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Abstract 

The purpose of this paper is to study tax competition on a parallel road network when different 

governments have tolling authority on the different links of the network. Reflecting many current 

situations in Europe, each link is used by both local and transit traffic; moreover, transit has a 

choice of route. Each government maximises the surplus of local users plus total tax revenues in 

controlling local and transit transport. Three types of tolling systems are considered: (i) toll 

discrimination between local traffic and transit, (ii) uniform tolls on local and transit transport, 

(iii) local tolls only. The results suggest that the welfare effects of introducing transit tolls are 

large, but that differentiation of tolls between local and transit transport as compared to uniform 

tolls does not yield large welfare differences. It is also found that the welfare effects of 

coordination between countries are relatively small in comparison with the welfare gains of 

tolling transit. The numerical model further illustrates the effects of different transit shares and 

explicitly considers the role of asymmetries between countries. Higher transit shares strongly 

raise the Nash equilibrium transit toll and slightly decrease local tolls. With asymmetric demands, 

the welfare gains of introducing differentiated tolling rise strongly for the country with lower 

local demand.   
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1. Introduction 

Countries’ road networks are usually publicly provided, they are congestible, and they are 

accessible to local and to transit users.  Moreover, in many cases transit users have a 

choice between different jurisdictions’ road networks. For example, there are two main 

routes from South-Central Europe (Switzerland, Austria, Italy) to the north (Belgium, 

Netherlands, Denmark, etc.), one through France, the other via Germany.  Alternatively, 

consider the transalpine crossing between Germany and Italy, where Austria and 

Switzerland compete for transit traffic. In both examples, transit has a choice of routes 

and it interacts with local traffic in each country.   

In these circumstances, how would a local jurisdiction like to price access to its 

infrastructure?1 In this paper we study this question under various assumptions on the 

type of allowable tolls, for given levels of infrastructure supply. More specifically, we 

look at a model with two parallel routes that are operated by two countries. Local traffic 

and transit traffic both contribute to congestion, and the two countries compete for 

revenue from transit. Assuming that countries maximise a welfare function consisting of 

local consumer surplus and tax revenues from local and transit traffic, we study strategic 

tolling by individual countries under various tolling schemes. First, we assume that local 

traffic and transit can be separately tolled. Second, we look at the case where only 

uniform tolls are possible or acceptable.  Third, we consider the case where only local 

traffic can be tolled. 

Despite the highly stylised setting, the examples referred to above show that the model 

does capture the main ingredients of a number of situations in Europe (North-South axe, 

transalpine crossing, etc.). The analysis of this paper then describes the potential tax 

competition between countries in controlling local and transit transport. Moreover, in 

view of recent innovations in transport taxation within the EU, all three types of tolling 

                                                 

1 Although the discussion is set in the context of congestible road infrastructure in two countries, similar 
issues arise in the public provision of e.g. health, educational and recreational services.  In this sense, the 
ideas studied in this paper are not limited to the transport sector. The key feature of the analysis is that 
foreign (transit) users are not restricted to a particular jurisdiction but can choose between several, and that 
jurisdictions compete for revenue from transit.  
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regimes considered are highly policy-relevant. New forms of transport pricing 

instruments include kilometre charges (implemented in Germany as of early 2003), tolls 

(already existing, among others, on French motorways), and cordon pricing (London). 

More sophisticated time-of-day pricing regimes are under consideration. The case of 

differentiated tolls is relevant because, as long as Member States use different tolling 

instruments, the implied local and transit tax levels will almost automatically differ. 

Alternatively, the case of uniform tolls provides an appropriate description when EU 

member countries use the same pricing instruments, because explicit toll discrimination 

between local and transit transport contradicts EU regulations. Finally, the case of ‘local 

tolls only’ is likely to remain extremely important. It resembles the current situation in 

many countries, where fuel taxes are the main tolling instrument. High fuel taxes can 

easily be evaded by transit transport, especially in relatively small countries, so that the 

exclusive use of fuel taxes is similar to tolling local traffic only. It is likely that several 

countries will be limited to tolling local traffic for quite some time, if only because of the 

technical difficulties and implementation costs associated with tolling transit.    

With this background in mind, this paper studies the welfare implications of tax 

competition on a parallel network with local and transit traffic, where the latter is 

assumed to have a choice of route. The analysis builds upon several strands of the recent 

literature. First, the large literature on the optimal pricing of road use in the presence of 

congestion has recently been extended to optimal tolling on simple parallel networks. For 

example, Braid (1996) and Liu and McDonald (1998) consider models with 

homogeneous users to study optimal second-best tolls on one link in the network, 

assuming that other links can not be optimally tolled for technical or political reasons. 

They suggest that the optimal second-best tolls on one link tend to be low, and could 

actually be negative. Moreover, the welfare gains from this type of second-best tolls are 

found to be low. However, more recent research by Small and Yan (2001) and Verhoef 

and Small (2003) shows that allowing for a heterogeneous population of road users 

substantially increases the benefits from second best tolls.   

Second, a small but growing literature does explicitly study the role of different 

ownership regimes in models with parallel routes. For example, Verhoef et al. (1996) 
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consider competition between a private road and a free-access road, and compare the 

second-best optimal tolls with those obtained when both roads are privately owned.  De 

Palma and Lindsay (2000) use a bottleneck model of congestion and compare three types 

of ownership structure: a private road competing with a free access road, two competing 

private roads, and competition between a private and a public operator. Note, however, 

that these papers do not incorporate both transit and local traffic demand and, therefore, 

do not deal with tax competition for transit by welfare maximising governments.   

Third, a few recent studies have looked specifically at tax exporting in the transport 

sector, within a serial network setting.  Levinson (2001) analyses US States’ choice of 

instruments for financing transportation infrastructure. Theory predicts, and an 

econometric analysis confirms, that jurisdictions are more likely to opt for toll-financing 

instead of e.g. fuel taxes, when the share of non-residential users is large.  Tolls become 

more attractive because they allow price discrimination and tax-exporting.  De Borger et 

al (2003) apply a large-scale numerical optimisation model to study tax exporting 

behaviour by individual regions in a model with both domestic and international freight 

transport. However, these models are based on a different network structure, they do not 

consider transit route choice, and they do not study the properties of reaction functions 

and the resulting Nash equilibria. Moreover, they do not look at the broad variety of tax 

instruments dealt with in the current paper. 

Finally, in a slightly broader sense, the welfare evaluation of transport tax competition 

of this paper also complements the few explicit numerical illustrations of the welfare 

effects of various types of tax competition2. An early example is Wildasin (1989), who 

finds substantial welfare effects of property tax competition in the US. More recently, 

Sorensen (2000) estimates the welfare loss of tax harmonisation within the EU at less 

than 1% of GDP. The welfare losses of capital tax competition have also been estimated 

to be relatively small under some, but not all, scenarios considered (Parry (2003)). 

Finally, Sinn (2003) discusses various forms of ‘systems competition’, referring in 

                                                 

2 Seminal contributions to the tax competition literature include Arnott and Grieson (1981), Mintz and 
Tulkens (1986), and Kanbur and Keen (1993). For a recent survey, see Wilson (1999). 
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general to competition between countries for mobile factors, e.g. within the EU, or on a 

global scale. He finds the welfare effects to be detrimental in some, but not all, cases. 

The contributions of this paper can be summarized as follows. At the theoretical level, it 

fills two gaps in the literature. First, although competition between operators has been 

considered before (see the references given above), a common feature of this work is the 

absence of transit users that can choose between routes. In contrast, our analysis 

incorporates route choice for transit, and it focuses on the interaction between local and 

transit traffic when governments compete for revenue from transit. The distinction 

between local and transit traffic also allows us to explicitly consider a wider range of 

tolling instruments compared to the existing literature. Importantly, it allows us to look at 

the implications of pricing only part of the users (local traffic only), a case that seems 

especially policy-relevant for the near future within the EU. Second, our analysis focuses 

on competition in a parallel network between two local welfare-maximising 

governments. This type of competition seems highly relevant in the context of European 

transport policy and has not been studied in detail in the literature.  

Finally, complementing the theoretical analysis by a stylised numerical illustration 

allows us to pin down orders of magnitude for each of the issues analysed. It allows us to 

shed some light on the welfare effects of introducing various types of tolling instruments, 

the benefits of toll harmonisation, etc. Moreover, the sensitivity of the results to transit 

shares, to congestion differences and to demand asymmetries can easily be evaluated. 

Among others, the numerical results suggest that despite a substantial amount of tax 

exporting, the efficiency costs of tax exporting are fairly small under most scenarios, 

confirming recent results obtained by Parry (2003) in a totally different context. Also, the 

welfare effects of uniform versus differentiated tolls are quite limited. To the contrary, 

using local tolls only is quite costly in welfare terms. 

