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Abstract

We present a dynamic microstructure model where a dealer market (DM) and a

crossing network (CN) interact. We consider sequentially arriving agents having

different valuations for an asset. Agents maximize their profits by either trad-

ing at a DM or by submitting an order for (possibly) uncertain execution at a

CN. We develop the analysis for three different informational settings: trans-

parency, “complete” opaqueness of all order flow, and “partial” opaqueness (with

observable DM trades). We find that a CN and a DM cater for different types

of traders. Investors with a high eagerness to trade are more likely to prefer a

DM. The introduction of a CN increases overall order flow by attracting traders

who would not otherwise submit orders (“order creation”). It also diverts trades

from the DM. The transparency and “partial” opaqueness settings generate sys-

tematic patterns in order flow. With transparency, the probability of observing

a CN order at the same side of the market is smaller after such an order than if

it was not. Buy (sell) orders at a CN are also less likely to attract subsequent

sell (buy) orders at the DM.

JEL Codes: G10, G20

Keywords: Dynamic Order Submission, Alternative Trading Systems, Dealer

Market, Crossing Network, Order Flow, Market Microstructure.



1 Introduction

In today’s financial markets securities are simultaneously traded on a diversity

of trading platforms. Different trading systems therefore compete for order flow.

A well-documented example is the competition between Electronic Communica-

tion Networks (ECNs) and the Nasdaq dealer market (see e.g. Huang (2002)).

A recent eye-catching combination concerns traditional continuous markets and

batch-type crossing networks (CNs). CNs are defined by the SEC (1998) as “sys-

tems that allow participants to enter unpriced orders to buy and sell securities.

Orders are crossed at a specified time at a price derived from another market

(i.e. the continuous market)”. When faced with the choice among these trading

platforms, investors can opt for the continuous market or for the CN. Despite

the prevalence of CNs next to continuous markets, the dynamic aspects of the

coexistence of these systems have not been well explored yet.

In this paper we investigate the interaction of a CN and a continuous (one-

tick) dealer market (DM) by analyzing the impact on the composition and the

dynamics of the order flow on both systems. We develop the analysis for three

different informational settings: transparency, “complete” opaqueness, and “par-

tial” opaqueness. The benchmark transparency case reflects that traders are fully

informed about past order flow and hence observe the prevailing state of the CN’s

order book before determining their order choice. In reality, however, CNs are

rather opaque. We incorporate this informational environment by analyzing two

different degrees of opaqueness. When “partially” opaque, traders observe pre-

vious trades at the DM, while “complete” opaqueness implies that traders are

uninformed on both past CN and DM order flow.

Our model adapts that of Parlour (1998). While she focuses on the choice

between limit and market orders on an auction market, we deal with the choice

between two trading venues. Traders are assumed to arrive randomly and se-

quentially. When both trading systems coexist, depending upon their valuations,

traders can obtain guaranteed execution in the DM, opt for cheaper but (pos-

sibly) uncertain execution on the CN, or refrain from trading. The transaction

price on a CN is typically determined on another market: in our case we take

the midprice of the DM.1 This implies that CNs do not actively contribute to

1This is in line with actual business practice: CNs cross at the mid-price derived from
another market (see e.g. websites ITG Posit and E-crossnet).

1



price discovery. Order flow to the CN is gathered in an order book where time

priority is assumed, i.e. orders arriving earlier receive priority in execution over

their successors on the same market side. The implication is that at the cross,

the last submitted orders at the excess market side do not obtain execution.

Common to the three informational settings, we do find that an increase in

the DM’s relative spread augments the CN’s order flow. In general, a CN and a

DM cater to different types of traders. Investors with a low patience to trade are

more likely to trade at a DM. The existence of a CN results in “order creation”:

investors with a high patience to trade submit orders to a CN whereas they would

never trade at a DM. The transparency and “partial” opaqueness settings also

generate systematic patterns in order flow, a result reminiscent of Parlour (1998).

These theoretical insights all point at time-varying order flow at a CN and trade

flow at a DM. Our results therefore highlight that it is important to take into

account the interaction between trading systems when measuring “normal” order

flow. For example, when looking at an individual trading system, some order or

trade flow sequences could wrongly be interpreted as being driven by information

events, whereas they are actually caused by the interaction of trading systems.

Our paper is closely related to two recent strands of research. First, a number

of papers have developed dynamic microstructure models for an auction mar-

ket.2 Parlour (1998) looks at the price dynamics in a one-tick limit order market.

She shows that, even in the absence of informed trading, systematic patterns in

transaction prices result because traders condition their behavior on the state

of the limit order book and on their expectations for future traders’ behavior.3

Foucault (1999) also investigates the choice between market and limit orders and

focuses on the latter orders’ risk of non-execution and the winner’s curse prob-

lem. He derives empirical predictions on the cross-sectional behavior of the mix

between market and limit orders. Goettler, Parlour and Rajan (2004) model a

dynamic limit order market as a stochastic sequential game and demonstrate or-

der flow persistence, even in the absence of changes in the consensus value of

the asset. Foucault, Kadan and Kandel (2003) endogenize the auction market’s

spread (the number of ticks) and study the resiliency of the limit order book

2Note that static equilibrium models of the limit order book are much more common. Ex-
amples include Glosten (1994), Chakravarty and Holden (1995), Rock (1996) and Seppi (1997).

3Thus, a trader explicitly takes into account how her current order affects the future traders’
choice to submit market or limit orders.
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when introducing heterogeneity in traders’ patience. In their model, however,

arriving limit order traders are required to undercut existing quotes. Rosu (2004)

relaxes this assumption as he considers a continuous time version of the latter

model with endogenous undercutting. In contrast to the previous models, he also

allows for strategic cancellation of limit orders. Our paper contributes to this line

of research as we consider a dynamic microstructure model to study (partly, at

least) endogenous liquidity supply by looking at the competition between two

different trading venues. This is in contrast to the previously mentioned papers

that restrict themselves to only one market, i.e. an auction market.

A second line of recent work applies static models to analyze the competition

between a CN and a DM.4 Hendershott and Mendelson (2000) start from a model

where traders simultaneously decide to submit orders to one of both markets.

They find that a CN is characterized by two externalities: a positive (liquidity)

externality, as an increase in the CN’s trading volume benefits all traders, and a

negative (crowding) externality, as low-liquidity preference traders compete with

higher liquidity preference traders on the same side of the market. Expanding

on this paper, Dönges and Heineman (2001) focus on some game theoretic re-

finements to reduce the multiplicity of equilibria in the coordination game. We

contribute to this line of recent work as we explicitly introduce dynamics into the

analysis. These dynamics are important: a typical characteristic of a CN is that

it “matches” orders at a specified time during the trading day, while the other

market simultaneously operates in a continuous fashion. In particular, traders

arrive sequentially and both the state of the CN’s order book (when transparent)

and their expectation on the behavior of future traders until the cross determine

their submission strategy.

There is by now a substantial amount of empirical papers analyzing the in-

teraction between trading systems (for an overview see Biais, Glosten and Spatt

(2002)). The number of papers empirically investigating the impact of a CN

on other trading systems, however, is rather limited. Gresse (2002) studies the

4This strand of research is part of a comprehensive literature on the
competition between trading systems. Examples include Glosten (1998),
Foucault and Parlour (2001), Shy and Tarkka (2001), Santos and Scheinkman (2001),
Di Noia (2001), Viswanathan and Wang (2002), Chemmanur and Fulghieri (2003) and
Parlour and Seppi (2003).
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impact of the POSIT CN on the DM segment of the London Stock Exchange.

She finds that POSIT has a share of total trading volume of about one to two

percent in these stocks, but that its probability of execution is still low (2-4%).

Moreover, she reports that activity at POSIT does not have a detrimental effect

on the liquidity at the considered DM. Næs and Ødegaard (2004) focus on trades

of the Norwegian Government Petroleum fund. In a study of 4200 orders that are

first sent to a CN and then, in case of non-execution, to brokers, they find that

execution costs of crossed trades are lower. Conrad, Johnson and Wahal (2003)

use proprietary data of 59 institutional investors in the US who choose between

trading platforms. They find that realized execution costs are generally lower on

alternative trading systems (including CNs). Fong, Madhavan and Swang (2004)

focus on the impact of block trades on different trading venues, i.e. a limit order

book, a CN and an upstairs market. They find that competition from the two

latter markets imposes no adverse effect on the liquidity of the limit order book.

This paper proceeds as follows. Section 2 presents the setup of the trans-

parency benchmark model. Section 3 provides an analysis of its equilibrium.

We first deal with the markets in isolation, next we study their interaction. In

Section 4, we implement two degrees of opaqueness, i.e. partial and complete

opaqueness. Section 5 offers a discussion of a number of possible extensions to

our model. Finally, Section 6 concludes. All proofs are relegated to Appendix A.

