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Abstract 
 
Ghosh’s model is discussed in this paper under two alternative scenarios. In an open 
version we compare it with Leontief’s model and prove that they reduce to each other 
under some specific productive conditions. We then move onto reconsidering Ghosh’s 
model alleged implausibility and we do so reformulating the model to incorporate a 
closure rule. The closure solves, to some extent, the implausibility problem very clearly 
put out by Oosterhaven for then value–added is correctly computed and responsive to 
allocation changes resulting from supply shocks.  
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1. INTRODUCTION 

The debate on the validity and plausibility of the so called ‘supply-driven’ input-output 

model of Ghosh (1958) seems to keep resurfacing every so often. The difficulty to 

interpret Ghosh’s model within conventional production theory has led to numerous 

interpretations and assertions that, periodically, put into question the structure and 

meaning of the model. Giarratani (1980), for instance, discussed the lack of well 

understood economic behaviour behind it.  Oosterhaven (1988, 1989), in turn, called the 

attention over the ‘implausibility’ of a model that allocates output in response to 

changes in value–added in a given sector without those changes in output translating 

into further changes in value–added. In whatever way output turns out to be produced 

and allocated among sectors it surely makes little sense that value–added is not 

responsive to a general system reallocation. Dietzenbacher (1997) ‘vindicates’ Ghosh 

by way or reinterpreting it as a price model, which then happens to be fully formally 

equivalent to Leontief’s price model and we are back to the well-known and standard 

interindustry model.  More recently de Mesnard (2009) has claimed the model to be 

‘uninteresting’ since it is implausible as an output model, unnecessary as a price model 

and less informative than Leontief’s dual quantity and price models. More in-depth 

discussion and details can be found in the references provided by these authors but the 

essence of the problematic issues about Ghosh’s model has been sufficiently laid out.  

We will organize our discussion here distinguishing two aspects. First, on the 

‘validity’ side, we will analyze Ghosh’s model vis a vis Leontief’s and we will do so 

under the standard open model configurations. We show that both models, even though 

they share some basic common linearity assumptions, are in fact incompatible except 

when quantities are held constant. In this case we show that they reduce to each other 

and Dietzenbacher’s (1997) proposal is in fact reinforced. Second, we address the 
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‘plausibility’ debate regarding unresponsive value-added that was pointed out by 

Oosterhaven’s (1989, 1989). His criticism still stands since unresponsive value–added 

to output changes is a hard to sell economic fact. Under Ghosh’s model conditions, 

suppose that value–added in sector j, say, increases. When this shock is subsequently 

absorbed by the output allocation system, we observe an increase in the output of sector 

i ( )i j≠ , as a result of the endogenous output reallocation, but at the same time value–

added in sector i is surprisingly unaffected. Needless to say this seems to violate 

common sense as well as some version of Debreu’s axiom on the impossibility of the 

Land of Cockaigne (Debreu, 1959, chapter 3). Let us consider for a moment Leontief’s 

open quantity model. When autonomous final demand for good j increases, the system 

generates increases in output and value–added in all sectors. There is more value–added 

around but this does not have, however, any effect whatsoever in final demand for other 

goods ( )i j≠ . This is also somewhat surprising as far as economic logic goes. How can 

it be that consumption behaves in an unresponsive way to the new additional income? 

There are at least two ways out of this situation. The first one is to close Leontief’s open 

model and make consumption endogenous using linearity assumptions. The second one 

is to move up from the input-output model towards general equilibrium models where 

consumption is endogenous and price and income responsive. If Ghosh’s model is not 

‘plausible’ because value–added is unresponsive to output reallocations, then a similar 

case could be made for Leontief’s model being somewhat ‘implausible’ too because of 

the fact that consumption is unresponsive to income generation. This having been said, 

perhaps the road to endow Ghosh’s model with a bit more plausibility is formally 

similar to the road taken with Leontief’s model: close it with an additional layer of 

endogeneity. If for Leontief we make the ‘driving demand’ force (consumption) 

endogenous, then for Ghosh we may attempt to make the ‘driving supply’ force (value–
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added) endogenous. Since Ghosh’s model shares the basic mathematical linearity of the 

standard interindustry model, closing it may follow the same formal logic. We first need 

a rule stipulating a relationship between value–added and some output measure and, 

secondly, we need an instrument that reflects and captures external supply shocks that 

are subsequently incorporated into the allocation system. 