The structure of the paper is as follows. Section 2 presents the general theoretical 

model. We specify the characteristics of the network and derive optimal tax rules for a 

given country (implicitly defining the country’s reaction functions) for various types of 

tolling instruments. In Section 3 we simplify by assuming linear demand and cost 

functions; this allows us to explicitly analyse the properties of the reaction functions, as 
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well as the resulting Nash equilibria. Section 4 reports on a numerical illustration. Seven 

equilibria are numerically evaluated: the no-toll equilibrium, Nash with differentiated 

tolls, Nash with uniform tolls, Nash with local tolls only, a centralised solution with 

differentiated tolls, a centralised solution with local tolls only and, finally, a scenario with 

collusion between the countries. The role of the share of transit and of demand and 

congestion asymmetries between countries is evaluated.  Section 5 concludes. 

 

2. The theoretical model 

In this section we first present the structure of the model and provide an overview of the 

tolling systems analysed. We then study the optimal behaviour of an individual country 

for each of the cases considered. Throughout this section we focus on the economically 

most interesting results; most of the derivations are relegated to appendices. 

 

2.1 Structure of the model and the pricing schemes considered 

We consider the simplest possible setup. The network analysed is depicted in Figure 1. It 

consists of two parallel links, and it is assumed that pricing of each link is the 

responsibility of a different government. Each link carries local traffic, which cannot 

change routes, and transit traffic, which can. Link capacities are given and both links are 

congestible. 

Both governments are assumed to maximise a welfare function that reflects two 

concerns, viz. (i) the travel conditions of its local users and the associated welfare, and 

(ii) total tax revenues on the link it controls. We assume that all traffic flows are 

uniformly distributed over time and are equal in both directions, allowing us to focus on 

one representative unit period and one direction.  
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Figure 1 The network 

Country A

Country B

 

The combinations of tolling instruments as well as the notation used are summarised in 

Table 1. Note that differentiated tolls for local and transit demand may seem unrealistic 

because it runs against the non-discrimination rules in trade agreements. However, by 

choosing a particular toll structure, countries are able to implicitly price-discriminate 

against foreign users3. Importantly, note that Table 1 only lists the three cases where both 

countries use the same type of tolling4. In order not to lengthen the paper substantially, 

we deliberately limit the scope of the analysis to these three cases. However, extension to 

the mixed cases is both conceptually and analytically straightforward.  

 

 

 

                                                 

3 Take as an example the yearly lump-sum fee for access to a country’s network that is to be paid in 
Switzerland and in many other countries (the Eurovignette system): this in fact boils down to 
discrimination in favour of the local users as, almost by definition, they use the network more frequently. 
4 In principle, we could also examine cases where the governments use different types of tolling systems. 
Indeed, these mixed cases exist in reality: France uses a uniform tolling system for motorways while 
Germany has no explicit toll, so uses a system similar to the case where only local traffic can be tolled. 
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Table 1: The tolling systems studied 

Description of tolling systems 
studied 

Tolling instruments  Example of practical relevance 

Differentiated tolls for local and 
transit transport  iτ : transit toll region i 

(i=A,B) 

it : toll on local transport in 
region i (i=A,B) 

Eurovignette (favors more intensive 
local users) 

Uniform tolls for local and transit 
transport iθ : uniform toll in region i 

(i=A,B)  

Current tolls on French highways 

Tolls on local users only, no transit 
toll it : toll on local transport in 

region i (i=A,B) 

Fuel taxes, parking charges 

 

Turning to the specification of the model, demand for local transport in A and B is 

represented by the strictly downward sloping inverse demand functions ( )Y
A AP Y  and 

( )Y
B BP Y , respectively, where AY  and BY  are the local flows on both links. The generalised 

prices (.)j
iP  include resource costs, time costs and tax payments or user charges. 

Similarly, overall demand for transit traffic is described by the strictly downward sloping 

inverse demand function ( )XP X , where X is the total transit traffic flow. We have 

A BX X X+ = ,                                                                           (1) 

where AX  and BX are the transit flows via A and B, respectively.  The two links are 

assumed to be perfect substitutes: transit users choose the route with the lowest 

generalised (money plus time) cost but have no specific preferences towards any of the 

routes.    

Turning to the cost side, the generalised user cost for transit via route A, denoted X
Ag , 

equals the sum of the time and resource costs of travel plus the transit toll on A 5:  

 ( )X
A A A A Ag C X Y τ= + +  

                                                 

5 In what follows, we develop all specifications for the case of differentiated tolling; the cases of uniform 
tolls and local tolls only are easily derived by analogy. 
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 In this expression, (.)AC  is the time plus resource cost on route A, assumed to be strictly 

increasing in the total traffic volume. Similarly, the generalised user cost for local use of 

route A is given by ( )Y
A A A A Ag C X Y t= + + . 

User costs for route B are defined in an analogous way. 

Since we assume perfect substitutability between links for transit, in equilibrium the 

generalised cost for transit equals the generalised cost on the link with the lowest 

generalised cost.  If both routes are used, transit traffic will be distributed across links so 

as to equalise generalised costs. Specifically, the Wardrop principle implies that  

              
( ) ( ) 0

( ) ( ) 0

X X
A A A A A A

X X
B B B B B B

P X g C X Y iff X

P X g C X Y iff X

τ

τ

= = + + >

= = + + >
                                   (2) 

Moreover, equilibrium for local traffic implies 

( ) ( )Y Y
A A A A A A AP Y g C X Y t= = + +               (3) 

( ) ( )Y Y
B B B B B B BP Y g C X Y t= = + +               (4) 

Unless otherwise noted, we focus on the case where all types of traffic exist in 

equilibrium, i.e., there is local and at least some transit in both countries. In theory, of 

course, this is just one of the many (in fact, sixteen) possibilities that exist. Indeed, when 

certain taxes are too high or there is too much other traffic using the same road, some 

types of transport demand may disappear, affecting the structure of the remaining 

demand functions. This is a well-known problem in the tax competition literature (see 

Mintz and Tulkens, 1986). However, many of these cases are not very interesting in 

practice (e.g., cases where there is no local traffic, cases where there is no transit in 

neither A or B). We therefore largely focus on the most relevant case where both types of 

transport exist in both countries. 

 

2.2. Optimal tolls in a parallel network: the case of differentiated tolls 

Assume each country can set different tolls on local transport and on transit on its 

territory. To study the optimal tolls set by, say, country A, we use the properties of the 
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reduced-form demand system for the different types of transport in the first-order 

conditions for welfare optimisation in country A. 

The reduced-form demand system is obtained by solving the equilibrium conditions (2), 

(3) and (4); it expresses local and transit demand in both countries as a function of all tax 

rates.: 

[ ]
[ ]

[ ]
[ ]

, , ,

, , ,

, , ,

, , ,

r
A A A B B

r
B A A B B

r
A A A B B

r
B A A B B

X t t

X t t

Y t t

Y t t

τ τ

τ τ

τ τ

τ τ

                                                             (5) 

In Appendix 1 we show that these demand functions have the following properties:  

0, 0 0, 0

0, 0 0, 0

r r r r
A A A A

A B A B
r r r r

A A A A

A B A B

X X X X
t t

Y Y Y Y
t t

τ τ

τ τ

∂ ∂ ∂ ∂
< > > <

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
> < < >

∂ ∂ ∂ ∂

                              (6) 

0, 0 0, 0

0, 0 0, 0

r r r r
B B B B

B A B A
r r r r

B B B B

B A B A

X X X X
t t

Y Y Y Y
t t

τ τ

τ τ

∂ ∂ ∂ ∂
< > > <

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
> < < >

∂ ∂ ∂ ∂

                              (7) 

Increasing local transport taxes in a given country raises demand and reduces transit; it 

raises transit and reduces local demand abroad. Higher transit taxes in a country have the 

opposite effects. The intuition is easy, realising that any tax change has two effects: first, 

it affects the distribution of transit over the two routes and, second, by affecting 

congestion levels in the two regions, it has an impact on the competition in each country 

between transit traffic and local traffic for the same road space. An example helps to 

illustrate this. Take the effect of increasing the transit tax in B (τB ). This tax increase will 

make route B less interesting for transit traffic so that BX  goes down, whereas demand 

for transit on route A rises. However, there are secondary effects. The positive effect on 

XA raises congestion in A and hence the generalised user cost, whereas the lower volume 

of transit on route B decreases the generalised cost of using route B. The changes in 
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congestion mitigate the initial transit effects described before; more importantly, they 

raises the demand for local traffic in country B and reduce demand for local transport AY .  

Finally, in Appendix 1 we also show the following useful result on the relative impact 

of a transit tax and a tax on local transport on the demand for transit: 

r r
A A

A A

X X
tτ

∂ ∂
>

∂ ∂
   

Both taxes have opposite effects, but in absolute value the transit tax has a larger effect 

on transit demand than an increase in the tax on local traffic. This makes intuitive sense 

because a higher local tax only affects transit demand indirectly via the induced reduction 

in congestion. This finding will be useful for the interpretation later.  