2 Setup of the Model

The model we develop is based on the setup in Parlour (1998). While her model

discusses the traders’ choice between market and limit orders in a continuous

order driven market, we adapt it to analyze competition between two trading

systems. In our economy, there are two days. Agents decide upon consumption

on day 1 and day 2, denoted by C1 and C2. Agents are risk neutral and differ

with respect to their preferences over consumption on these two days. These

preferences are given by the following utility function:

U (C1, C2; β) = C1 + βC2

with β the subjective preference or type of the agent. Next to these two “goods”

C1 and C2, an asset exists that on day 2 pays out V units of C2 per share.
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As we are investigating the short-term interactions between both markets, the

assumption of no uncertainty in V is a reasonable starting point.5 During the

first day, the trading day, claims to the asset can be exchanged for C1. Prices in

the market are exchange ratios C1/C2. Agents can then construct their preferred

consumption path by trading claims to this asset. The trading day consists of T

periods, indexed by t = 1, ..., T . Each period exactly one agent (also referred to as

trader) arrives in the market, and each agent arrives at most once. The arriving

agent at time t is characterized by two elements. First, her initial endowments

determine her trading orientation. With probability πB, she is a buyer and has

one unit of the asset she can buy in exchange for C1, which we denote by 1. With

probability πS = 1− πB, she is a seller and has one unit of the asset she can sell,

−1. Secondly, the agent has a type βt, which is drawn from an i.i.d. continuous

distribution F (.) with support
[
β, β̄

]
, where we assume 0 ≤ β ≤ 1 ≤ β̄. This βt

captures the trader’s personal trade-off between current and future consumption

in the utility function above. In this way, it also determines her degree of patience

for trade. In particular, if the trader is a buyer, she will be more eager to buy

if she has a high beta than if her beta is low. A seller on the other hand, will

be more eager to sell if she has a low β. In order to see this, assume that the

arriving trader is a buyer. Buying the asset yields βtV . She compares this value

with the price in the market and performs the buy if the price is lower than the

value she attaches to the asset. If βt is high, and she thus attaches more weight to

consumption on the second day, she will be more eager to trade than if βt is low.

The reasoning is that the trading gains are higher in the former case. Similarly,

a seller with a low beta will be more eager to sell since she prefers consumption

on the first day.

Traders can choose between submitting an order to a dealer market (DM),

to a crossing network (CN), or not to submit an order. Competition between

dealers on the DM is sufficiently harsh such that the spread is one tick, that is

A − B = 1, with B the bid price and A the ask price. This assumption is as in

Parlour (1998). The implication is that buyers can always buy at a price A, the

price at which a dealer is willing to sell. Sellers looking for immediacy in the

dealer market obtain B.

Next to a DM, we also introduce a CN. We assume that the matching of

5For example, POSIT organizes up to 15 daily “crosses” for each stock. In Section 5, we
will discuss uncertainty in V .
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orders (the “cross”) takes place at the end of the trading day, hence after period

T (we mean after the action of the agent arriving in period T ). The price of

the cross is derived from the bid and ask in the dealer market and equals the

midquote (A+B) /2. Given our assumptions, executed orders at the CN face no

price uncertainty.6 Orders submitted to the CN are stored in the book ct, which

is a pair
(
cbt , c

s
t

)
where cbt > 0 (c

s
t < 0) represents the cumulative amount of buy

(sell) orders at the CN before the order at time t.7 After the action of the trader

at time t, there are three possible evolutions of the CN’s order book:

(
cbt+1, c

s
t+1

)
=

(
cbt + 1, c

s
t

)
trader t submits a buy order to CN

(
cbt , c

s
t − 1

)
trader t submits a sell order to CN

(
cbt , c

s
t

)
trader t submits no order to CN

.

The first two evolutions describe a buy and sell order, respectively. The last

case, where the CN’s order book remains unchanged, stems from a trade at a

dealer or not trading at all. Once submitted, orders cannot be modified or can-

celled. This means that orders remain in the CN’s order book until the cross.8

Order execution is determined by the imbalance between the queue of buy orders

and the queue of sell orders. If cbT = |c
s
T |, meaning no imbalance, then all orders

are executed. If cbT < |c
s
T | , some sell orders cannot be executed. We assume time

priority such that the first cbT sell orders submitted are executed. If c
b
T > |csT |,

the first |csT | buy orders are executed. It goes without saying that time priority

influences the order submission strategies of the traders. Trading at the “DM

as last resort” upon non-execution at the CN is not a possible strategy: such

“opportunistic trading” is assumed to be sufficiently costly.9 Furthermore, we

6As Section 5 shows, introducing uncertainty in V will alter this.
7The assumption that there is only one cross during the trading day is not restrictive.

Suppose that there would be multiple crosses during the trading day, i.e. crosses at time
0 < T1 < T2 < ... < T . If unfilled orders remain in the CN-book after an intermediate cross,
the results of our model do not change. Since there is no waiting cost within the trading day
(β applies between trading days), a trader is indifferent about at which cross precisely her
order executes. Hence, what is relevant to a trader is the probability of execution until the
last cross at time T . This means that the trader solves exactly the exact same model as we
describe. If unfilled orders would not remain in the book after intermediate crosses, our model
then captures the period from one cross to another. In that case, what is relevant to a trader,
is the time until the next cross and the state of the book at the time she arrives. So, our model
can be applied first to the period [0, T1], then to (T1, T2] and so on.

8This is in contrast with a limit order market where stored limit orders disappear when they
are hit by a market order.

9A CN order is a free option when trading at the “DM as last resort” implies no addtional

6



need to distinguish the case where the order book is transparent versus opaque.

Section 3 discusses the case where the CN’s order book is fully transparent. Arriv-

ing traders at t are able to observe both queues and base their order submission

strategy on the resulting order imbalance. Herein lies one of the major differences

with the limit order market model of Parlour (1998). In her model, the trader

looks at both sides of the queue because the other side influences the decision

of a potential counterparty. In our model with full transparency, only the order

imbalance at the CN will determine the order submission strategies, not their

individual length. In Section 4, we introduce different degrees of opaqueness.

3 Equilibrium under Transparency

In this section, we characterize the equilibrium order submission strategies when

the CN’s order book is fully transparent. As a first step, we consider successively a

DM and a CN in isolation. This approach allows to gain intuition about the model

and the structure and functioning of each market. Subsequently, we determine

the equilibrium when both markets coexist. The methodology is identical in all

cases. We calculate for a trader arriving at time t a cutoff βt at which she is

indifferent between two actions, taking execution probabilities as given.

3.1 Dealer Market in Isolation

Suppose for now that there only exists a DM. In this case, a trader can choose

between submitting an order to the DM or not to trade at all. She will submit an

order to the dealer (DM order) as long as this yields a positive profit, otherwise

she prefers not to trade. When the profit is zero, she is indifferent. Before

deciding, she observes the bid and ask in the market, and her βt. The profit of a

buy order to the dealer is the difference between the valuation of the trader βtV

and the price paid, which is the ask, i.e. the profit is βtV − A. Similarly, for a

sell order, the profit is B − βtV . From these profits, the cutoff values for βt are

cost relative to an immediate DM trade.
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computed:

βb,DMt =
A

V

βs,DMt =
B

V
,

where the first superscript refers to buy (b) or sell (s), and the second to

DM. The interpretation is as follows. A buyer arriving at time t who has a βt
higher than A/V will submit a DM buy order, all others will not. When the

trader at time t is a seller, she will submit a DM sell order if her βt is smaller

than B/V . The order submission strategies are depicted in Figure 1. Note that

traders having a βt between B/V and A/V will never submit an order, regardless

of whether they are a buyer or a seller.

 
ββ

V

B

V

A

No Buy Order DM Buy 

DM Sell No Sell Order 

Figure 1: Order Submission Strategies with Dealer Market in Isolation

3.2 Crossing Network in Isolation

In this subsection, only a crossing network exists (and no dealer market). To

compare the different settings, we assume that the price at which a cross will

take place is the midquote as if a dealer market would exist: (A+B) /2. When

arriving at time t, a trader also observes her βt and the state of the CN’s order

book. A trader will submit a CN order as long as this results in a positive expected

profit. We need to consider expected profits, since in contrast with an order to a
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DM, the execution of a CN order may not be certain. If the order executes, the

profit for the trader is the difference between the trader’s valuation and the price

paid (the midquote). When taking into account the uncertainty about execution,

the expected profit of a CN buy order is pbt (βtV − (A+B) /2), where p
b
t denotes

the expected probability of execution of a CN buy order submitted at time t.

For a CN sell order, the expected profit is pst ((A+B) /2− βtV ), with p
s
t the

probability of execution of a sell order submitted at time t. These probabilities

depend on the state of the book in the CN, and the time left until the end of the

trading day: pbt (ct, T − t) and p
s
t (ct, T − t), but for notational convenience we

suppress this dependence. The reasoning for this dependence is that if a trader

joins the longer queue, enough future orders need to be submitted to the shorter

side of the CN’s order book to obtain execution. This is more likely earlier in

the trading day, when there are still a lot of periods to come. Finally, when the

expected profit of a CN order is negative, the trader chooses to abstain, leaving

her zero profits.