 The paper is organized as follows. In Section 2 we compare both models and 

examine their relationship under their open versions, we summarize the main 

conclusions drawn by previous researchers and we supply a new proof regarding their 

formal connection. In Section 3 we extend Ghosh’s model by formulating a possible 

closure rule. We verify its consequences for a correct accounting of output changes as 

well as value–added changes. We then illustrate the results with some numerical 

examples in Section 4. Section 5 concludes. 

 
2. THE OPEN VERSION OF GHOSH’S MODEL:  

    IF PLAUSIBLE, IT REDUCES TO LEONTIEF PRICE MODEL.   

Without a doubt, one of Leontief’s most enduring contributions was to provide 

analysts with an empirically applicable general equilibrium system. Ignoring the 

difference between industry and commodity, in Leontief‘s system each intermediate 

input is only a function of total output:  

 ( )ij ij jx X= Θ           (1) 

In Leontief’s model, inputs are used in fixed proportions and there is a unique 

technique for each sector. Since input substitution is not allowed, changes in relative 

prices have no influence on technical coefficients.  For an economy with n goods and 

industries, the production function for this non-substitution case can be written as: 
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1

1

Min ,...., 1,....,j nj
j

j nj

x x
X j n

a a
⎧ ⎫⎪ ⎪= ∀ =⎨ ⎬
⎪ ⎪⎩ ⎭

     (2) 

where ija  indicates the (minimal) amount of good i required to produce a single unit of 

output j, and the technology represented in (2) corresponds to the inverse function of 

(1), which refers to the conditional input demand functions. According to the 

assumptions in Leontief’s model, the supply-demand balance equations, that state how 

total production is distributed among intermediate and final uses, can be presented as a 

system of n equations with n unknowns 1 2, ,..., nX X X : 

1

n

j ij i j
i

X a X f
=

= ⋅ +∑         (3) 

where fj is final demand for good j. In simpler matrix notation, the system in (3) can be 

written as: 

⋅X = A X + f          (4) 

Provided some technicalities that are associated to matrix A are satisfied1, Expression 

(4) can be solved having a non-negative solution:       

( ) ⋅-1X = I - A f             (5) 

with ( )-1I - A  being the so-called Leontief inverse. This inverse can also be expressed as 

the sum of direct and indirect effects from unitary changes in the exogenous vector f, 

culminating in a matrix of multipliers: 

 ( )
0

.....
s

∞

=

= ∑-1 2 3 s(I - A) = I + A + A + A + A      (6) 

Combining (5) and (6) we observe: 

                                                 
1 A is non-negative, productive and (I-A) is singular. See Waugh (1950). 
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 .... ....⋅ ⋅ ⋅ ⋅2 3 kX = f + A f + A f + A f + + A f +     (7) 

These multipliers stem from the existing input demand inter-industrial linkages.  

Equation (7) indicates how the level of output of each sector is generated “round” by 

“round”, capturing how industrial interdependencies take place in the economy “down 

the stream” and showing the consolidated structure of the economy’s production chains.  

Leontief’s original formulation assumes that all price effects are neglected. This has 

led to a consideration of the Leontief model as a “quantity model”, i.e. each of the 

equations of the system (3) links the physical inputs requirements of the i-th sector to 

the output level of the j-th sector.  This does not imply that changes in prices cannot be 

reflected when using Leontief’s’ approach. These variations in prices can be evaluated 

but changes in values and quantities are not simultaneous within this model. This is in 

fact one of the distinctive characteristics of input-output analysis and Leontief’s 

theoretical approach. It closely corresponds to the case of a competitive equilibrium 

where the supply curve is perfectly elastic and thus the overall situation, in terms of 

equilibrium quantities, is determined by the demand side. 