Using the reduced-form demand system, we then proceed to analyse the optimal 

behaviour of a given country, conditional on the tolls set abroad. We assume that the 

appropriate welfare function used by each of the governments consists of the sum of 

consumer surplus for the local users plus the total tax revenues earned on local and transit 

traffic on its territory. Consumer surplus for foreigners is assumed to be ignored. 

Consider, therefore, the problem of country A: 

                                    
,

0

( ( ))
A

A A

Y
Y Y

A A A A A A A A A At
Max W P Y dY g Y t Y X

τ
τ= − + +∫ ,                (8)  

where, see before, ( )Y
A A A A Ag C X Y t= + + , and the reduced-form demands for AX  and AY  

depend on all four tax rates, see (5). Moreover, the country takes the tolls ,B Bt τ  in 

country B as given. 

The first-order conditions for an interior solution to (8) can be written: 

0
r r

A A A A
A A A A

A A A A

C Y C Xt Y Y
V t V t

τ
   ∂ ∂ ∂ ∂

− + − =   ∂ ∂ ∂ ∂   
,                          (9) 

0
r r

rA A A A
A A A A A

A A A A

C Y C Xt Y Y X
V V

τ
τ τ

   ∂ ∂ ∂ ∂
− + − + =   ∂ ∂ ∂ ∂   

,               (10) 
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where A A AV X Y= +  is the total (local plus transit) traffic volume in country A. In 

Appendix 1 we show that (9) and (10) imply the following results (analogous results hold 

for country B):  

A
A A A

A

Ct LMEC X
V

∂
= +

∂
                                               (11) 

r
A

A
A A A r

A A

A A

Y
tLMEC X

z X
t

τ

τ

 ∂
 ∂ = −

∂ ∂ 
 ∂ ∂ 

                                   (12) 

                                                  A Atτ > .                                                                          (13) 

 

In these expressions, ALMEC  is the local direct marginal external congestion cost, 

defined as: 

                  A A A
A A A A

A A A

C C CLMEC Y Y Y
V X Y

∂ ∂ ∂
= = =

∂ ∂ ∂
 

It captures the effect of extra traffic on the generalised user cost in country A, multiplied 

by the number of local users of the link. It is a direct marginal external cost in that it does 

not take into account feedback effects on demand. Note that country A does not consider 

the time losses imposed on transit traffic through A as part of the relevant local marginal 

external cost. 

Expressions (11), (12) and (13) imply that the local and transit tolls both exceed the 

local marginal external cost; moreover, the transit toll is strictly larger than the local toll. 

These results immediately follows from the signs of the reduced-form demand price 

effects, see (6) and (7). Transit taxes higher than taxes on local transport are consistent 

with the tax competition literature; they simply reflect tax exporting behaviour (see, e.g., 

Arnott and Grieson (1981), Wilson (1999)). However, that the local toll exceeds LMEC 

is follows from the interaction of local and transit demand in generating congestion. As a 

consequence, the true opportunity cost of an increase in local traffic not only covers the 
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local direct marginal external cost but also the opportunity cost of the lost tax revenues 

on transit: more local traffic implies higher congestion and hence less transit demand.6  

 

2.3. Optimal tolls in a parallel network: uniform tolls 

Suppose countries are limited to uniform tolls, i.e., the toll is restricted to be the same for 

local and transit trips. Denote the uniform tolls by Aθ  and Bθ  in regions A and B, 

respectively, where ( , )i i it i A Bθ τ= = = .  

Solving the equilibrium conditions (2), (3) and (4) for the case of uniform tolls now 

yields the system: 

[ ]
[ ]

[ ]
[ ]

,

,

,

,

r
A A B

r
B A B

r
A A B

r
B A B

X

X

Y

Y

θ θ

θ θ

θ θ

θ θ

                                                           (5bis) 

In Appendix 2 we show that the reduced-form demand functions for A (analogous results 

hold for B) have the following properties: 

                   0 , 0, 0, 0
r r r r
A A A A

A B A B

X X Y Y
θ θ θ θ

∂ ∂ ∂ ∂
< > < <

∂ ∂ ∂ ∂
 

                                                 

6 Note that, for the specific model structure considered here, it turns out that the local tax equals the 
global direct marginal external cost of a traffic increase in country A, defined as 

 ( ) A A
A A A A

A A

C CGMEC Y X V
V V

∂ ∂
= + =

∂ ∂
.    

The global marginal external cost is the increase in generalised cost from an extra unit of traffic, multiplied 
by the total number of road users in A. That the local tax exceeds the local marginal external cost is a 
general result, that it precisely equals the global marginal external cost is an artefact of the model structure. 
The intuition can be understood by the definition of the generalised cost in combination with the structure 
of the objective function. Transit traffic is indifferent between paying one Euro more in time costs and one 
Euro more in transit tolls. The government that hosts the transit traffic obviously prefers the transit toll. 
Therefore, the opportunity cost of allowing one more unit of local traffic equals the local marginal external 
cost plus the total transit revenue foregone through the increase in average costs for transit traffic. The 
definition of generalised costs implies that the increase in average costs (the marginal external cost of the 
transit traffic) equals the total transit revenue foregone. 
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Again, an increase in the uniform tax in a region is expected to have a double effect on 

transit (local) demand in that region: a direct negative effect, and an indirect positive 

effect due to the lower volume of local (transit) traffic. The above results show that the 

former effect dominates the indirect feedback effect7.  Moreover, we also find that an 

increase in the uniform tax abroad (e.g. in B) raises transit demand but reduces local 

demand (e.g., in A). The reason is simply that overall transit demand is shifted from B to 

A, which in turn raises congestion in A and hence lowers local demand in A. 

To determine the optimal uniform toll for country A, consider the first-order condition 

to the problem 

                                    
0

( ( )) * ( )
A

A

Y
Y Y

A A A A A A A A AMax W P Y dY g Y Y X
θ

θ= − + +∫  

This can be written as, after simple manipulation (see Appendix 2): 

                   
r

A A
A A r r

A AA

A A

C XY
Y XV

θ

θ θ

∂
= −

∂ ∂∂ +
∂ ∂

 

It immediately follows that A ALMECθ > , unless transit in A is zero. The optimal uniform 

toll exceeds the local direct marginal external cost, and it rises with transit. Again, except 

for the role of congestion, this is in line with the earlier tax competition literature. 

Intuitively, the toll balances the distortion on the local transport market and the revenue 

opportunities on transit.  

 

2.4.  Optimal tolls in a parallel network: the case of local tolls only 

Suppose the government cannot tax transit ( 0 ( , )i i A Bτ = = ). The equilibrium conditions 

(2), (3) and (4) can then be solved for the system of reduced form demand functions that 

depend on the local tolls in both countries: 

                                                 

7 For transit, this is in line with our earlier finding that, in the case of differentiated taxes, in absolute value 
the effect of the transit tax exceeded that of the tax on local transport.  
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[ ]
[ ]

[ ]
[ ]

,

,

,

,

r
A A B

r
B A B

r
A A B

r
B A B

X t t

X t t

Y t t

Y t t

                                                 (5ter) 

The signs of these demand equations are identical to the reduced demand functions of the 

differentiated toll case. Own price effects are negative, cross price effects positive. 

The first-order condition to the problem for country A: 

                                    
0

( ( )) *
A

A

Y
Y Y

A A A A A A A At
Max W P Y dY g Y t Y= − +∫  

implies: 

 1

r
A

A A
A A r

AA

A

X
C tt Y

YV
t

 ∂
 ∂ ∂ = +

∂∂  
 ∂ 

 

where the term between square brackets is shown to be positive (see Appendix 3). Using 

the signs of the demand functions this implies that the tax is positive but smaller than 

local marginal external cost: 

 0 A At LMEC< <  

This result underscores the importance of the interaction between local and transit 

traffic. To understand the intuition, note that the toll reduces local transport demand, a 

welfare-raising correction for the externality this traffic imposes. However, the reduction 

in local traffic reduces the average time cost for transit and attracts more transit; this 

decreases local welfare and induces a tax below LMEC. If transit traffic reacts very 

strongly to an average travel time cost decrease, it may be optimal to set the tax very low 

so as to avoid attracting too much transit. Note that, if the local toll had no affect on 

transit, a toll equal to LMEC would be optimal.  
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2.5. Optimal tolls under various tolling systems: summary   

Table 2 and Theorem 1 below summarise the main findings of this section under the 

maintained assumption that there is both transit and local traffic at the equilibrium 

considered. 

 

THEOREM 1 

a. Optimal differentiated tolls imply that (i) local and transit tolls both exceed the 

local marginal external cost; (ii) the transit toll is strictly larger than the local toll. 

b. The optimal uniform toll exceeds the local marginal external cost. Moreover, it 

will be higher the more important is transit traffic through the country. 

c. If only local traffic can be tolled, the optimal toll is positive but smaller than the 

local marginal external cost. 