A trader’s strategy whether or not to submit a CN order is determined by the

expected profits of this action. Solving for βt, we find the following cutoff value

for a buyer and a seller respectively:

βb,CNt =
A+B
2

V

βs,CNt =
A+B
2

V
.

In words, a trader arriving at t will submit a CN buy (sell) order if her β is

higher (lower) than βb,CNt

(
βs,CNt

)
. To be complete, these cutoff values hold

if the execution probability is strictly positive. If it is zero, a trader is always

indifferent between a CN order and no order, since both yield zero profit. If this

occurs, we assume that traders prefer to abstain. The order submission strategies

are summarized in Figure 2. Note that in contrast with a DM in isolation, there

is no “gap”, i.e. there is no range of betas where neither a buyer nor a seller

submits an order. The reasoning is that a CN has no spread whereas a DM is

characterized by a one-tick spread.
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V

BA

2

+
ββ

No Buy Order CN Buy 

No Sell Order CN Sell 

Figure 2: Order Submission Strategies with a CN in Isolation

3.3 Interaction between CN and DM

After having discussed the two trading systems in isolation, we now turn to the

full model and characterize the choice problem faced by a trader arriving in the

market at time t. She can choose between submitting an order to the DM, the

CN, or no trade at all. Upon her arrival, she knows whether she is a buyer or a

seller, observes the bid and ask price of the dealer, the state of the CN’s order

book ct and her βt. Recall that the CN crosses at the midprice of the dealer’s bid

and ask. Moreover, she knows the time remaining to the cross, the distribution

of buyers and sellers and their willingness to trade. Based on this information,

she chooses between three possible actions. First, she can initiate a trade at the

dealer. Such an order has a guaranteed immediate execution. Secondly, she can

opt for submitting an order to the CN. This would yield a better price as it allows

the trader to save the half-spread, which in our model is equal to half a tick. With

this order, however, she might face the risk of non-execution. Execution is certain

when upon arrival she is able to join the shorter queue (due to time priority in

the CN). In all other cases, the execution probability is lower than one. Thirdly,

she can refrain from trading when it yields a negative (expected) profit.

Denote the strategy of a buyer arriving at time t by φbt (ct, βt) and of a seller

by φst (ct, βt) where the notation stresses that the strategy depends on the state

of the CN’s order book at time t, ct and the trader’s type βt. Important to note

is that these strategies depend on time; in other words, they are nonstationary.
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Most relevant is the number of periods left until T , the end of the trading day.

The setup of this model can be seen as a stochastic sequential game. Moreover,

due to the recursive nature of the game, an equilibrium is guaranteed to exist

and this equilibrium is unique (since traders are indifferent between choices with

zero probability).

We apply the approach introduced above to solve the trader’s choice problem.

Thus we again determine cutoff values for βt, i.e. levels of indifference between

different actions for given execution probabilities. A first cutoff value represents

indifference between a trade in the DM and a CN order, a second between a CN

order and no order. As will be shown in the proof of Proposition 1, no other

cutoff values need to be considered. Define β̄
b
t

(
pbt
)
as the value βt of a buyer that

is indifferent between an order to the CN and an order to the DM. It is given by:

β̄
b
t

(
pbt
)
= min

[
A+B
2

V
+

1/2

V
(
1− pbt

) , β̄

]

.

Define βb
t

(
pbt
)
as the β at which a trader is indifferent between a CN buy order

and no order. It is equal to:

βb
t

(
pbt
)
=

A+B

2

V
if pbt > 0

A
V

otherwise
.

Similarly, βs
t
(pst) is the βt of a seller that is indifferent between a CN order and

an order to the dealer:

βs
t
(pst) = max

[
A+B
2

V
−

1/2

V (1− pst)
, β

]

,

whereas β̄
s
t (p

s
t) holds for a seller at t who is indifferent between a CN order and

no order, with

β̄
s
t (p

s
t) =

A+B

2

V
if pst > 0

B
V

otherwise
.

Furthermore, denote a buy at the DM by “1DM” (which transacts at the ask),

and a sell at the DM by “−1DM” (transacting at the bid). Similarly, “1CN” and

“−1CN” stand for a buy and sell order to the CN respectively. Proposition 1 then

states the equilibrium strategies of a trader arriving at t.
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Proposition 1 If the time t trader is a buyer, there exist cutoff values such that

βt ∈

[
β, βb

t

(
pbt
)]

φbt (ct, βt) = 0 (no order)
(
βb
t

(
pbt
)
, β̄

b
t

(
pbt
)]

φbt (ct, βt) = 1
CN (buy order to CN)

(
β̄
b
t

(
pbt
)
, β̄
]

φbt (ct, βt) = 1
DM (buy at DM)

.

Similarly, if the time t trader is a seller, there exist cutoff values such that

βt ∈

[
β, βs

t
(pst)

)
φst (ct, βt) = −1

DM (sell at DM)
[
βs
t
(pst) , β̄

s
t (p

s
t)
)

φst (ct, βt) = −1
CN (sell order to CN)

[
β̄
s
t (p

s
t) , β̄

]
φst (ct, βt) = 0 (no order)

.

Proof. See Appendix A

The equilibrium order submission strategies are summarized in Figure 3.

Comparing this graph with Figures 1 and 2, there are some notable differences.

The most important one is that the cutoff values are dynamic and change every

period t. For the markets in isolation, this was not the case. Moreover, although

the range of β’s at which no buy or sell order is submitted is the same, the ranges

at which DM and CN orders are submitted, are in general different from the iso-

lation cases. Compared to the DM in isolation, there is order creation: traders

with intermediate β’s now submit orders to the CN which allows them to avoid

paying the half-spread. The CN also introduces competition for the DM as it

may divert trades away from the DM. Remark that this could lead to overall

trade creation but also to overall trade reduction. The reasoning for this poten-

tial trade reduction is that some of the investors choosing to trade at the DM if

in isolation may now opt for the CN at which their order may not execute.

Next, we derive some properties of this equilibrium. Lemma 1 shows that for

higher execution probabilities, the range of β’s of traders who submit a CN order

becomes wider, and complementary, the range of trader types who opt for an

order to the dealer becomes smaller. In other words, if the execution probability

of an order at the CN is larger, an arriving trader is more likely to choose such

a CN order.
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Figure 3: Order Submission Strategies with Dealer Market and Crossing
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Lemma 1 The higher the probability of execution on the CN, the more trader

types prefer to submit CN orders over market orders. That is,

dβs
t
(pst)

dpst
≤ 0

dβ̄
b
t

(
pbt
)

dpbt
≥ 0.

Proof. Immediate.

A crucial element in the choice between a CN order and a DM trade is the

execution probability at the CN, since this determines expected profits. When

trader t submits a CN order, she changes the imbalance in the CN. This affects

the execution probabilities of future CN orders and hence also the strategies

chosen by future traders. When determining her optimal strategy, trader t must

take these effects of her order into account. Proposition 2 shows how the length

of the queues (and the imbalance) influences execution probabilities.

Proposition 2 In equilibrium, at any time t, if the CN’s order book at the buy

side is one unit thicker, then the probability of execution of a buy (sell) order will

be lower (higher). If the CN’s order book at the sell side is one unit thicker, then

the probability of execution of a buy (sell) order will be higher (lower). If the book

13



is one unit thicker at the buy side and one unit thicker at the sell side, then the

probability of execution for both order types remains constant. Hence, ∀ ct, t,

(i) pbt
(
cbt , c

s
t

)
≤ pbt

(
cbt − 1, c

s
t

)
β̄
b
t

(
cbt , c

s
t

)
≤ β̄

b
t

(
cbt − 1, c

s
t

)

(ii) pbt
(
cbt , c

s
t

)
≤ pbt

(
cbt , c

s
t − 1

)
β̄
b
t

(
cbt , c

s
t

)
≤ β̄

b
t

(
cbt , c

s
t − 1

)

(iii) pbt
(
cbt , c

s
t

)
= pbt

(
cbt + 1, c

s
t − 1

)
β̄
b
t

(
cbt , c

s
t

)
= β̄

b
t

(
cbt + 1, c

s
t − 1

)

(iv) pst
(
cbt , c

s
t

)
≤ pst

(
cbt , c

s
t + 1

)
βs
t

(
cbt , c

s
t

)
≥ βs

t

(
cbt , c

s
t + 1

)

(v) pst
(
cbt , c

s
t

)
≤ pst

(
cbt + 1, c

s
t

)
βs
t

(
cbt , c

s
t

)
≥ βs

t

(
cbt + 1, c

s
t

)

(vi) pst
(
cbt , c

s
t

)
= pst

(
cbt + 1, c

s
t − 1

)
βs
t

(
cbt , c

s
t

)
= βs

t

(
cbt + 1, c

s
t − 1

)

(both formulations, in terms of probabilities and in terms of betas, are equivalent).