Ghosh (1958) considered Leontief’s model appropriate for describing this economic 

reality. Ghosh pointed out, however, that in certain situations that depart from the 

perfectly competitive scenario with excess capacity allocation considerations rather than 

technological ones should play a major role.  In a formally similar way to Leontief’s 

model, in the Ghosh system intermediate input purchases are also a function of total 

output: 

( )ij ij ix g X=          (8) 

but now Xi refers to the sum of rows in the input-output table, that is, total commodity 

sales delivered by the i-th sector. The inverse function of (8), however, does not 
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correspond to any production function (Oosterhaven, 1988) but rather to an allocation or 

distribution function of the form: 

1
* *
1

,.....,i in
i

i in

x xX Max
a a

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
       (9) 

where *
ija  represents now the so-called allocation or supply coefficients, which are 

assumed to be fixed. Any increase in the production of sector i will therefore be 

allocated in a fixed proportion to all the recipient sectors. Differently to Ghosh’s model, 

in Leontief’s model, these supply coefficients do not remain fixed when there is an 

exogenous change in final demand. In other words, under Leontief’s model 

assumptions, the ex-ante and ex-post allocation coefficients differ when there is an 

exogenous shock in final demand while input coefficients remain constant. The 

situation reverses when using the Ghoshian approach; when there is an exogenous 

change in value-added, the ex-ante and ex-post input coefficients differ while allocation 

coefficients remain constant. 

According to (5), the Leontief system may also be rewritten in matrix notation as a 

vector function φ  that relates the structural matrix A and the final demand vector f  to 

total output: 

( ) ( )φ= = ⋅-1X A, f I - A f        (10) 

 

with [ ]ij ijij
α α−⎡ ⎤ = =⎣ ⎦

1(I - A) . From here: 

1

n
i

i ij j ij
j j

X f
f
φα α

=

∂
= ⋅ ⇒ =

∂∑        (11) 

Notice that the coefficients ijα  can be interpreted as the partial derivative of total 

output of the i-th sector with respect to the final demand of the j-th good. This implies 

that if each sector’s final demand marginally changes by one unit, caeteris paribus, the 
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total effect on the production level of sector j is captured by the expression
1

n

ij
i
α

=
∑ , 

which is commonly and widely interpreted as the backward linkage of this sector. 

Nevertheless, as indicated in the introduction, it might be also subjected to some 

criticism since in equilibrium final demand changes in a sector are unresponsive to other 

sectoral final demand flows.  

Under Ghosh’s model conditions total output is a vector function ϕ  of the matrix of 

allocation coefficients, *A , and net national income or value added, VA , generated in 

each sector: 

1* *' ( , ) ' ( )ϕ −= = ⋅X A VA VA I - A                    (12) 

with 1 **( ) ijij
α−⎡ ⎤ =⎣ ⎦I - A  and 'VA  and 'X  standing now for row vectors. 

 Similarly as in (11), we find: 

* *

1

n
j

j ij i ij
i i

X VA
VA
ϕ

α α
=

∂
= ⋅ ⇒ =

∂∑       (13) 

The allocation coefficients *
ijα  can therefore be considered too as the partial 

derivative of the total output of a sector j-th with respect to value added in the i-th sector 

(Oosterhaven, 1988). Notice however that an increase in primary inputs in one sector 

would be unconceivable without a further simultaneous increase in the primary input 

requirements of the remaining sectors in the economy. Thus the assumption of caeteris 

paribus does not hold any more in the Ghoshian approach. This is the argument backing 

the implausibility of the Goshian model as a quantity model claimed by Oosterhaven 

(1988, 1989) and that has been widely accepted by researchers (Dietzenbacher, 1993, de 

Mesnard, 2009). 
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Once we have described the mechanisms and assumptions governing both models, 

we now proceed to prove that even though both models are in fact theoretically 

incompatible in their assumptions, if quantities are held constant, the Ghoshian 

approach is just a reformulation of Leontief’s price model.  

Proposition: If input-output ratios and output ratios remain constant (i.e. no changes in 

quantities take place) then Ghosh’s model reduces to Leontief’s. 

Proof: Let Z be the matrix of intermediate deliveries among sectors, [ ] ijij x=Z  and let 

X̂  be the diagonal matrix representation of vector X. The matrix A of technical 

coefficients is obtained as: 

1ˆ −= ⋅A Z X           (14) 

whereas the matrix *A  of allocation coefficients is computed as: 

1* ˆ −= ⋅A X Z          (15) 

Combining Expressions (14) and (15) we find: 

 *ˆ ˆ'= ⋅ = ⋅Z A X X A         (16) 

Hence the allocation matrix can be written as: 

1* ˆ ˆ−= ⋅ ⋅A X A X         (17) 

Rewrite (17) as: 