 

Results show that a wide range of optimal tolling schemes is possible. Some of these may 

well be consistent with observed practice. For example, the use of vignettes in some 

countries comes close to the idea of tax differentiation, and it indeed implies the potential 

for tax exporting to foreigners. Importantly, our findings may help to explain why small 

open economies unable to tax transit favour taxes on local traffic that are substantially 

below marginal congestion costs. In fact, such countries are often slow to accept 

congestion taxes or are even explicitly opposed to their introduction, unless transit can 

also be taxed (Belgium, Netherlands, etc.). The results presented here for the case ‘local 

tolls only’ are not inconsistent with this type of behaviour.   
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Table 2: Summary of optimal tolling rules 

Tolling regime Results on 
optimal tolls 

Interpretation 

Differentiated tolls i iLMECτ >  

i it LMEC>  

i itτ >  

- Local and transit toll exceed local 
marginal external congestion cost  
- Transit toll exceeds local toll 

Uniform tolls i i itθ τ= =  

i iLMECθ >  
- Uniform toll exceeds local marginal 
external congestion cost 

Local tolls only 0 i it LMEC< <  
 

- Tolls on local traffic are positive but 
below marginal external congestion 
cost  

 

 

3. Nash equilibria for linear cost and demand functions 

The optimal tax rules derived in the previous section under different tolling systems 

implicitly define countries’ reaction functions to taxes abroad. To formally study their 

properties and to analyse the resulting Nash equilibria, it is instructive to impose more 

structure on the problem. In this section we therefore focus on linear demand and cost 

functions. These simplifications also pave the way for the numerical analysis that follows 

in Section 4. 

  Specifically, we use the following linear inverse demand functions: 

                                         

( )
( )

( )
, , , , , 0

X

Y
A A A A A
Y

B B B B B

A A B B

P X a bX
P Y c d Y

P Y c d Y
with a b c d c d

= −

= −

= −
>

                                                 (14) 

Cost functions for transport time (and resources) are specified as: 

              
( ) ( )
( ) ( )

, 0

A A A A A A A

B B B B B B B

C X Y X Y
C X Y X Y
with

α β
α β

α β

+ = + +
+ = + +

>
                                                                     (15) 

As before, we only consider the general case where both regions have transit and local 

transport. The algebraic derivations to arrive at the reaction functions and to show the 
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existence of a Nash equilibrium for the various tolling regimes are conceptually 

simple, but somewhat tedious. We have therefore delegated the derivations to Appendix 4 

and limited the discussion here to the economic implications of our findings. 

 

3.1. Reaction functions and Nash equilibrium: differentiated tolls 

The reaction functions for country A ( analogous results hold for B) are given by the 

following linear expressions: 

                                                          

2 4

1 1

2 4

1 1

1 1( ) ( )
2 2
1 1( ) ( )
2 2

A A

A A B BA A

A A
t A A

A A B BA A

c t

t c K K t

τ γ γτ τ
γ γ

γ γτ
γ γ

= − −

= + +
                    (16) 

where the coefficients are explicitly defined in Appendix 4. Here it suffices to note: 

1 2 40, 0, 0A A Aγ γ γ< > <  

2 4
A Aγ γ>  

1 0AK− < <  

Interpretation of the signs of the foreign taxes on optimal local taxes in A is then clear. 

We find that an increase in the transit tax abroad induces country A to optimally adjust 

both its transit tax and the tax on local traffic upwards, but that the impact on the transit 

tax is larger than the effect on the local tax. Why is this the case? The higher tax on 

transit in B reduces transit there and raises transit demand in A. This increases local 

congestion in A. The optimal response in A is therefore to raise both taxes. Similarly, a 

higher local tax in B induces country A to optimally reduce transit as well as local taxes 

in A. The higher tax in B reduces congestion in B and makes B relatively more and A 

relatively less attractive to transit traffic. This also reduces both congestion and tax 

revenues in A. To compensate country A raises its tax rate on local traffic; this increases 

congestion but raises tax revenues.  

In Appendix 4 we formally show existence of a Nash equilibrium. Not surprisingly, 

explicitly solving for the equilibrium tax rates does not yield extra economic insights. 
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Therefore, to study the properties of the equilibrium in function of a number of crucial 

parameters describing the tax competition problem (e.g., the size of the country, the 

importance of transit etc.), we resort to numerical analysis in Section 4 below. 

 

3.2.Reaction functions and Nash equilibrium: uniform tolls 

The reaction function for country A as a function of the uniform tax rate in B is given by 

the linear relation: 

32

1 1

tuAtuA

A BtuA tuA

cc
c c

θ θ= +                                                    (17) 

where (see Appendix 4) 1 0tuAc > , 2 0tuAc > , 3 0tuAc > . An analogous result holds for B. This 

shows that the reaction functions are upward sloping. A Nash equilibrium can again be 

shown to exist.  

 

3.3.Reaction functions and Nash equilibrium: local tolls only 

The reaction function for country A is shown to be: 

32

1 1

tlAtlA

A BtlA tlA

cct t
c c

= +                                                         (18) 

where 1 0tlAc > , 2 0tlAc > , 3 0tlAc > . 

Again, the slope of the reaction functions is positive, and (assuming both types of traffic 

exist at the equilibrium) existence of a Nash equilibrium can be shown, see Appendix 4.  

 

 

4. Numerical illustration 

In order to illustrate the theoretical analysis, a numerical model is used that fully 

corresponds to the linear model developed in the previous section.  The data represent 

realistic orders of magnitude for the situations modelled above, but they do not 
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correspond to one particular real-world example. The advantage of such a ‘generic’ 

application is that it allows us to numerically illustrate the sensitivity of the results with 

respect to the importance of transit and to series of parameters that reflect some observed 

real-world differences between countries.  

We start the discussion by analysing a central and fully symmetric scenario, and then 

consecutively consider the role of transit, of asymmetric local demand functions 

(reflecting differences in the relation between local demand and road capacity) and of 

differences in congestion functions. For each of the scenarios considered, the following 

equilibria are calculated: 

� S1: The no toll equilibrium, to which the model is calibrated; 

� S2: Nash equilibrium with differentiated tolls; 

� S3: Nash-equilibrium with uniform tolls on local and transit traffic;  

� S4: Nash equilibrium with local tolls only; 

� S5: Centralized solution with differentiated tolls  

� S6: Centralized solution with local tolls only.  

In each scenario, the toll revenue is allocated to the tolling countries. Note that, by 

construction, we obtain interior solutions for the counterfactual scenarios.  

 

4.1 Central scenario 

The central scenario uses a fully symmetric version of the model, with identical 

congestion and local demand functions for both countries.  The congestion function is a 

linear approximation to the French functional form for highways (Quinet (1998, p. 139)), 

at a reasonably congested traffic volume.  The precise parameterization of all cost and 

demand functions is chosen so as to yield reasonable generalized price elasticities and 

congestion levels (including marginal external congestion cost); cf. more detail below.  In 
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(stef.proost@econ.kuleuven.ac.be) 
*** Department of Economics, University of California at Irvine, Irvine, CA 92697-5100 
(kvandend@uci.edu) 
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addition to symmetry, the central case also assumes a 50/50 distribution of transit and 

local traffic in each country, in the zero-toll reference situation.  

Table 3 shows some basic properties of the demand and cost functions used, and the 

associated reference demand and cost levels. Note that transit demand is twice local 

demand in A or B and it is, endogenously, equally distributed over both countries.  The 

time cost is taken to be 50% of the generalized price.  The non-time component is fixed 

across simulations. 

 

Table 3 Zero-toll symmetric equilibrium (central case parameterization) 

 Intercept Slope Level Unit 
Local demand, A=B 1690 -5.96 1300 Trips 
Transit demand 3380 -11.92 2600 Trips 
Time cost function, A=B 1.617 0.012 32.7 Euro/trip 
Generalized price, A=B   65.4 Euro/trip 
Local MEC, A=B   15.5 Euro/trip 
Global MEC, A=B   31.1 Euro/trip 
Note: all trips are taken to be 100km long; the trip levels are hourly levels 

 

Calculated results for each of the six equilibria leads to the results summarized in 

Tables 4 and 5. They are easily summarized. Reassuringly, the optimal tolls nicely 

illustrate a number of results of the theoretical analysis. For example, at the centralised 

solution (S5) both transit and local tolls equal global marginal external cost. Note that, 

while toll differentiation is allowed in scenario S5, the resulting tolls are equal because 

marginal external costs are equal for both trip types. In the Nash equilibrium with 

differentiated tolls (S2), both the local and global toll exceed the local marginal external 

cost (the local toll is equal to the global marginal external congestion cost), and the transit 

toll exceeds the local toll. In the corresponding solution with uniform tolls (S3) the 

optimal toll is between the toll levels of the differentiated case. Interestingly, the optimal 

local toll is very low in the Nash equilibrium case where transit remains un-tolled: it 

amounts to 6.8 Euro relative to a global marginal external cost of 30.7.     