Proof. See Appendix A

Intuitively, Proposition 2 argues that when the queue at one side of the market

is longer when a trader arrives on that side of the market, the execution probabil-

ities of a CN order are lower relative to when the queue is shorter (parts (i), (iv),

and by symmetry (ii) and (iv)). That is, traders face intertemporal competition

with traders of their own type. The reasoning is as follows. Suppose that a buyer

arrives at time τ and cbτ ≥ |csτ |.
10 Then if the book is one unit thicker at the

buy side, an additional CN order at the sell side must arrive in order to obtain

execution. This lowers the execution probability compared to the case when the

buy queue is one unit shorter (meaning also a smaller imbalance). Only when

both queues are one unit thicker (parts (iii) and (vi)), execution probabilities are

not affected since the imbalance remains the same. This is in contrast with an

auction market as in Parlour (1998). In such a market, execution probabilities

are influenced when both queues become one unit longer. This proves that in a

CN the imbalance between both queues matters, while in a limit order market

the individual length of both queues is relevant.

3.4 Empirical Predictions on Order Flow Dynamics

Having determined and characterized the equilibrium order submission strategies

of traders, we now investigate whether systematic patterns can be predicted in

10If cbτ − 1 < |c
s
τ |, the execution probability with a book of

(
cbτ , c

s
τ

)
and

(
cbτ + 1, c

s
τ

)
are both

one.
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transaction and order flow data. Parlour (1998) shows that this is the case in

the context of an auction market with limit and market orders. The reasoning

in her model is that the presence of the limit order book and the length of the

queues create a relation between past and current order flow. In our model, the

relation between past and current order flow is driven by the order imbalance in

the CN’s order book and not the length of the buy and sell orders in that order

book. This means that the dynamics of the market might (and will, as we shall

see) differ in our model from those of Parlour (1998). The systematic patterns in

order flow are analyzed in four propositions. In all cases, we start from a given

state of the book in the CN, ct, and from a specific order, a DM order in the two

first propositions and a CN order in the two latter, and investigate the effect on

the order flow to the DM and the CN in the subsequent period.

Thus, we first assume that the previous order (at time t) was a DM trade and

investigate the patterns in subsequent order submissions. Suppose the trader at

time t+ 1 is a buyer. Proposition 3 then states that the probability of observing

a DM buy does not hinge on whether the previous transaction was a DM buy or

a DM sell.

Proposition 3 The probability of a DM buy at time t + 1 is independent of

whether the order at time t was a DM buy or a DM sell:

Pr
[
φbt+1

(
ct+1, βt+1

)
= 1DM |φbt (ct, βt) = 1

DM , ct
]

= Pr
[
φbt+1

(
ct+1, βt+1

)
= 1DM |φst (ct, βt) = −1

DM , ct
]
.

A symmetric result holds for the other side of the market.

Proof. Contained in the discussion below.

A similar result holds for CN orders following a DM order. Proposition 4

shows that the probability that the current order is a CN order (buy or sell

depending on the trader that arrives) is independent of whether the previous

order was a DM sell or a DM buy.
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Proposition 4 The probability of a CN buy order at time t+1 is equal, whether

the order at time t was a DM buy or a DM sell:

Pr
[
φbt+1

(
ct+1, βt+1

)
= 1CN |φbt (ct, βt) = 1

DM , ct
]

= Pr
[
φbt+1

(
ct+1, βt+1

)
= 1CN |φst (ct, βt) = −1

DM , ct
]
.

A symmetric result holds for the other side of the market.

Proof. Contained in the discussion below.

The results in Propositions 3 and 4 are driven by the same intuition. Recall

that a trader chooses between submitting to the DM or the CN (or not trading)

on the basis of three elements: her impatience as given by βt, the state of the

CN’s order book, and the time left until the end of the trading day. The lat-

ter two factors determine the probability of execution of a CN order and hence

the expected profit from choosing that strategy. If the previous order is a DM

trade, none of these three elements is influenced, hence it is irrelevant whether

the order is a DM buy or a DM sell. These results are in sharp contrast with

Parlour (1998). In her model, market orders do influence the probabilities of sub-

sequent orders as they change the depth in the limit order book and hence the

execution probabilities of subsequent limit orders.

However, the conclusions alter when we assume that the order at time t was

a CN order instead of a DM order. In this case, we obtain systematic patterns in

order flow despite the fact that buyers and sellers arrive randomly. Proposition 5

shows that when the trader at time t has chosen a CN buy order, it is less likely

that a buyer at t+1 will do the same, compared to when trader t did not submit

a CN buy order.

Proposition 5 The probability of a CN buy order at time t+ 1 is smaller if the

order at time t was a CN buy order than if it was a DM trade (buy or sell). This

in turn is smaller than the probability of observing a CN buy order, conditional

upon the previous order being a CN sell order:

Pr
[
φbt+1

(
ct+1, βt+1

)
= 1CN |φbt (ct, βt) = 1

CN , ct
]

≤ Pr
[
φbt+1

(
ct+1, βt+1

)
= 1CN |φbt (ct, βt) = 1

DM or φst (ct, βt) = −1
DM , ct

]

≤ Pr
[
φbt+1

(
ct+1, βt+1

)
= 1CN |φst (ct, βt) = −1

CN , ct
]
.
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A symmetric result holds for the other side of the market.

Proof. See Appendix A

Complementary to Proposition 5, Proposition 6 shows that it becomes more

likely that the current buyer submits a DM buy, if the previous order was a CN

buy order, compared to if it was another type of order.

Proposition 6 The probability of a DM buy at time t + 1 is larger if the order

at time t was a CN buy order than if it was a DM trade (buy or sell). This in

turn is larger than the probability of observing a DM buy, conditional upon the

previous order being a CN sell order:

Pr
[
φbt+1

(
ct+1, βt+1

)
= 1DM |φbt (ct, βt) = 1

CN , ct
]

≥ Pr
[
φbt+1

(
ct+1, βt+1

)
= 1DM |φbt (ct, βt) = 1

DM or φst (ct, βt) = −1
DM , ct

]

≥ Pr
[
φbt+1

(
ct+1, βt+1

)
= 1DM |φst (ct, βt) = −1

CN , ct
]
.

A symmetric result holds for the other side of the market.

Proof. See Appendix A

The intuition behind both propositions is as follows. Assume that the time

t + 1 trader is a buyer. If the queue of buy orders at time t + 1 is shorter

than the sell queue, the equality sign applies, since the execution probability of

a submitted CN buy order is one. In this case, the type of the previous order is

irrelevant for the current order flow. In contrast, if after the order of the trader

at t the buy queue is longer than the sell queue, i.e. when there is an imbalance,

the type of the previous order does matter. Given her βt+1, the current trader

will be more likely to submit a CN buy order if the previous order increased the

execution probability. This is the case when the imbalance in the CN’s order

book decreased, which happens after a CN sell order in the previous period. A

DM trade (be it buy or sell) does not alter the imbalance, while a CN buy order

at t increases the imbalance. Symmetrically, if trader t+1 is less likely to submit

a CN order, she will be more likely to opt for an order to the dealer.

It is worth stressing again that although the patterns outlined in Propositions

5 and 6 are similar to the case of a limit order market in Parlour (1998), the
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underlying dynamics are very different. In the case of a limit order market, the

length of the queues at bid and ask are important and both market and limit

orders have an effect. In our model, with a DM and a CN, it is the imbalance

between buy and sell queues in the CN that is relevant, and this imbalance is

influenced only by CN orders, not by DM orders.

4 Equilibrium under Opaqueness

With transparency, traders condition their strategies on an information set con-

taining general information on the distribution of β, their individual βt, the time

left until the cross, traders’ distributions at both market sides, past order flow

and the resulting CN’s order imbalance. As argued in the introduction, however,

most CNs are rather opaque. For example, CNs do not actively disseminate in-

formation on the state of their order book. The implication of opaqueness is that

traders are unable to base their strategies on the current imbalance in the CN’s

order book. In this section, we adapt our model to capture opaqueness. We deal

with two different degrees of opaqueness: “complete” and “partial”. “Partial”

opaqueness implies that traders do observe previous DM trades but do not have

information on past order flow to the CN. Therefore they can only partially in-

fer the current state of the CN’s order book. “Complete” opaqueness refers to

the case where traders also do not observe past DM trades. Introducing opaque-

ness renders our analysis more complicated. For tractability, we will restrict the

trading stage to contain two periods. We also develop a two-period model for

the benchmark transparency case to compare the opaqueness results with those

of transparency. To conclude we will illustrate and contrast the various infor-

mational settings, and briefly discuss the reasoning and intuition for the more

general T -period case.

4.1 Analysis of the Two-Period Model

The determination of the equilibrium proceeds along the same lines as before.

For each informational setting, four cutoff beta values (for t = 1, 2) characterizing

traders indifferent between two strategies are relevant: βb
t
, β̄

b
t , β̄

s
t , β

s

t
. The cutoff

value at which indifference between no order and a CN buy order holds at t, βb
t
,
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is determined by equating expected profits for both strategies:11

pbt

(
βb
t
V −

A+B

2

)
= 0.

Similarly, the buyer’s cutoff value between trading on a DM or submitting a CN

order, β̄
b
t , stems from:

β̄
b
tV − A = p

b
t

(
β̄
b
tV −

A+B

2

)
.