1* ˆ ˆ−− = − ⋅ ⋅I A I X A X        (18) 

Using the inverse of a sum of matrices2, we obtain: 

1 1 1 1 1* ˆ ˆ ˆ ˆ( ) ( ) ( )− − − − −− = − ⋅ ⋅ = + ⋅ ⋅ − ⋅I A I X A X I X A I A X    (19) 

                                                 
2 See  H.V. Henderson and  S.R. Searle (1981) for the derivation of the inverse of a sum of matrices. 



 - 10 -

Expression (19) allows us to relate Ghosh’s inverse to Leontief’s technical 

coefficient matrix and output ratios. Next we need to show under which conditions 

exogenous variations in value-added lead to equivalent endogenous effects under both 

models. The balance accounting equation in value terms in Ghosh’s model is given by: 

*' ' ( - )⋅ -1X = VA I A                  (20) 

Substituting now Expression (19) into Expression (20) we can rewrite it as: 

 1 1ˆ ˆ' ' ( ( ) )− −= ⋅ + ⋅ ⋅ − ⋅X VA I X A I A X                                      (21) 

Let us translate Expressions (20) and (21) into algebraic notation:            

*

1 1 1

*

1 1 1

n n n
j

j i ij i ik kj
i i k i

n n n
j

j i ij j i ik kj
i i k i

X
X VA VA a i j

X

X
X VA VA VA a i j

X

α α

α α

= = =

= = =

⎡ ⎤⎛ ⎞= ⋅ = ⋅ ⋅ ⋅ ≠⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞= ⋅ = + ⋅ ⋅ ⋅ =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑
  (22) 

If there is any exogenous change in the value-added flow of sector i-th, and 

according to (22), the partial endogenous change in the j-th sector is given by: 

 

*

1

*

1

( )

1 ( )

n
j j

ij ik kj
ki i

n
j j

ij ik kj
ki i

X X
a i j

VA X
X X

a i j
VA X

α α

α α

=

=

∂ ⎛ ⎞= = ⋅ ⋅ ≠⎜ ⎟∂ ⎝ ⎠
∂ ⎛ ⎞= = + ⋅ ⋅ =⎜ ⎟∂ ⎝ ⎠

∑

∑
    (23) 

This concludes the proof. Notice that, according to Expression (23), both the Leontief 

and the Ghosh models are simultaneously equivalent in their partial effects provided the 

output ratios ( )/j iX X  remain constant. But this is only possible if there are not any 

changes in quantities, neither endogenous nor exogenous (the partial derivatives in (23) 

refer to partial variations in value terms and in quantities), or the changes are 

proportional everywhere. In this case the own output ratio would remain constant which 

it is incompatible with Ghoshian endogenous quantity impacts, for when i=j the 
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quantity effects in (23) would then be equal to zero.  If quantities remain constant, the 

only difference between Leontief’s and Ghosh’s model is the way endogenous value 

impacts are expressed. Under the standard Leontief’s price approach endogenous 

changes refer to value changes per unit of output while under the “reinterpretation” of 

the Ghoshian model, price changes are expressed in absolute terms (Dietzenbacher, 

1997).  

This is in fact what justifies Dietzenbacher’s results whereby the Leontief and 

Ghosh models led to exactly the same endogenous changes as far as these changes relate 

to value (Ghoshian approach) or price changes (Leontief approach). In proving the 

Proposition, however, we have shown that it is only possible to formally draw these 

conclusions when the Ghosh model reduces to the Leontief approach, or the other way 

around. This suggests that the interpretation of the Ghosh model as a price model 

formulated by Dietzenbacher (1997) should rather be considered as a reformulation of 

the Leontief model itself under the assumption that quantities are held constant and only 

value effects are allowed to occur in the economic system. This observation was first 

suggested by de Mesnard (2009a). Additionally, we have also proven that both models 

are simultaneously incompatible when analysing quantity changes. This has also an 

important implication for the validity of the so-called “mixed-model” that merges 

aspects of both input-output models. Since the allocation and production mechanisms 

presented in Expressions (2) and (9) are simultaneously incompatible, mixed-models 

loose their theoretical appeal. The conclusion is that they should not be used in a 

combined way to measure inter-industrial linkages as some authors have done in the 

past to measure push-effects using Ghosh’s model (Mesnard, 2009b).  
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3. CLOSING GHOSH’S MODEL.  

