K  and 2K  are easy (the first one is linear form 

and the second one – quadratic form of the structure of the portfolio), the calculation of the 

third criterion 3K  is more problematic. With some assumption about model and the 

function u  one can derive analytical formulae for 3K  – this is the case of the Merton 

model with quadratic disutility function. Alternatively one can compute 3K  numerically 

using Monte Carlo method. However calculating the set of the effective portfolios using this 

second method of computing 3K  can be very time-consuming as the required time grows 

exponentially with the number of assets. With the three assets and with grid 0.01 (i.e. we 

assume that the share of any asset can be multiple of 0.01) we had to consider 50000 

possible portfolios (performing Monte Carlo simulation for each of them). If we add fourth 

asset then the number of possible portfolios grows to more then 170000, etc. Because of 

these computational difficulties we recommend rather to use the first method (with 

analytical formulae). 
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