Equivalently, for a seller, we derive the appropriate beta values from:

pst

(
A+B

2
− β̄

s
tV

)
= 0

B − βs
t
V = pst

(
A+B

2
− βs

t
V

)
.

Hence, as before, to determine their choice between a CN or a DM, arriving

traders need to calculate the appropriate execution probability when submitting

their order to the CN. For the transparency case, this was the probability that

enough counterparty traders would arrive before the time of the cross to offset the

created order imbalance. For the opaqueness cases, traders have no information

at all on past CN order flow, and the resulting state of the CN’s order book.

Traders will now have to make predictions on the created imbalance, while also

accounting for the behavior of future traders.

From the above, it is clear that when the respective execution probabilities

are strictly positive, in each period it holds that:

βb
t
= β̄

s
t =

A+B
2

V
.

When the (expected) execution probabilities are zero, as in our model in Section

3:

βb
t
=
A

V
and β̄

s
t =

B

V
.

The cutoff values for the choice between CN or DM, β̄
b
t and β

s

t
for t = 1, 2,

11As before, pbt is the execution probability of a buy order submitted at time t.
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are the solutions to the following system of four equations:

β̄
b
1V − A = pb1

(
β̄
b
1V −

A+B

2

)
(1)

B − βs
1
V = ps2

(
A+B

2
− βs

1
V

)

β̄
b
2V − A = pb2

(
β̄
b
2V −

A+B

2

)

B − βs
2
V = ps2

(
A+B

2
− βs

2
V

)
.

The first two equations represent the indifference equations for traders arriving

in period 1 at both market sides. The last two equations offer the same for

period 2. As argued before, the solution to this set of equations will depend on

the assumptions on the degree of transparency of the CN’s order book. In the

next subsection, we first determine the solution for the benchmark transparency

case. Afterwards we turn to the complete and to the partial opaqueness cases,

respectively. For all cases we assume that the starting order imbalance in the

CN’s order book is zero.

4.2 Equilibrium

4.2.1 Transparency

In case of transparency the CN’s order book is fully observable, as in Section

3. Solving (1) for this two-period example requires the determination of all four

relevant execution probabilities. First of all, we present the case of a CN buy

order submitted in period 1. For this order to be executed, the trader arriving

in the final period 2 must be a seller who submits a CN sell order. The range

of period 2 sellers who are likely to submit such an order is equal to
[
β, A+B

2V

]
.

Hence, no sellers will engage in DM trading in period 2. All sellers with a positive

value to trading will submit their order to the CN as this system now guarantees

certainty of execution due to the created order imbalance (see also Figure 3 for

the intuition). Hence, for a buyer arriving in period 1:

pb1,t = π
s

[

F

(
A+B
2

V

)

− F
(
β
)
]

,
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where the second subscript t refers to transparency. Similarly, for a first period

seller:

ps1,t = π
b

[

F
(
β̄
)
− F

(
A+B
2

V

)]

.

Buyers and sellers arriving in period 2 observe the order book imbalance and

determine their strategy based on this information. Hence, their execution prob-

abilities are discrete:

pb2,t =
1 if c2 = −1

0 otherwise

ps2,t =
1 if c2 = 1

0 otherwise
.

Substituting these probabilities in (1) allows us to determine β̄
b
1,t, β

s

1,t
β̄
b
2,t,

and βs
2,t
. Clearly, these are now “path dependent” as they hinge on the observed

CN’s order book imbalance. In other words, with transparency, the cutoff betas

of traders depend on the state of the book at that time and can only be computed

once all previous traders have chosen their strategy (i.e. in period 2).

Our two-period analysis for transparency shows that either all period 2 traders

go to the DM or all go to the CN (when submitting an order). In contrast, a

range of traders in period 1 will opt to go to the DM, whereas a complementary

range will opt for the CN.

4.2.2 Complete Opaqueness

Complete opaqueness implies that traders cannot observe the state of the CN’s

order book, as well as previous order flow to both the DM and the CN. We start

our two-period analysis by determining the execution probability of a CN buy

order submitted in period 1. To obtain execution of this order, the trader arriving

in the final period 2 must be a seller who submits a CN sell order. The range of

period 2 sellers who would submit such an order is equal to
[
βs
2,o
, A+B
2V

]
, where o

refers to complete opaqueness. Hence, for a buyer arriving in period 1:

pb1,o = π
s

[

F

(
A+B
2

V

)

− F
(
βs
2,o

)]

.
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Similarly, a CN sell order in period 1 is executed if the trader in period 2 is a

buyer with a beta in the range
[
β̄
b
1,o,

A+B
2V

]
, yielding an execution probability:

ps1,o = π
b

[

F
(
β̄
b
2,o

)
− F

(
A+B
2

V

)]

.

In a similar fashion, we derive the execution probabilities for the trader arriving at

time 2. Buyers in period 2 account for the possibility that the trader that arrived

in the previous period was a seller that submitted a CN order to determine their

probability of execution:

pb2,o = π
s

[

F

(
A+B
2

V

)

− F
(
βs
1,o

)]

.

Similarly, the execution probability of a CN sell order in the second period is equal

to the probability that the previously arriving trader was a buyer submitting a

CN order:

ps2,o = π
b

[

F
(
β̄
b
1,o

)
− F

(
A+B
2

V

)]

.

Substituting these expressions for pbt,o and p
s
t,o for both periods (t = 1, 2) into

the system of indifference equations (1) renders a (nonlinear) system of four equa-

tions in four unknowns
(
β̄
b
1,o, β̄

b
2,o, β

s

1,o
and βs

2,o

)
. These equations allow us to

determine the cutoff beta values and hence traders’ order submission decisions for

both periods. Important to note is that due to the complete opaqueness assump-

tion, all cutoff betas become independent from the actual order decisions as these

are unobserved, and hence from past types and orientations of traders. Therefore,

each arriving trader decides using her individual β and general predictions on past

and future traders’ behavior and the resulting expected CN order book. The re-

sult is that, in contrast to the transparency case, any form of path-dependency

is absent.

4.2.3 Partial Opaqueness

With partial opaqueness, traders observe past DM trades. This implies that

traders condition their choice between CN, DM, or no order on their individ-

ual β, as well as on whether DM trades have been observed. In our two-period
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framework, this implies that trader 2’s information set becomes larger as com-

pared to the complete opaqueness case. For the first period, she either observes

a DM trade, or she does not observe any order at all. In the former case, she

knows that the book is still empty and that the execution probability of any CN

order is zero. When not observing a first-period DM trade, she knows the first

trader submitted a CN buy or sell order, or no order. This implies that she is

able to compute execution probabilities more precisely ruling out the possibility

of a DM trade. Trader 1 now takes into account the impact her choice has on the

subsequent trader’s information set.

Again, our goal is to derive explicit equations for the execution probabilities

under this assumption, which in turn could be substituted in (1) to determine

the cutoff beta values
(
β̄
b
1,p, β̄

b
2,p, β

s

1,p
and βs

2,p

)
. As for the complete opaqueness

case, trader 1’s execution probabilities amount to:

pb1,p = π
s

[

F

(
A+B
2

V

)

− F
(
βs
2,p

)]

ps1,p = π
b

[

F
(
β̄
b
2,p

)
− F

(
A+B
2

V

)]

.

Note that although the equations are the same as for complete opaqueness,

the probabilities will be different as the cutoff betas reflect trader 2’s behavior.

Assume that trader 2 is a buyer, and that she does not observe a DM trade in the

previous period. Then, her execution probability equals the probability that the

previous trader has submitted a CN sell order, conditional upon the information

that no DM trade is observed. However, if she had observed a DM trade in period

1, she would know that the CN book is currently empty and that the execution

probability of a CN buy order is zero. Formally:

pb2,p =
0 if DM trade at 1 is observed

p (CN sell at 1|no DM trade at 1) otherwise
.

Similarly,

ps2,p =
0 if DM trade at 1 is observed

p (CN buy at 1|no DM order at 1) otherwise
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where “no DM order at 1” refers to not observing any DM order in period 1.

Using Bayes’ rule, we find that:

p (CN sell at 1|no DM order at 1)

=
p (no DM order at 1|CN sell at 1) p (CN sell at 1)

p (no DM order at 1)
.

We now turn to the computation of each of these probabilities. Trivially, it

holds that:

p (no DM order at 1|CN sell at 1) = 1.

The unconditional probability of a CN sell order occurring at 1 is:

p (CN sell at t1) = π
s

[

F

(
A+B
2

V

)

− F
(
βs
1,p

)]

or the probability that a seller submitting a CN order arrives (i.e. all types in

the range
[
βs
1,p
, A+B
2V

]
). Finally, the unconditional probability that no DM order

occurs at 1 equals:

p (no DM order at 1) = πbF
[
β̄
b
1,p

]
+ πs

[
F
(
β̄
)
− F

(
βs
1,p

)]

which equals the complement of the DM order segment on both market sides.