Turn to the relative welfare levels at the different equilibria. First, observe that the Nash 

equilibrium with differentiated tolls is able to generate a large percentage of the maximal 

possible welfare gain. To see this, note that the maximal welfare gain (the gain at the 
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centralised solution S5) relative to the no-toll reference equilibrium amounts to 1.58% 

of this reference welfare level. The Nash-equilibrium with differentiated tolls improves 

overall welfare by 1.47% compared to the reference case, or 93% of the maximal 

attainable gain. Moreover, the shares of both countries and of transit in total welfare are 

also fairly close to that of the centralised solution.  In both cases the shares of local traffic 

in welfare increase substantially compared to the no-toll situation, while that of transit 

traffic diminishes.8 Our finding that the Nash equilibrium with differentiated tolls brings 

us close to the social welfare optimum implies that the welfare costs of the lack of 

coordination between countries seem to be relatively modest. A similar conclusion was 

obtained in totally different contexts by Sorensen (2000) and Parry (2003). At any rate, 

tolling with no coordination is much better than no tolling at all. 

Second, comparing the Nash equilibrium with and without toll differentiation (S2 and 

S3) suggests that the uniformity constraint implies a very small overall welfare loss 

(0.06%-point), despite a substantial impact on the local toll. This increases from 27.1 

Euro/trip to 36.8 Euro/trip, close to the transit toll of 37.9 in the differentiated tolling 

case. However, this hardly affects welfare compared to the differentiated tolling case. 

Local welfare goes down only marginally because the reduction in local consumer 

surplus is almost fully offset by the increase in tax revenues, which have the same 

welfare weight as consumer surplus. Transit experiences only a modest welfare gain 

relative to the differentiated tolling case; the reason is that the toll on transit is quite 

similar under both the uniform and the differentiated tolling case. The results indicate that 

the overall welfare effects of uniform versus differentiated tolls are quite similar, 

although the distribution between local and transit welfare obviously substantially differs. 

Finally, the uniformity restriction does not protect transit from substantial welfare losses 

compared to the no toll situation.  

Third, consider the cases where transit trips cannot be tolled. These scenarios are of 

interest because zero tolls on transit traffic mimics current (and possibly future) 

                                                 

8 The resulting welfare loss for transit could be expected, as transit trips are priced below marginal social 
costs in the reference equilibrium.  A toll is needed for reasons of efficiency, but transit does not share in 
the toll revenues. 
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conditions in Europe, at least for transit countries that are small enough to allow transit 

to pass without taking fuel. We find the performance of both the Nash and the centralised 

outcome (S4 and S6) to be substantially worse than in the cases where transit is tolled.  

The Nash equilibrium without transit tolls (S4) generates only 21.5% of the maximal 

possible welfare gain (S5) and 23% of the welfare gain in the Nash equilibrium with 

differentiated tolls (S2).  Note also that the centralised solution with zero transit tolls 

performs worse than both the Nash equilibria with and without toll differentiation. 

Our findings suggest, therefore, that welfare losses are much more substantial when 

transit remains un-tolled than when tolls on local and transit transport are required to be 

uniform. Moreover, it also seems that not tolling transit, a substantial fraction of total 

traffic, is equally if not more important for welfare than tax competition itself. Moving 

from the centralised solution with taxes on both local and transit traffic to a centralised 

situation with no toll on transit (compare S5 and S6), we see that the tax on local traffic 

only falls marginally below marginal external cost. The large welfare difference is 

uniquely due to un-tolled transit. Introducing tax competition under the zero transit toll 

constraint then does introduce an additional welfare loss (compare S6 and S4): countries 

find it in their best interest to tax local traffic at far less than the global marginal external 

congestion cost.  As countries care about local welfare only, they set local tolls at a low 

level, so encouraging local trip demand and indirectly discouraging transit trips. 

To summarise, our numerical findings so far indicate that: 

- It is important to introduce some form of transit tolling; the welfare effects of 

tolling transit are large. 

- The precise type of transit tolling (uniform local and transit tolls versus 

differentiated transit tolls) has relatively small welfare effects. 

- The welfare losses due to not tolling transit seem to be at least as important as the 

losses due to tax competition itself.  

- A uniformity restriction for local and transit tolls does not protect transit from large 

welfare losses.  
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4.2 The importance of the share of transit in the no-toll equilibrium 

The transit share in the central scenario was 50% in both countries. In this sub-section we 

briefly illustrate the impact of changing the relative importance of transit; apart from that, the 

countries are still assumed to be symmetric.  

First consider Figure 2 below. This shows, for the Nash equilibrium tolls with differentiated 

tolling, the effects of varying the share of transit between 1% and 50%, while keeping the no-

toll total traffic volumes at the levels of the central scenario (so this reflects ‘constant 

congestion’ compared to the central scenario). We see that the transit toll rises dramatically as 

the share of transit increases, while the local transit toll slightly declines. This latter effect 

follows from the higher transit toll which leads to lower traffic levels and, therefore, lower 

(global) marginal external costs. Finally, note that as the transit share goes to zero, the model 

converges to marginal social cost pricing for both transport types.   

  

Figure 2 Tolls as a function of no-toll transit share 
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Next, we try to find out if the qualitative results concerning the welfare impacts of various 

pricing constraints depend on the importance of transit. In order to do this, in Tables 6 and 7 

we reconsider scenarios S1 – S6 for a reference transit share of 10% (instead of 50% in Tables 

4 and 5). Except for those already mentioned, the qualitative differences are limited, with 

three exceptions. First, the lower transit share induces a much higher local toll in the Nash 

equilibrium with zero tolls on transit. The reason is that, for a given increase in tax revenue on 
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local traffic, the increase in congestion due to rising transit is smaller than before. Second, the 

welfare loss from not coordinating between countries (compare S2 and S5) is even smaller 

than in the central scenario, as there is less transit and therefore less of a conflict between 

local and global welfare. Third, not surprisingly, with low transit shares the inability to toll 

transit traffic is much less detrimental than in the central scenario. In scenario S4, the Nash 

equilibrium with a local toll only, 62% of the gain from the gain in the Nash equilibrium with 

differentiation (S2) is obtained. It is still the case that the Nash equilibrium with uniform tolls 

(S3) does better than welfare maximisation with local tolls only (S6). 
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4.3 The effects of asymmetry between countries 

4.3.1 Asymmetrical local demand functions 

In this sub-section we consider the effect of differences between countries in local 

demand functions. More precisely, (i) the transit demand function is assumed to be the 

same as before; (ii) the sum of local demand over both countries is the same as before; 

(iii) but, local demand in country A is decreased and that in country B is increased (in the 

reference case, the no-toll equilibrium). The local demand functions are adapted 

accordingly (implying both a shift and a change in slope, as the reference elasticity of 

demand is held constant).  

To interpret the economics of the simulations reported here, note that aggregate trip 

demand for the whole network in the no-toll equilibrium is held at the level of the central 

scenario, but that only the distribution of local traffic (and, as a consequence, of 

equilibrium transit demand) between countries is changed. In other words, we look at 

differences in local demand relative to the available road capacity: for any given level of 

transit demand, country A has lower congestion than country B. Therefore, the scenario 

could be interpreted as the case of a densely (B) populated versus a sparsely (A) 

populated country. Given constant road capacity, more transit is automatically attracted 

to A. The scenario therefore also reflects differences in the potential of countries to 

attract transit.   

In order to keep the analysis transparent, we limit the discussion to the effects of the 

described asymmetry for the reference zero toll scenario and for the Nash equilibrium 

with differentiated tolls. Results are in Table 8, the structure of which is necessarily 

somewhat different from earlier tables. The top part of the table first describes the effects 

of the asymmetry on the reference equilibrium when we decrease, from left to right, local 

demand in country A; correspondingly, local demand in B rises. Since road capacity does 

not change, a larger share of overall transit demand, which is constant, is attracted to 

Country A. By construction, the local marginal congestion cost in Country A decreases, 

that in Country B increases and, in the reference equilibrium, the generalized cost and the 

global marginal congestion costs are the same as in the central scenario in both countries. 
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To get insight into the effects of asymmetric demands, the bottom part of Table 8 gives, 

for different levels of asymmetry, the optimal tolls for the Nash equilibrium with 

differentiated tolls. Moreover, it presents changes in demand, marginal cost and welfare 

when moving from the reference scenario to the Nash outcome. The most relevant results 

are the following. First, asymmetry implies a lower local toll and a higher transit toll in 

the low-demand Country A, with the opposite directions of change in Country B.  