The previous results show why Ghosh’s model reduces to Leontief’s and provides 

additional support for Dietzenbacher’s reinterpretation. But can Ghosh’s model itself be 

reclaimed from its implausibility clause? Are there any socio-economic rules for which 

Ghosh’s vision of the economic game make still some sense? We will approach this 

issue considering a non-market economy where decisions on output allocation are taken 

by a benevolent central planner whose mission is to enhance the collective good and 

guarantee a viable distribution of goods. This alleged economy comprises three 

productive units and distinguishes a private agent (citizens) and a public one (the 

planner).  The private agent provides labour services to all sectors and in exchange 

receives income (value–added) that is used to finance his consumption needs and his 

contribution to the sustainment of the collective. From this contribution the planner 

provides infrastructure services that are used in the allocation process. These services 

also provide value to the collective, which is in turn used by the public agent to 

facilitate goods to society in the form of public goods. The aggregate level of these 

public goods is of course constrained by the overall contributions to the collective.  

Let us begin considering a reference or benchmark allocation table for this 3 good-3 

sector, economy. The reference data in value flows for such an economy is represented 

in Table 1. Data in the Table represent an economic arrangement that is allocation 

feasible and budget feasible for all agents involved, and all magnitudes are value 

magnitudes.  
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Table 1: Benchmark allocation data 

  Sector 1  Sector 2 Sector 3  Private Agent Collective  Total 
Sector 1 x11 x12 x13  f1 c1  X1 
Sector 2 x21 x22 x23  f2 c2  X2 
Sector 3 x31 x32 x33  f3 c3  X3 
         
Value-added VA1 VA2 VA3      
Collective t1 t2 t3      
         
Total X1 X2 X3      
 

Because of viability the following accounting identities hold true: 

3

1

    ( 1,2,3)ij i i i
j

x f c X i
=

+ + = =∑       (24) 

3

1

   ( 1,2,3)ij j j j
i

x VA t X j
=

+ + = =∑       (25) 

In Expressions (24) and (25) we have that xij is the amount of good i flowing to 

sector j,fi is the consumption of good i by the private agent, ci is collective consumption 

of good i, VAj is income accruing to the private agent in sector j whereas tj is the 

materialization of the contribution to the collective. The identity in Expression (24) 

shows, by rows, the ‘output’ distribution for each of the goods. Using columns, identity 

(25) shows the ‘input’ repercussions of the said output allocations that are budget 

feasible. Because of a ‘Walras-like’ aggregate feasibility constraint (24) and (25) imply: 

3 3 3 3

1 1 1 1
i i j j

i i j j

f c VA t
= = = =

+ = +∑ ∑ ∑ ∑        (26) 

The left-hand side of (26) can be interpreted as national output as calculated from 

the expenditure side. The right-hand side, in turn, is national output as obtained from the 

income side. Alternatively, if the private and public agents behave so as to satisfy some 

sort of disciplined budget constraint, such as: 
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3 3

1 1

3 3

1 1

i j
i j

i j
i j

f VA

c t

= =

= =

=

=

∑ ∑

∑ ∑
         (27) 

then the national output accounting identity (26) follows from aggregation of the budget 

constraints in (27).  

In matrix terms the input-output data information in Table (1) takes this shape: 

⋅ + + =Z e f c X                 (24’) 

' ' ' '⋅ + + =e Z VA t X                 (25’) 

where e is a summation vector. The rest of the notation for matrix Z and vectors f, c, 

'VA  and 't  is self-explanatory, while e ( 'e ) denotes a column (row) vector. Let us 

define now the matrix A* of ‘allocation’ coefficients, that is to say, the information on 

how output is sectorally distributed among productive agents: 

[ ] 1 *ˆ* ij
ijij ij

i

Z
a

X
− ⎛ ⎞⎡ ⎤= ⋅ = = ⎜ ⎟⎣ ⎦ ⎝ ⎠

A X Z        (28) 

The notation, X̂ , as before, stands for the diagonalised version of vector X while 

1ˆ −X  is the inverse matrix of X̂ . Solving for Z in Expression (28) and substituting in 

identity (25’) we obtain now an equation in X: 