Hence, both execution probabilities for traders arriving in period 2 can be

obtained. Substituting both periods’ execution probabilities in system (1) results

in four (nonlinear) equations in four unknowns. Solving this system again renders

the necessary cutoff values to determine both traders’ order submission strategies.

In contrast to the complete opaqueness case, however, now these values are path

dependent, which is a result similar to the transparency outcome. In the next

subsection, we provide simulations which allow us to compare the three different

informational settings.

4.3 Illustration and Comparison

In this section, we illustrate the implications of the differences in informational

settings. More specifically, we look at the differences in order flow and cutoff

betas for transparency, complete opaqueness and partial opaqueness in a two-
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period setting. To this end, we parameterize our model by making assumptions

on bid and ask prices, as well as on the continuous distribution F (.) with support
[
β, β̄

]
.

For our illustration, we set the bid B = 10 and the ask A = 11, such that we

have a one-tick market. The level of the bid and ask price determines the relative

value of the half spread, which is the amount a trader potentially saves if she

submits an order to the CN instead of the DM. The execution price P on the CN

is the midprice from the DM, 0.5 (A+B) = 10.5. We also set V equal to this

midprice. We assume 2 periods in the trading day and an empty CN’s order book

at the beginning of the trading day. A trader is characterized by whether she is

a buyer or a seller, which happens with equal probability, hence πb = πs = 0.5.

To obtain closed form solutions for our system of indifference equations (1) we

impose a uniform distribution for βt with support
[
β, β̄

]
= [0.7, 1.3]. Finally,

we generate 100 000 paths of two sequentially arriving traders by drawing their

orientation and type from the above mentioned distributions. Using our model,

we then determine their optimal strategies for the three informational settings.

Tables 1 and 2 present the results of this simulation, averaged across all sim-

ulated paths. Table 1 presents the cumulative order flow to the DM and to the

CN for both periods 1 and 2. In other words, the numbers in the rows for the

second period 2 are the sum of order flow in both periods. Important to note as

well is that the numbers report order flow, not actual trades. Table 2 shows the

average cutoff betas of the traders in both periods.

The results in both tables show that transparency produces most order flow

to the CN in the first period. The reasoning is that first-period traders anticipate

that their CN order will be observed by second-period traders, making a CN order

relatively more attractive than a DM trade. Lower transparency, i.e. complete

and partial opaqueness, induces first period traders to select a DM more often.

Second period order flow, however, shows opposite results. With transparency,

second period orders are only submitted to the CN when an opportunity exists.

Otherwise traders go to the DM or do not trade at all. With complete opaqueness,

traders do not observe the exact situation of the CN’s order book. This implies

that they may submit an order to the CN whereas ex-post the CN’s order book

may have been empty or unfavorable. This is reflected in the fact that second

period order flow to the CN is highest for the complete opaqueness case. The
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cumulative order flow to both CN and DM is highest with complete opaqueness.

This result stems from two forces. First, complete opaqueness implies that the

CN receives orders that would not occur with transparency or partial opaqueness,

as it would be clear that these orders are unsuccessful. Second, the DM is more

competitive with complete opaqueness as traders anticipate a CN order is less

likely to be hit in the second period.

Partial relative to complete opaqueness results in slightly more order flow to

the CN in the first period. This result follows from traders anticipating that a

CN order now attracts more CN orders in the second period. The cumulative

order flow to the CN, however, is lower. Observed first-period DM trades result

in no second-period CN orders.

Table 1: Order Flow

Note: This table presents the cumulative order flow resulting from
the illustration of the model.

DM CN
Sell Buy Sell Buy

Transparency
1 −0.22632 0.22648 −0.02286 0.02264
2 −0.45726 0.45908 −0.02549 0.02521

Complete opaqueness
1 −0.23073 0.23164 −0.01845 0.01748
2 −0.46325 0.46545 −0.03564 0.03524

Partial opaqueness
1 −0.23070 0.23164 −0.01848 0.01748
2 −0.46284 0.46538 −0.03227 0.03137

4.4 The General Case

Our illustration and our theoretical analysis for opaqueness focused on a two-

period model. The question then arises whether the insights from this two-period

model apply to a general case with T periods. The system of equations in (1) can

easily be extended to more than two periods. The computation of the different
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Table 2: Cutoff Betas

Note: This table presents the average cutoff betas of the illus-
tration of the model. βs

t,i
and β̄

s

t,i, with t = 1, 2 and i = t, o, p

(transparency, opaqueness and partial opaqueness) are the types
of the seller who is indifferent between no order and a CN order,

and a CN and DM order, respectively. βb
t,i
and β̄

b

t,i, with t = 1, 2

and i = t, o, p are the types of the buyer who is indifferent between
no order and a CN order, and a CN and DM order, respectively.

Sell Buy

βs
t,i

β̄
s
t,i βb

t,i
β̄
b
t,i

Transparency
1 0.93651 1 1 1.06349
2 0.94667 0.95346 1.04653 1.05338

Complete Opaqueness
1 0.95032 1 1 1.04968
2 0.95032 1 1 1.04968

Partial Opaqueness
1 0.95026 1 1 1.04974
2 0.94958 0.98897 1.01103 1.05042
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execution probabilities, however, becomes far more complex. Consider the impact

of many trading periods relative to the two-period model for the three different

cases. In all cases, the first trader assesses the probability that at least one of

the subsequent traders will be a “good” one. With transparency, this probability

is fairly high as the CN order becomes visible and dominates subsequent DM

trades. With complete opaqueness, a CN order also becomes more attractive if

the number of periods increases. The reasoning is that it becomes a dominant

strategy to submit a CN order for at least those traders who would not want to

trade at a DM but may gain from a trade at a CN. This increases the likelihood

that at least one “good” order will arrive, which may even induce some trade

diversion from the DM.

A general analysis, however, becomes quite involved, which is illustrated by

the following example. Suppose that subsequently a CN sell and a CN buy order

have been submitted, and that the CN’s order book cannot be observed. If the

third trader is again a buyer, her CN buy order will not be executed against the

sell order in the CN’s order book since an earlier buy order was submitted. In

determining the expected state of the CN’s order book, she needs to take this

possibility into account in computing her expected execution probability.

To sum up, the system (1) could well be extended to a T -period model.

However, the computation of the execution probabilities immediately becomes

much more complicated in case of complete or partial opaqueness. Nevertheless,

the main insights for our two-period model apply to a more general case.

5 Further Extensions

In this section, we discuss a number of possible extensions of our model. A first

extension considers uncertainty in V , the final payoff of the asset on day 2. The

analysis presented in Sections 3 and 4 assumed that V is fixed. However, the

arrival of news in between trading periods may render V to vary over time. We

therefore introduce Vt, where the subscript t highlights that V is time varying.

The distribution of these news innovations can be continuous or discrete, and

is known to all traders. In each trading period t, traders and dealers observe

the current value Vt. In line with the analysis in Sections 3 and 4, competition

between dealers forces them to set the ask At and the bid Bt at the first possible
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price on the discrete pricing grid, above and below Vt, respectively, implying a

one-tick market. The price of the cross is the midquote at time T , (AT +BT ) /2,

which is unknown at t. In contrast, the prices at which the agent can trade in

the DM at time t (At and Bt) are known. Note, however, that in both cases,

traders remain uncertain about the final payoff of the asset on day 2. The model

with stochastic Vt can be solved in the same way as before. In Appendix B,

we provide an illustration for the T period model for the transparency case. In

general, the strategies chosen by traders are influenced by the uncertainty in V

and will depend both on its value at time t, which determines the quoted prices in

the DM at that time, and on the value at T , which is the payoff of the asset and

also determines the price of the cross. Moreover, also the execution probabilities

are influenced by the uncertainty. The reasoning is that the trader in period

t needs to take into account the behavior of traders arriving in future periods,

whose decisions are also influenced by the level of V upon their arrival. As a

consequence, the cutoff betas of the model will become more time varying than

without uncertainty. However, these cutoff values can still be computed in the

same way. Therefore, the results and intuitions of Sections 3 and 4 remain valid,

meaning that systematic patterns in order flow are still likely to be observed.

The setup in Sections 3 and 4 assumed a one-tick spread in the DM. However,

competition between dealers and a CN may not always produce a one-tick spread.

Multiple-tick spreads are more likely for stocks where the tick size is small relative

to the value of one share. Hendershott and Mendelson (2000) endogenize the

spread in a static model with simultaneous order submissions. In a dynamic

model such as ours, a multiplicity of interactions between DM, CN and traders

arise with potentially multiple-tick spreads. We briefly highlight a number of

issues related to multiple ticks. First, the introduction of multiple-tick spreads

allows dealers to strategically decide on the size of the spread in each period.