Second, its attractiveness for transit implies that global marginal congestion costs in 

Country A rise (they decrease less compared to the symmetric reference); the opposite 

holds for B. However, note in both cases that the magnitude of these effects is limited 

even at very high levels of asymmetry. Third, the effect of the asymmetry on the total 

transit demand reduction is very small. Not surprisingly, as Country A carries more 

transit flow (in relative and in absolute terms), moving from the reference case to the 

Nash equilibrium implies a larger reduction in its share in total transit flow.  Fourth, the 

gain from introducing the Nash differentiated tolls in Country A strongly rises when its 

local willingness to pay for trips becomes smaller; correspondingly, the gains for Country 

B become smaller.  The reduction in total transit welfare after introduction of the 

differentiated tolls hardly depends on the asymmetry. 

The economic interpretation is clear. This exercise suggests that a country which is in a 

position to attract a lot of transit traffic, because it has high road capacity and/or little 

local demand, will benefit a lot from a differentiated toll on local and transit traffic9.  The 

competitive advantage that follows from having sufficient capacity that is not yet 

congested by local users, enables the country to raise substantial amounts of toll revenue 

from transit users, so increasing local welfare.  The welfare potential of the competing 

country decreases, but transit users are hardly affected.  

                                                 

9 This example also suggests that countries may have strategic incentives for provision of infrastructure. 
Endogenising capacity provision seems therefore to be a worthwhile extension of this paper. 
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4.3.2 Asymmetrical congestion functions 

Finally, we test the sensitivity of the results to differences in the congestion functions between 

countries.  The scenario analysed is the following: (i) the congestion function for Country B is 

the same as in the central scenario; (ii) for Country A, the slope is decreased, simultaneously 

increasing the intercept in order to retain the volumes and travel times (in both countries) of 

the central scenario. Consequently, we reduce the ‘congestibility’ of the road in Country A, 

but the fixed component of travel time is simultaneously increased.   

The economic interpretation of the constructed scenario is straightforward. It could be 

interpreted as introducing an asymmetry in the relative length and, at given traffic levels, 

degrees of congestion. The proposed adjustment has the same effect as making the road via 

Country A longer but less congested (at given traffic levels) compared to the link via country 

B. Loosely speaking, at given levels of local demand, transit now has the choice between a 

longer trip with potentially less congestion and a shorter but more congested route. From the 

viewpoint of transit, given the unchanged parameters for country B, the changes for A imply 

that the congestibility of the whole network declines. 

Consider Table 9, which has the same structure as Table 8 above. Column A is the central 

scenario. In columns B through D, the slope of the congestion function of Country A is 

gradually reduced by 5 to 15% and the intercept is adapted to keep reference volumes and 

distributions constant (see the top half of the table).  In column E, the slope of the congestion 

function of Country A is reduced to epsilon, implying a virtual absence of congestion. The 

main results are in the bottom half of the table. First, introducing the asymmetry reduces all 

the optimal tolls, reflecting the decline in congestion at given traffic levels. Second, the 

effects are largest for the local tolls in the least congested Country A; tolls in B are much less 

sensitive. Third, the welfare effects of the asymmetry in congestion functions for the Nash 

equilibrium with toll differentiation are limited (both local and transit welfare), except in the 

extreme case of zero congestion in A (column E). The local welfare gains from the tolls 

decrease, which could be expected as the initial inefficiency from congestion becomes smaller 

with the network capacity increase. Overall, the simulation results suggest that countries with 

very different demand and congestion conditions will benefit from tolling transit.   
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5. Summary, conclusions and directions for future research 

In this paper we studied optimal and strategic pricing of local and transit traffic on a simple 

parallel network. The tolling authority on the individual links of the network was assumed to 

be assigned to different countries. We first theoretically analysed Nash equilibria in this 

setting for three types of pricing structures: differentiated tolls between local and transit 

traffic, uniform tolls, and local tolls only. Then a numerical model was used to illustrate the 

main results and to assess the welfare effects of various pricing constraints and of (the lack of) 

coordination between countries. Moreover, the relevance of the share of transit in total 

transport demand and of asymmetries between countries was numerically illustrated.  

 The conclusions are easily summarised. First, the welfare effects of tolling transit seem to be 

large, but the precise type of transit tolling has relatively small effects on efficiency 

improvements compared to the no tolling situation. Specifically, differentiation between local 

and transit tolls as compared to uniform tolls does not yield large welfare differences, 

although obviously tolls on transit may differ substantially. Allowing differentiated tolls in an 

uncoordinated setting tends to go at the expense of transit traffic. Second, the welfare effects 

of coordination between countries are relatively small in comparison with the welfare gains of 

tolling transit. The outcome when countries behave strategically but do tax transit (e.g., the 

Nash equilibrium with uniform tolls) yields higher welfare effects than the coordinated 

welfare optimum for the network as a whole when transit is not tolled. Third, the effect of 

higher transit shares on the Nash equilibrium with differentiated tolls is to strongly raise the 

transit toll and to slightly decrease the local toll. As the transit share goes to zero, the model 

converges to marginal social cost pricing for local traffic. Fourth, the impact of introducing 

asymmetries between countries is to raise welfare gains for the country with lower local 

demand (comparing the Nash-equilibrium to the no-toll equilibrium); welfare gains in the 

other country become less pronounced.  

 Finally, note that this paper could be extended along several lines. First, we have limited the 

analysis to cases where at all equilibria both local and transit transport occur in both regions. 

Although the case of zero local traffic is not very interesting, allowing corner solutions at zero 

transit does seem a relevant case to consider. Under specific conditions, countries could 

actually choose to eliminate all transit on their territory. Studying these conditions seems a 

relevant addition to the analysis of this paper. Second, different pricing instruments (road 
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pricing, fuel taxes, vignettes, etc.) could be introduced. This would probably make the 

theoretical analysis intractable, but it would enrich the numerical results. Third, one could 

incorporate freight transport and analyse partial taxation of the network (e.g., toll trucks but 

not passengers). Fourth, the transition process of introducing tolling instruments sequentially 

could be explicitly studied. For example, given that one country moves from a system with 

local tolls only to a system with explicit transit tolling, how does this affect optimal responses 

by the other country? Alternatively, if a country moves from differentiated tolls towards 

uniform tolls, what is the optimal response for the other country? What do the resulting Nash 

equilibria look like? 
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Appendix 1: Detailed analysis of the case of differentiated tolls 

In this appendix we study in more detail the case of differentiated tolls on local and transit 

transport. We derive the reduced form demand system and discuss its properties, and we 

derive the optimal toll results presented in the main body of the paper.  

 

The reduced-form demand system 

Using (1) and focusing on the case where there is local and transit traffic in both regions, the 

system consisting of (2), (3) and (4) can be reformulated as 

                                                       ( ) ( )X
A B A A A AP X X C X Y τ+ = + +                                (A.1) 

 ( ) ( )X
A B B B B BP X X C X Y τ+ = + +              (A.2) 

 ( ) ( )Y
A A A A A AP Y C X Y t= + +                   (A.3) 

 ( ) ( )Y
B B B B B BP Y C X Y t= + +                   (A.4) 

This system of four equations can easily be solved for the reduced form demand functions as 

functions of the four tax rates. A particularly instructive way to do this is to first solve (A.3) 

and (A.4) separately for the demands for local transport as a function of transit demands and 

local tax rates in a given region: 

( , )A A A AY z X t=                          (A.5) 

( , )B B B BY z X t=                          (A.6) 

Note that application of the implicit function theorem to (A.3) implies: 

                         0

A

A A
Y
A AA

A A

C
z V

P CX
Y V

∂
∂ ∂

= <
∂ ∂∂ −
∂ ∂

                           (A.7) 

                      1 0A
Y
A AA

A A

z
P Ct
Y V

∂
= <

∂ ∂∂ −
∂ ∂

                                                   (A.8)  

where  
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                        A A AV X Y= +  

is the total transport volume in A. Using (A.4), an analogous result is derived for B. 

Interpretation is simple: an exogenous increase in transit in a given region reduces the demand 

for local transport, as it raises local congestion and hence generalised user cost.  Raising the 

local tax, at a given transit level, reduces local demand for transport.  