* *ˆ' ' ' ' ' ' ' ' ' '⋅ + + = ⋅ ⋅ + + = ⋅ + + =e Z VA t e X A VA t X A VA t X    (29) 

This equation corresponds to the familiar ‘supply-driven’ Ghosh’s equation and 

allocated output can be meaningfully solved provided matrix A* satisfies the usual 

productivity condition: 

1*' ( ' ') ( )−= + ⋅ −X VA t I A        (30) 
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We will now postulate a possible closing for value-added. Define the coefficient iλ  as 

value-added per unit of aggregate private consumption and dj as the allocation 

coefficient for private consumption of good j: 

3

1

i
i

jj

j
j

j

VA
f

f
d

X

λ
=

=

=

∑
         (31) 

Because of (31) we find: 

3

1
i i j j

j

VA d Xλ
=

= ⋅ ⋅∑            (32) 

so that in compact matrix terms (32) becomes: 

11 1

22 2 1 2 3

3 3 3

( , , ) '
XVA
XVA d d d

VA X

λ
λ
λ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= = ⋅ ⋅ = ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

VA λ d X               (33) 

where the matrix '⋅λ d  reflects the allocation coefficients for private consumption in 

terms of value-added. Under this possible closed version of the Ghoshian approach, this 

matrix allows endogenising changes in value added VA generated and accumulated by 

the private agent when there is an exogenous change in that part of the production value 

contributed to the collective, i.e. t.  

We now incorporate Expression (33) into (29) via its transpose: 

' ( ' ) ' ' ( ') ' ' '= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅VA λ d X X λ d X d λ                (34) 

and we then obtain: 

* *' ' ' ' ' ' ' '= ⋅ + + = ⋅ + ⋅ ⋅ +X X A VA t X A X d λ t               (35) 

We can now solve again for 'X  under this additional assumption to obtain: 
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( ) 1*' ' ' −= ⋅ − − ⋅X t I A d λ                 (36) 

The inverse matrix in Expression (36) can be interpreted as the ‘extended’ Ghosh 

inverse since it incorporates allocation coefficients for material flows, A*, and value-

added flows, '⋅d λ . Supply shocks are caused by the exogenous actions of the central 

planner as represented by changes decreed in contributions to the collective, 'Δt , for 

example. The output vector 'X  that satisfies condition (36) can be interpreted as an 

‘allocation equilibrium’ for this economy, and such an equilibrium turns out to be 

consistent with the allocation rules implicit in A* and '⋅d λ  and with the value of 

contributions to the collective, i.e. 't . Allocated output is coherently distributed among 

sectors while at the same time it is value feasible. The new ‘equilibrium’ can be 

visualized in differential terms from:    

( ) 1*' ' ' −Δ = Δ ⋅ − − ⋅X t I A d λ         (37) 

Provided the extended allocation matrix * '+ ⋅A d λ  is also productive, in the sense 

that *( ') ' '+ ⋅ ⋅ ≤A d λ X X  for all possible row vectors ' 0≥t , then the new ‘equilibrium’ 

defined in (37) might be also rewritten as a power series of the form: 

( ) ( ) ( )2* * *' ' ' ' ' ' ... ' ' ...kΔ = Δ + Δ ⋅ + ⋅ + Δ ⋅ + ⋅ + + Δ ⋅ + ⋅ +X t t A d λ t A d λ t A d λ  (38) 

 

Expression (37) indicates that the endogenous effect on output levels can be 

decomposed into the following components: the “pure” impact of the contribution to the 

collective that adds value to production, i.e. 'Δt . This “pure” impact in output should be 

allocated in the system in the form of intermediate and private final demand, i.e. 

( )*' 'Δ ⋅ + ⋅t A d λ  generating additional multiplicative effects in output levels. This 

“second-round” impact further increases production in the remaining sectors round by 
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round according the structure of the “allocation path” defined in (37), i.e. 

( ) ( )2* *' ' ... ' ' ...kΔ ⋅ + ⋅ + + Δ ⋅ + ⋅ +t A d λ t A d λ . 

4. CLOSING GHOSH’S MODEL: A NUMERICAL  EXAMPLE 

 
To illustrate the formal description and interpretation of the closed Ghosh model 

presented in Section 3, we use now a numerical example. We start using the 3 sector, 3 

good economy whose reference data in value flows is shown in Table 2a.  