Our “transparency” model of Section 3 showed that order submission to the CN

is especially attractive when many periods away from the cross. The reasoning

is that it is quite likely that a “good” counterparty arrives before the cross takes

place. This is less likely when “close” to the cross. The implication is that with

multiple ticks, dealers will tend to narrow their spread in the beginning of the

trading day and widen the spread when close to the cross. As usual, dealers face a

trade-off in setting a wider spread. On the one hand, they make a larger profit per
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trade executed. On the other hand, since a wider spread also increases the value

of the half spread traders can save by going to the CN, the dealer will attract

less order flow. In our dynamic model, dealers’ current quotes also shape the

dynamics of the future order flow and trades, as a lower current spread decreases

the likelihood that future orders will go to the CN. Second, multiple-tick spreads

might lead to an “asymmetric” spread around the value V , and to “uncertainty”

of the price of the cross. Symmetric changes in the spread (e.g. from a one-tick

around V to a three-tick spread, where both bid and ask are changed by one

tick) do not influence the price at the cross. There are a number of reasons why

“asymmetric” spreads around V could occur. Dealers might change their quotes

due to inventory reasons. Suppose that in the past a large number of buyers

have bought at the DM. Then the dealer’s inventory position is likely to be low.

Consequently, he will be less willing to sell and more eager to buy to rebuild his

inventory position, to this end increasing his quoted ask and bid price. Important

is that the price of the cross is determined by the quotes of dealers in the final

period. Traders need to take into account the incentives faced by dealers in that

final period, as it determines the price at which their CN trade will execute. To

avoid manipulation of the price of the cross by dealers, the time of the cross could

be made uncertain, a feature indeed present in many real life crossing networks.

Traders might show heterogeneity in order size. A third possible extension

therefore is the introduction of multiple unit orders. In practice, next to a “regu-

lar” trading venue, CNs can also function as an alternative to an upstairs market

where large orders (blocks) can be executed. Our model could be extended to

include this property. A trader then faces the problem of choosing to submit a

large, multi-unit order either partly or completely to the dealer, or to the CN.

With a fixed spread, submitting large orders to the CN might become less attrac-

tive when already at the long side of the CN book. The reason is that it requires

more future “good” counterparties for the order to be executed. If the dealer can

set quotes for several sizes, also the price impact of an order should be taken into

account by traders.

Our model considers liquidity traders’ choice between a CN or a DM. In

reality, informed trading might take place. Informed trading next to liquidity

trading adds an interesting trade-off to the model. Informed traders might prefer

to remain anonymous. Crossing networks allow for anonymous trading whereas
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this is more difficult at a dealer market. Informed traders also prefer immediacy

(Easley and O’Hara (1987)). Immediacy is more often guaranteed at a dealer

market. Moreover, informed traders could opt to submit orders to both trading

venues, such that they “exploit” their informational advantage as much as pos-

sible. The impact of informed trading on the interaction between CN and DM

will hinge on the longevity of the informational advantage. When information

becomes public before the next cross, the CN is no longer an option for informed

traders. The reasoning is that the price of the cross will reflect this information.

With long-lived information advantages, the trade-off between immediacy and

anonymity will also shape competition between a CN and a DM.

6 Conclusion

We presented a dynamic microstructure model to study the interaction between

a crossing network (CN) and a dealer market (DM). We compared three different

informational environments. A transparency case is contrasted to two opaqueness

settings (complete and partial) which are more in line with actual practice as CNs

often prevent traders from observing order flows. We find that the addition of

a CN to a DM setting generates two effects on the composition of order flow.

First, it leads to “order creation” as the CN attracts agents who would refrain

from trading in the absence of a CN. This “order creation” effect is particularly

important with complete opaqueness: these agents always submit a CN order

since they are unaware of an unfavorable imbalance in the CN’s order book.

In contrast, transparency or partial opaqueness might reveal such imbalance.

Second, some orders by relatively low eagerness to trade agents are diverted from

the DM to the CN.

We also show that the execution probability at a CN is endogenous. It de-

pends on the state of the CN’s order book (if transparent), the observed order

flow, and the expectation of past and future orders. Thus, although we start

from dealers willing to provide liquidity at exogenously given bid and ask prices,

we partly endogenize liquidity supply and demand by looking at traders sub-

mitting orders for potential execution at a CN. The transparency and “partial”

opaqueness settings produce systematic patterns in order flow. In particular,

with transparency, we find that the probability of observing a CN order at the

31



same side of the market is smaller after such an order than if it was not. Also,

the probability of observing a sell at the DM decreases and the probability of a

buyer trading on the DM increases when the previous order was a CN buy.
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Appendix A: Proofs

Proof of Proposition 1. Suppose first that the trader arriving at time t is a

buyer. She selects her strategy to maximize her profits:

max
[
βtV − A, p

b
t (βtV − (A+B) /2) , 0

]

(this is the profit of a buy order to the dealer, the CN and no order respectively).

Now define

β̄
b
t

(
pbt
)
=

β̄ if pbt ≥
β̄V−A

β̄V−(A+B)/2

solves pbt

(
β̄
b
t

(
pbt
)
V − (A+B) /2

)
= β̄

b
t

(
pbt
)
V −A otherwise

.

This implies that β̄
b
t

(
pbt
)
is an upper bound on CN buying because in the second

case pbt

(
(A+B) /2− β̄

b
t

(
pbt
)
V
)
increases in β at rate pbtV , whereas β̄

b
t

(
pbt
)
V −A

increases at rate V . The condition

pbt ≥
β̄V − A

β̄V − (A+B) /2

can be interpreted as follows. If this condition is fulfilled, then pbt
(
β̄V − (A+B) /2

)
≥

β̄V −A implying that even for β̄ the profit of an order to the CN is higher than

the profit of a DM order. In that case, traders always choose to submit a CN

order and the region of β’s for which traders submit DM orders is empty. Fater

solving and some rewriting, we find that

β̄
b
t

(
pbt
)
= min

[
A+B
2

V
+

1/2

V
(
1− pbt

) , β̄

]

.

The cutoff β’s between submitting an order to the CN and remaining out of

the market are determined by how large the trader’s valuation of the asset is,

relative to its price. The lowest β-type who would CN buy is the one who values

the asset at (A+B)/2
V

. Hence, define

βb
t

(
pbt
)
=

A+B

2

V
if pbt > 0

A
V

otherwise
.

33



Consequently, also β̄
b
t

(
pbt
)
≥ βb

t

(
pbt
)
.

Suppose that the trader arriving at time t is a seller. She chooses her strategy

to maximize max [B − βtV, p
s
t ((A+B) /2− βtV ) , 0]. Define

βs
t
(pst) =

β if pst ≥
B−βV

(A+B)/2−βV

solves pst

(
(A+B) /2− βs

t
(pst)V

)
= B − βs

t
(pst)V otherwise

.

βs
t
is a lower bound on CN selling because in the second case pst

(
(A+B) /2− βs

t
(pst)V

)

decreases in β at rate pstV , whereas B − β
s

t
(pst)V decreases at rate V .

The condition

pst ≥
B − βV

(A+B) /2− βV

can be understood as follows. If this condition is fulfilled, then pst
(
(A+B) /2− βV

)
≥

B − βV meaning that even for β the profit of an order to the CN is higher than

the profit of a DM trade. In that case, traders will always choose to submit a

CN order and the region of β’s for which traders submit DM orders is empty.

Rewriting the cutoff value gives:

βs
t
(pst) = max

[
A+B
2

V
−

1/2

V (1− pst)
, β

]

.

The cutoff β’s between submitting an order to the CN and remaining out of

the market are determined by how large the trader’s valuation of the asset is,

relative to its price. The highest β-type who would CN sell is the one who values

the asset at (A+B)/2
V

. Define

β̄
s
t (p

s
t) =

(A+B)/2
V

if pst > 0
B
V

otherwise
,

so we find that βs
t
(pst) ≤ β̄

s
t (p

s
t).

Proof of Proposition 2. We will prove the proposition in a recursive way

and by contradiction. As a starting point, it can be seen that the proposition

holds for the terminal period T . At time T , the execution probability of a CN

order is either one (if a trader can join the strictly shortest queue in the CN) or
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zero otherwise. Then the proposition holds since:

β̄
b
T = βb

T
=

A+B
2

V
or β̄

b
T = β

b

T
=
A

V

βs
T
= β̄

s
T =

A+B
2

V
or βs

T
= β̄

s
T =

B

V
.

Suppose now that the proposition is false. Since it is, however, true at T , there

must exist a period τ such that for t > τ , all parts of the proposition hold, but

at τ at least one part does not hold.

Suppose that (iv) does not hold at τ . It must then be the case that:

βs
τ

(
cbτ , c

s
τ

)
< βs

τ

(
cbτ , c

s
τ + 1

)
.

This means that a seller having a βτ ∈
[
βs
τ

(
cbτ , c

s
τ

)
, βs

τ

(
cbτ , c

s
τ + 1

))
will sub-

mit a DM order when the CN’s order book is
(
cbτ , c

s
τ + 1

)
and a CN order when

the CN’s order book is
(
cbτ , c

s
τ

)
. In contrast, suppose that the trader would opt

for a CN order in the former case, so when the CN’s order book is
(
cbτ , c

s
τ + 1

)
.