Substituting (A.5)-(A.6) into (A.1) and (A.2) yields:  

                                                       [ ]( ) ( , )X
A B A A A A A AP X X C X z X t τ+ = + +   (A.9) 

[ ]( ) ( , )X
A B B B B B B BP X X C X z X t τ+ = + +           (A.10) 

The solution of this system yields the reduced-form demand functions for transit, denoted in 

the main body of the paper as [ ], , ,r
A A A B BX t tτ τ  and [ ], , ,r

B A A B BX t tτ τ , respectively. To 

determine the signs of the various tax effects on transit demands, totally differentiate system 

(A.9)-(A.10) and write the result in matrix notation: 

(1 )

(1 )

X X
A A A A

A A
A A A AA

X X
B B BB B

B B
B BB B

P C z P C z dt d
X V X X V tdX

dX C zP P C z dt d
V tX X V X

τ

τ

 ∂ ∂ ∂ ∂ ∂ ∂ − + +   ∂ ∂ ∂ ∂ ∂ ∂    =   ∂ ∂ ∂ ∂ ∂ ∂   +− +   ∂ ∂∂ ∂ ∂ ∂    

 

Applying Cramers’ rule then yields, after simple algebra, the effects of tax changes on 

demand in A (analogous results hold for B): 

1 (1 )
X

A A A B B

A A A B B

dX C z P C z
dt V t X V X

    ∂ ∂ ∂ ∂ ∂ = − +    ∆ ∂ ∂ ∂ ∂ ∂     
       (A.11) 

1 (1 )
X

A B B

A B B

dX P C z
d X V Xτ

 ∂ ∂ ∂
= − + ∆ ∂ ∂ ∂ 

                              (A.12) 

1 X
A B B

B B B

dX P C z
dt X V t

 ∂ ∂ ∂
= −  ∆ ∂ ∂ ∂ 

                                      (A.13) 

1 X
A

B

dX P
d Xτ

∂
= −

∆ ∂
                                                         (A.14) 

where   
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                               (1 ) (1 ) (1 )
X X

A A B B B B

A A B B B B

C z P C z P C z
V X X V X X V X

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∆ = − + − + − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

Using (A.7) for k=A,B it follows: 

(1 ) 0

Y
k

k k
Y

k kk

k k

P
z Y

P CX
Y V

∂
∂ ∂

+ = >
∂ ∂∂ −
∂ ∂

 

which immediately implies  0∆ > . Note that (A.11)-(A.14) then imply:  

                                     0, 0, 0, 0
r r r r

A A A A A A A A

A A B B A A B B

dX X dX X dX X dX X
d d dt t dt tτ τ τ τ

∂ ∂ ∂ ∂
= < = > = > = <

∂ ∂ ∂ ∂
  

Moreover, (A.8), (A.11) and (A.12) imply 
r r
A A

A A

X X
tτ

∂ ∂
>

∂ ∂
.   

 Finally, to determine the impact of taxes on local demands, note from (A.5)-(A.6) that 

A A A A

A A A A

A A A

A A A

A A A

B A B

A A A

B A B

dY z dX z
dt X dt t
dY z dX
d X d
dY z dX
dt X dt
dY z dX
d X d

τ τ

τ τ

∂ ∂
= +

∂ ∂
∂

=
∂
∂

=
∂
∂

=
∂

  

so that, using all previous results, it immediately follows: 

                                0, 0, 0, 0
r r r r

A A A A A A A A

A A B B A A B B

dY Y dY Y dY Y dY Y
d d dt t dt tτ τ τ τ

∂ ∂ ∂ ∂
= > = < = < = >

∂ ∂ ∂ ∂
 

For the reduced form demand functions for country B, the signs of the different tax effects are 

determined completely analogously. 
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Optimal tax rules 

The first-order conditions to optimisation problem (8) can be written, using the fact that in 

equilibrium generalised cost equals generalised price, as: 

                                  0
r r

A A A A
A A A A

A A A A

C Y C Xt Y Y
V t V t

τ
   ∂ ∂ ∂ ∂

− + − =   ∂ ∂ ∂ ∂   
                 (A.15)  

                                  0
r r

A A A A
A A A A A

A A A A

C Y C Xt Y Y X
V V

τ
τ τ

   ∂ ∂ ∂ ∂
− + − + =   ∂ ∂ ∂ ∂   

        (A.16) 

Writing the system in matrix notation and solving by Cramers’ rule yields the tax rule for 

local traffic as follows: 

                                  [ ]1 r
A A

A A A
A A

C Xt Y D X
D V t

 ∂ ∂
= + ∂ ∂ 

                                   (A.17) 

where 

                                       
r r r r r

A A A A A A

A A A A A A

Y X Y X z XD
t t tτ τ τ

∂ ∂ ∂ ∂ ∂ ∂
= − =

∂ ∂ ∂ ∂ ∂ ∂
 

The last equality follows from the definition of the various demand effects derived before. 

Substituting D in (A.17) and slightly manipulating the result immediately gives the local tax:  

                           ( ) A A
A A A A A

A A

C Ct Y X LMEC X
V V

∂ ∂
= + = +

∂ ∂
                                           (A.18) 

Using similar procedures we find for the transit tax 

                                        

r
A

A A
A A A r

A AA

A A

Y
C tY X

z XV
t

τ

τ

 ∂
 ∂ ∂ = −

∂ ∂∂  
 ∂ ∂ 

                                                (A.19) 

Finally, comparison of (A.18) and (A.19) implies that the tax on transit exceeds the tax on 

local transport, implying tax exporting behaviour. To see this, note that we have: 

r
A

A A
A A A r

A AA

A A

Y
C tt X

z XV
t

τ

τ

 ∂
 ∂ ∂ − = − +

∂ ∂∂ 
 ∂ ∂ 
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Substituting
r r

A A A A

A A A A

Y z X z
t X t t

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
, using A A A

A A A

z C z
X V t

∂ ∂ ∂
=

∂ ∂ ∂
(see (A.7)-(A.8)) and rearranging 

yields 

1
r r

A A A

A A A
A A A r

A

A

C X X
V t

t X
X
τ

τ

τ

  ∂ ∂ ∂
+ +  ∂ ∂ ∂  − = −

 ∂
 ∂  

 

Using (A.11)-(A.12) and explicitly substituting ∆ then yields, after some manipulation:  

                       
1

0
1

X
B B

B B
A A A X

B B

B B

P C z
X V X

t X
P C z
X V X

τ

  ∂ ∂ ∂
+  ∂ ∂ ∂  − = >

  ∂ ∂ ∂
− +  ∂ ∂ ∂   

 

 

Appendix 2: Detailed analysis of the case of uniform tolls 

Reduced-form demand system 

Using similar developments as in the differentiated tolling case we immediately obtain (the 

definition of 0∆ >  is unchanged): 

1 1 (1 ) 0
X

A A A B B

A A A B B

dX C z C zP
d V X V Xθ θ

    ∂ ∂ ∂ ∂∂ = + − + <    ∆ ∂ ∂ ∂ ∂ ∂               
    (A.20) 

                                                         1 1 0
X

A B B

B B B

dX C zP
d X V Xθ

  ∂ ∂− ∂
= + >  ∆ ∂ ∂ ∂  

                        (A.21) 

Furthermore, analogous procedures as in the case of differentiated taxes immediately yield: 

 0, 0A A

A B

dY dY
d dθ θ

< <   

Optimal tax rules 

The first-order condition to the problem 

                                    
0

( ( )) * ( )
A

A

Y
Y Y

A A A A A A A A AMax W P Y dY g Y Y X
θ

θ= − + +∫ , 
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can be written as: 

 1 ( ) ( ) 0
r r r r r r

Y Y r rA A A A A A A
A A A A A A

A A A A A A A

Y Y C Y X Y YP g Y Y X
V

θ
θ θ θ θ θ θ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − + + + + + + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 

Simplifying and solving for the tax yields: 

r
A A

A A r r
A AA

A A

C XY
Y XV

θ

θ θ

∂
= −

∂ ∂∂ +
∂ ∂

 

 

Appendix 3: Detailed analysis of the case ‘local tolls only’ 

Reduced-form demand system 

The derivatives of the reduced-form demand functions with respect to the local tolls are easily 

shown to be identical to those for the differentiated tolling case. Indeed, the only difference is 

that the transit toll is set to zero. 

 

Optimal tax rules   

The first-order condition to the problem 

                                    
0

( ( )) *
A

A

Y
Y Y

A A A A A A A At
Max W P Y dY g Y t Y= − +∫  

immediately yields, after simple manipulation: 

 0
r r r

A A A A
A A

A A A A

Y C Y Xt Y
t V t t

  ∂ ∂ ∂ ∂
− + =  ∂ ∂ ∂ ∂  

  

Solving for the optimal local toll leads to: 

 1

r
A

A A
A A r

AA

A

X
C tt Y

YV
t

 ∂
 ∂ ∂ = +

∂∂  
 ∂ 
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Importantly, the term between square brackets can be shown to be positive (and smaller than 

one), implying the optimal tax is between zero and the local marginal external cost. To see 

this, remember that the derivatives of the reduced-form demand functions are given by the 

same expressions A.11 and A.13 as for the differentiated tolling case. Then substitute the 

definition of ∆  and use A.7-A.8 to obtain, after straightforward manipulation:  

[ ]
1

2 1

1
( )

r
A

A
r A

A A Y A A

A A A A A

X
t M
Y C P C z M M
t V Y V t

∂
∂

+ =
∂  ∂ ∂ ∂ ∂

− + ∂ ∂ ∂ ∂ ∂ 

                 (A.22) 

where  

1 1 0
X

B B

B B

C zPM
X V X

 ∂ ∂∂
= − + > ∂ ∂ ∂ 

  

 2 1
X

B B

B B

C zPM
X V X

 ∂ ∂∂
= − + ∂ ∂ ∂ 

<0 

It immediately follows that the both the numerator and the denominator of the right-hand side 

of A.22 are positive. .  