TABLE 2a: Reference data: Numerical example 

  Sector 1  Sector 2 Sector 3  Private AgentCollective  Total 
Sector 1 30 20 10  35  5  100 
Sector 2 20 10 40   5 25  100 
Sector 2 10 20 5  30 35  100 
          
Value-added 20 10 40      
Collective 20 40 5      
         
Total  100 100 100      

 

This economic system has a benevolent central planner that decides to allocate 

additional resources to sector 1 in such a way that its value contribution increases by 1 

units of value. As an example, these additional exogenous resources decided by the 

central planner would be materialized in new equipment whose services could be used 

in sector 1 and that increases production levels either in value or quantity terms. This 

refers to what we have named the “pure impact” in Expression (37), i.e. 'Δt . This 

impact additionally boosts output levels due to the multiplicative effects generated by 

this supply shock in the remaining sectors according to the structure of the allocation 

path in (37), i.e. if additional intermediate demand is allocated to the remaining sectors, 

there would be endogenous supply effects coming from these sectors that further affect 

the output values in sector 1 increasing overall value-added in the system.  
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TABLE 3: Synthetic indicators after evaluating Δti=1 units sequentially in each 
sector. 

 % Endogenous Changes in “key” variables 

Exogenous 

    Shock 
ΔVA ΔX1 ΔX2 ΔX3 ΔX 

Δt1 =1 units  2.10  2.60  1.18  1.65  1.81 
Δt2 =1 units  1.29  1.08  1.81  1.41  1.43 
Δt3 =1 units   1.46  0.96 0.84  2.12  1.31 

 
 

As it can be asserted from Table 3, the impact of an identical unitary exogenous 

increase in the contribution from the collective is distributed in an unequal way, picking 

up the distinct values of the allocation coefficients in each sector. If the flow is 

contributed to Sector 1, for instance, total value-added in all there sectors increases by 

2.10 percent and, on average, total output increases by 1.81 percent. Differently to the 

open version of the Ghoshian approach, value-added changes everywhere and does so 

simultaneously and homogeneously. The homogeneity of the endogenous change in 

value-added is due to the “allocation rules” dictated by the matrix '⋅d λ . The set of 

Tables 2b-2d in the Annex show the readjusted allocation flows in sectoral detail. Note 

that each of the additional exogenous units contributed to each sector is fully and 

endogenously redistributed over collective consumption according to allocation rules. 

This is because, following the disciplined budget constraints defined in Expression (27) 

of this closed version of the Ghoshian approach, the exogenous unit contributed from 

the central planner cannot be withheld by the private agent but rather devoted to 

collective consumption.  

According to the simulation results presented in Table 3, if the benevolent central 

planner wished to maximise economy-wide effects, the contribution to the collective 
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should be decreed in Sector 1. This is so because the implied reallocation effects, both 

in value-added and in output, are higher here than those obtainable should the 

contribution be allotted in Sectors 2 or 3.  

 These conclusions are independent from the benchmark value flows of the 

contribution to the collective. Consequently, there is no need to perform any 

normalization to appraise their robustness. Notice that the exogenous shock is carried 

out homogeneously in all three sectors and the impacts in Table 3 depict the percentage 

between benchmark and simulated allocations.   

These numerical examples of the closed Ghosh model outlined in Section 3 

approximate better, we believe, the initial idea posed by Ghosh. In his seminal work, 

this author highlighted that his approach could be used, in planned economies, for the 

assessment of economy-wide impacts of government employment programs. The main 

question that Ghosh wanted to address using his modelling proposal was the following: 

if the labour force is forcefully allocated in a given sector, what would the economy-

wide impact be according to the allocation rules that are used in planned economies?. 

The economy-wide output impacts of the open version of this model turn out not to be 

value feasible when answering this question (Oosterhaven, 1988). Our close version, 

however, not only makes it possible to answer this question in a more plausible way but 

also helps in understanding the initial purposes of A. Ghosh.  

5. CONCLUSIONS 

The objective of this paper is simply to recover the initial purposes of A. Ghosh 

while trying to contribute to the long debate in the literature around his original model 

published in 1958. Since then, there has been an over-use of his model by researchers 

that, after some time, has given rise to an over-criticism.  The main target of this paper 
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is then to present a compromise between the two existing positions in academics around 

this issue.  

To this end we describe a way of closing the Ghoshian approach that resolves, to 

some extent, the implausibility problem that afflicts its open version (Oosterhaven, 

1988, 1989).  Supply shocks in this modified version of the Ghosh model stem from the 

actions of a benevolent central planner. This central planner exogenously contributes to 

production which will generate value to the economic system, applying it in one or 

more sectors. This initial impact is spread through the economic system further boosting 

output levels that, differently to the open version, are accompanied by simultaneous 

endogenous and allocation compatible increases in value-added. Therefore, closing 

Ghosh’s model makes it more plausible.  

 

BIBLIOGRAPHY 

Debreu, Gerard.1959. The Theory of Value: An Axiomatic of Economic  Equilibrium. 

New York: Wiley and Sons.  

De Mesnard, Louis. 2009. ‘Is the Ghosh model interesting?’, Journal of Regional 

Science, 49, 361-372. 

De Mesnard, Louis. 2009. On the Fallacy of Forward Linkages: A Note in the Light of 

Recent Results. University of Burgundy and CNRS; University of Illinois at Urbana-

Champaign - Working paper series. Regional Economics Applications Laboratory 

(REAL).  

Dietzenbacher, Erik. 1997. ‘In vindication of the Ghosh model: a reinterpretation as a 

price model’, Journal of Regional Science, 37, 629-651. 

Waugh, F. V. 1950. ‘Inversion of the Leontief Matrix by Power Series’, Econometrica, 

18, 142-154. 



 - 21 -

Ghosh, Avijit. 1958. ‘Input-Output approach in an allocation system’. Economica, 25, 

58-64. 

Giarratani, Frank. 1980. ‘The scientific basis for explanation in regional analysis’, 

Papers of the Regional Science Association, 45, 185-196. 

Henderson, Harold.V. and Shayle. R. Searle .1981.‘On deriving the inverse of a sum of 

matrices’, Society for Industrial and Applied Mathematics Review, 23, 53-60. 

Leontief, Wassily.1936. ‘Quantitative input and output relations in the economic system 

of the United States’, Review of Economic and Statistics, 28, 105-125.  

Oosterhaven, Jan. 1988. ‘On the plausibility of the supply-driven input-output model’, 

Journal of Regional Science, 28,  203-217.  

Oosterhaven, Jan. 1989. ‘The supply-driven input-output model: a new interpretation 

but still implausible’, Journal of Regional Science, 29,  459-465. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 22 -

ANNEX OF TABLES 

 

TABLE 2b: Simulated percentage changes of the Reference data after evaluating 
an   exogenous supply shock in Sector 1: 1 1Δ =t units of value. 

  Sector 1  Sector 2 Sector 3  Private AgentCollective  Total 
Sector 1 30.78 20.52 10.26 35.91 5.13 102.60 
Sector 2 20.24 10.12 40.47 5.06 25.29 101.18 
Sector 3 10.17 20.331 5.08 30.49 35.58 101.65 

       
Value-added 20.42 10.21 40.84    

Collective 21.00 40.00 5.00    
       
Total  102.60 101.18 101.65    
 

 

TABLE 2c: Simulated percentage changes of the Reference data after evaluating 
an   exogenous supply shock in Sector 2: 2 1Δ =t  units of value 

  Sector 1  Sector 2 Sector 3  Private AgentCollective  Total 
Sector 1 30.33 20.22 10.11 35.38 5.05 101.08 
Sector 2 20.36 10.18 40.72 5.09 25.45 101.81 
Sector 3 10.14 20.28 5.07 30.42 35.49 101.41 

       
Value-added 20.26 10.13 40.51    

Collective 2.00 41.00 5.00    
       
Total  101.08 101.81 101.41    
 

 

TABLE 2.d: Simulated percentage changes of the Reference data after evaluating 
an   exogenous supply shock in Sector 3: 3 1Δ =t  units of value. 

  Sector 1  Sector 2 Sector 3  Private AgentCollective  Total 
Sector 1 30.29 20.19 10.10 35.34 5.05 100.96 
Sector 2 20.17 10.08 40.34 5.04 25.21 100.84 
Sector 3 10.21 20.42 5.11 30.64 35.74 102.12 

       
Value-added 20.29 10.15 40.58    

Collective 20.00 40.00 6.00    
       
Total  100.96 100.84 102.12    
 