 

Appendix 4: Details on the reaction functions and the Nash equilibria 

1. The case of differentiated tolls 

We consecutively derive the reduced-form demands, the reaction functions, and the Nash 

equilibrium. To get the reduced-form demands, we follow the procedure outlined in Appendix 

1 for the linear demand and cost functions given in the main body of the paper. The demands 

for local transport conditional on transit and the local tax are given by 

0 1 2

0 1 2

A A A
A A A

B B B
B B B

Y z z X z t

Y z z X z t

= + +

= + +
                   (A.23) 

where 
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0 1 2
1, ,A A AA A A

A A A A A A

cz z z
d d d

α β
β β β

−
= = − = −

+ + +
         (A.24) 

                                    

0 1 2
1, ,B B BB B B

B B B B B B

cz z z
d d d

α β
β β β

−
= = − = −

+ + +
        (A.25) 

Substituting these functions in the Wardrop equilibrium conditions yields, after some 

manipulations, the reduced-form demands for transit transport. We find: 

                                      0 1 2 3 4
r A A A A A
A A B A BX t tγ γ τ γ τ γ γ= + + + +                                          (A.26) 

                                      0 1 2 3 4
r B B B B B
B B A B AX t tγ γ τ γ τ γ γ= + + + +                                     (A.27) 

where the coefficients are given by 

2
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1
3

1
4

( ) ( )B A A B
A

B
A

A

A B
A

B
A

b z z a bz T
N

b T
N

b
N

z b T
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2
0 0 0

0

1

2

1
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1
4

( ) ( )A B B A
B

A
B

B

B A
B

A
B

b z z a bz T
N

b T
N

b
N

z b T
N

bz
N

γ

γ

γ

γ

γ

− + −
=

 + = −

=

  +  = −  
  

=

    (A.28) 

In these expressions A B A BN bT bT T T= + + , and 1 1(1 ), (1 )A A B B
A BT z T zβ β= + = + . Since, 

using (A.24)-(A.25), the iT  are easily shown to be positive, it immediately follows that N>0. 

Therefore, we have 

                                            1 2 3 40, 0, 0, 0A A A Aγ γ γ γ< > > < . 

                                            1 2 3 40, 0, 0, 0B B B Bγ γ γ γ< > > < . 

Note that the reduced form demand functions have a straightforward structure. More 

precisely, observe that the coefficients of the local and the transit taxes are directly related in 

the following simple manner (i=A,B): 
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                                                                 3 1 1

4 1 2

i i i

i i i

z

z

γ γ

γ γ

=

=
                                                         (A.29) 

Moreover, using (A.24)-(A.25) it immediately follows that 11 0iz− < <  so that: 

                                                                  
3 1

4 2

i i

i i

γ γ

γ γ

<

<
                                                        (A.30) 

Finally, note that reduced form demands for local traffic are obtained by inserting the 

demands for transit (equations (A.26)-(A.27)) into system (A.23). 

The reaction functions are derived as follows. Using the linear demand and cost functions in 

the optimal tax rules for country A derived in Appendix 1, we find after some algebra: 

                                       ( )A A A At Y Xβ= +                                                                          (A.31) 

                                       A A A A AY Xτ β ρ= +                                                                        (A.32) 

where  

                                         
B

A A B

bT
b T

ρ β= +
+

 

Substituting (A.23), (A.26) and (A.27) into (A.31)-(A.32) and solving for the tax rates in A as 

sole functions of the two tax rates in B yields, again after some algebra, 

                                                          

2 4

1 1

2 4

1 1

1 1( ) ( )
2 2
1 1( ) ( )
2 2
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A A B BA A

A A
t A A

A A B BA A

c t

t c K K t

τ γ γτ τ
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γ γ

= − −

= + +
          (A.33) 

where all coefficients have been defined before, except 
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Moreover, for purposes of the interpretation it is useful to note that 1 0AK− < < . This is 

easily seen to be the case as follows. First, 

                                                   1
( ) ( )A B A B

A A
A B A B

T b T T b TT
N bT bT T T

γ + +
= − = −

+ +
 

which implies 11 0A AT γ− < < . This in turn implies 1 0AK− < < . 

 Importantly, since the tax competition problem considered in this section is a game with four 

tax rates, it is not obvious to prove the existence and uniqueness of Nash equilibrium in this 

general setting. Fortunately, the linear structure of the problem allows us to reduce the four-

dimension game into a policy game in two dimensions; moreover, existence and uniqueness 

then immediately follow. To see this, consider the structure of the reaction functions (A.33) 

and note that the local and transit tax rates of each country can be written as a function of the 

same linear combination of the tax rates of the other country. Specifically, define: 

 
1

1
A A B A

B B A B

z t

z t

π τ

π τ

= +

= +
  

Substituting this result in (A.33) we obtain: 
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A A B

c r

t c r K

ττ π

π

= −

= −
  

where 2

1

1
2

A
A

Ar γ
γ

= . Similar expressions result for region B. Noting that only positive iπ  make 

economic sense, we can then reformulate (A.33) and its equivalent for B as follows: 

 
A A

A B
B B
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s p
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π π

π π
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Simple algebra, using the definitions given before and realising that 1 0iK− < < , then shows 

that the reaction functions have a positive intercept, are upward sloping, and have a slope less 

than one.  Finally, note that solving the reaction functions for the original four tax rates yields 

the Nash equilibrium in function of the various coefficients that describe cost and demand 

responses. The solution is however not transparent and does not yield extra insights. 

 

2. The case of uniform tolls 

We follow the same steps and use the same definitions as in the previous case. The reduced-

form demands for local transport conditional on transit and the local tax are given by 

0 1 2

0 1 2

A A A
A A A

B B B
B B B

Y z z X z

Y z z X z

θ

θ

= + +

= + +
                     (A.34) 

The reduced-form demand functions for transit are now the following: 

                                      0 1 3 2 4( ) ( )r A A A A A
A A BX γ γ γ θ γ γ θ= + + + +                                         (A.35) 

                                      0 1 3 2 4( ) ( )r B B B B B
B B AX γ γ γ θ γ γ θ= + + + +                                         (A.36) 

where the coefficients are defined as above.  

To obtain the reaction function for region A, use  

 
2 1 1 3

1 3
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0

r
A A A AA

A
r

A AA

A

Y z z

X

γ γ
θ

γ γ
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∂
= + + <

∂

∂
= + <

∂

  

in the optimal tax rule derived in Appendix 2:  

                  
r

A A
A A r r

A AA

A A

C XY
Y XV

θ

θ θ

∂
= −

∂ ∂∂ +
∂ ∂

 

Solving explicitly for the optimal tax, we find the reaction function: 

                                                  32

1 1

tuAtuA

A BtuA tuA

cc
c c

θ θ= +                                                          (A.37) 
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where 1 1 1 1 31 ( )( )tuA A A A A
A Ac z zβ η γ γ= − − + +  

 2 1 0 0( )tuA A A A
A A Ac z zβ η γ β= + +  

 3 1 2 4( )( )tuA A A A
A Ac zβ η γ γ= + +  

and 

 
1 1 3 2

1 0
(1 )( )A A A A Az z

η
γ γ

= − >
+ + +

 

Tedious algebra shows that ( 1
A

A Azβ η+ )>0 so that 3 10, 0tuA tuAc c> > : the reaction functions are 

upward sloping. Moreover, a Nash equilibrium indeed exists. This requires the condition:   

3 3

1 1

1
tuA tuB

tuA tuB

c c
c c

<  

which, using straightforward algebra, can easily be shown to hold. 

 

3. Local tolls only 

Again we follow the same steps and use the same definitions as in the section for the 

differentiated tolls. The demands for local transport conditional on transit and the local tax are 

given by 

0 1 2

0 1 2

A A A
A A A

B B B
B B B

Y z z X z t

Y z z X z t

= + +

= + +
                     (A.38) 

Reduced-form demands for transit are:  

                                      0 3 4
r A A A
A A BX t tγ γ γ= + +                                                                (A.39) 

                                      0 3 4
r B B B
B B AX t tγ γ γ= + +                                                           (A.40) 

To get the reaction function for country A, use the above specifications in the optimal tax rule  
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The result turns out to be: 

                                                    32

1 1

tlAtlA

A BtlA tlA

cct t
c c

= +                                                      (A.41) 

where 1 2 1 31 ( )tlA A A A
A Ac z zβ δ γ= − +  

 2 0 1 0( )tlA A A A
A Ac z zβ δ γ= +  

 3 1 4
tlA A A

A Ac zβ δ γ=  

Again, simple but long algebra shows that the slope of the reaction function is positive; 

moreover, assuming all types of transport exist in the equilibrium, the existence of a Nash 

equilibrium can be shown. This follows because one shows that 3 3

1 1

1
tlA tlB

tlA tlB

c c
c c
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