The CN’s order book at τ + 1 then becomes
(
cbτ , c

s
τ

)
. If the CN’s order book at

τ is
(
cbτ , c

s
τ

)
, the trader submits a CN sell order resulting in the CN’s order book

τ + 1 being
(
cbτ , c

s
τ − 1

)
. The next trader, arriving at time τ + 1, can be either a

buyer or a seller.

case a: A seller arrives at τ + 1.

In this case, we know that by assumption (iv) holds for all periods t > τ .

Therefore:

psτ+1
(
cbτ , c

s
τ − 1

)
≤ psτ+1

(
cbτ , c

s
τ

)
.

Moreover, due to time priority at the CN, an order that has been submitted in

τ +1 will only be executed if the previous order in the queue has been executed.

This means that conditional on a seller arriving at τ + 1:

psτ
((
cbτ , c

s
τ

)
|seller arrives at τ + 1

)
≤ psτ

((
cbτ , c

s
τ + 1

)
|seller arrives at τ + 1

)
.
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Then it follows that

(
A+B

2
− βτV

)
psτ
((
cbτ , c

s
τ + 1

)
|seller arrives at τ + 1

)

≥

(
A+B

2
− βτV

)
psτ
((
cbτ , c

s
τ

)
|seller arrives at τ + 1

)

≥ B − βτV.

Hence, if the trader at time τ+1 is a seller, the payoff of a CN sell order is higher

when the sell side of the CN’s order book in the crossing network is thinner in

period τ . Hence, it cannot be optimal for a trader to submit a DM order when

the queue at the sell side is shorter.

case b: A buyer arrives at τ + 1.

We know that by assumption (ii) is true at τ + 1. This means that either

traders do not change their behavior or traders with:

βτ+1 ∈
[
β̄
b
τ+1

(
cbτ , c

s
τ

)
, β̄

b
τ+1

(
cbτ , c

s
τ − 1

)]

submit a DM order when the CN’s order book is
(
cbτ , c

s
τ

)
, which results in a CN’s

order book at time τ +2 of
(
cbτ , c

s
τ

)
, and submit a CN order when the CN’s order

book is
(
cbτ , c

s
τ − 1

)
giving a book at τ + 2 of

(
cbτ + 1, c

s
τ − 1

)
. Since (vi) holds at

τ + 2 (vi), for a seller arriving in this period:

psτ+2
(
cbτ , c

s
τ

)
= psτ+2

(
cbτ + 1, c

s
τ − 1

)
.

Similarly, because (iv) is true:

psτ+2
(
cbτ , c

s
τ + 1

)
≥ psτ+2

(
cbτ , c

s
τ

)
.

Since an order submitted at τ + 2 can only be executed if an order submitted at

time τ has been executed, it follows that:

(
A+B

2
− βτV

)
psτ
((
cbτ , c

s
τ + 1

)
|buyer arrives at τ + 1

)

≥

(
A+B

2
− βτV

)
psτ
((
cbτ , c

s
τ

)
|buyer arrives at τ + 1

)

≥ B − βτV.
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Hence, conditional upon a buyer arriving at time τ + 1, there is a contradiction.

Statement (iv) is therefore true.

A symmetric proof can be constructed for (i). Along the same lines as above,

the other parts of the proposition can be proven.

Proof of Proposition 5. The time t probability of observing a CN buy at

time t+ 1 is

Pr
[
φbt+1

(
ct+1, βt+1

)
= 1CN

]
= πB

[
F
(
β̄
b
t+1 (ct+1)

)
− F

(
βb
t+1
(ct+1)

)]
.

Suppose that the order imbalance in the CN cbt − |c
s
t | < T − t− 1, such that the

probability of execution of a CN buy is not zero. Then βb
t+1
(ct+1) is independent

of the CN’s order book. If the order at time t was a CN buy order, then the CN’s

order book at time t + 1 is
(
cbt + 1, c

s
t

)
, if it was a CN sell the CN’s order book

becomes
(
cbt , c

s
t − 1

)
and if the order was a market order (buy or sell) the CN’s

order book does not change: ct = ct+1. From Proposition 2, we know that

β̄
b
t+1

(
cbt + 1, c

s
t

)
≤ β̄

b
t+1

(
cbt , c

s
t

)
≤ β̄

b
t+1

(
cbt , c

s
t − 1

)
.

Since F (.) is monotonically nondecreasing in β, the result follows.

Suppose now that cbt − |c
s
t | ≥ T − t− 1, this means that either no CN orders

are submitted, in which case the proposition holds trivially, or at time t the

extra CN order submitted changes the execution probability to zero. In this case

β̄
b
t+1

(
cbt + 1, c

s
t

)
= A/V , hence the result follows since also βb

t+1
(ct+1) = A/V .

A similar proof can be constructed for CN sell orders.

Proof of Proposition 6. The time t probability of observing a CN buy at

time t+ 1 is

Pr
[
φbt+1

(
ct+1, βt+1

)
= 1CN

]
= πB

[
F
(
β̄
)
− F

(
βb
t+1
(ct+1)

)]
.

F
(
β̄
)
is fixed and independent of the CN’s order book. If the order at time t

was a CN buy order, then the CN’s order book at time t+ 1 is
(
cbt + 1, c

s
t

)
, if it

was a CN sell the CN’s order book becomes
(
cbt , c

s
t − 1

)
and if the order was a
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market order (buy or sell) the CN’s order book does not change: ct = ct+1. From

Proposition 2, we know that

β̄
b
t+1

(
cbt + 1, c

s
t

)
≤ β̄

b
t+1

(
cbt , c

s
t

)
≤ β̄

b
t+1

(
cbt , c

s
t − 1

)
.

Since F (.) is monotonically nondecreasing in β, the result follows.

A similar proof can be constructed for CN sell orders.
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Appendix B: Uncertainty

In this appendix, we introduce uncertainty into the model by making V a sto-

chastic variable Vt which varies over time. More specifically, we assume that Vt

follows a random walk:12

Vt = Vt−1 + εt

where εt is identically and independently distributed with mean zero and variance

σ2ε. Its distribution can be continuous, e.g. the normal distribution, or discrete

and is known to all traders. The noise variable can be interpreted as the occur-

rence of a news shock in the market in between periods during the trading day.

These shocks influence the underlying value of the asset. In each period t, traders

and dealers observe the current value Vt. As the value of the asset changes over

time, dealers are allowed to adjust their quotes. More specifically, before the

trader at t arrives, dealers set their bid and ask prices around Vt. Competition

is assumed to be harsh such that they set the ask At and the bid Bt at the first

possible price on the discrete pricing grid, respectively above and below Vt. In

this way, we retain a one-tick market. Note that this assumption also implies

that quotes in future periods will remain at their current levels as long as future

values of V remain between At and Bt. Dealer prices only change when V exceeds

the ask in the previous period or falls below the previous bid.

Traders condition their optimal strategies on a number of variables. Some of

these variables are, as in our baseline model, known with certainty. In particular,

we assume that the trader arriving at time t observes the state of the order

book in the CN ct (so we assume transparency), the time left until the cross

T − t, the proportions of buyers and sellers πb and πs and her type βt, as well as

the overall distribution of β. She also observes Vt, the current realization of the

value of the asset, and the resulting dealer market quotes At and Bt. However,

she is uncertain about the final value of the asset VT and the resulting price of

the cross (AT +BT ) /2. Therefore, relying on her knowledge of the underlying

stochastic process of V , she needs to determine expected values for these variables.

Consequently, her submission strategy will depend on these expectations.

12This is without loss of generality. Our methodology can be easiliy adapted for alternative
assumptions on the data generating process of Vt.
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Suppose that the trader that arrives at time t is a buyer. The expected profit

of submitting a buy order to the dealer is:

Et
(
Πb,DMt

)
= βtEt (VT )− At

where Et denotes the expectations operator, based on the information set at time

t.

Alternatively, submitting a CN buy order will give her the following expected

profit:

Et

(
Πb,CNt

)
= pbt

(
βtEt (VT )− Et

(
AT +BT

2

))
.

As possible execution of this order only occurs at the end of the trading day, she

needs to form expectations on VT and the associated price of the cross. Note

that the latter is in contrast with a DM buy order, where the trader is uncertain

about the value VT but knows the current buy price At. Due to the random

walk assumption for Vt, it holds that all expectations equal the current values.

Hence, Et (VT ) = Vt and Et ((AT +BT ) /2) = (At +Bt) /2. Given that she knows

the distributions of εt and βt, as well as the state of the order book ct and the

remaining number of periods T − t, she can compute the expected execution

probability of a CN buy order, pbt . If she is able to join the shortest queue p
b
t

reaches unity. Otherwise pbt equals the probability that enough traders that are

willing to join the market’s sell side queue will arrive, hence counterbalancing the

imbalance that would be created by her order.

The profit of submitting no order remains zero.

The cutoff values for βt at which traders are indifferent between two strate-

gies could be calculated as in Section 3.3.13 A buyer at t is indifferent between

submitting a CN order or a DM trade at the following cutoff value:

β̄
b
t

(
pbt , Vt

)
= min

[
At+Bt
2

Vt
+

1/2

Vt
(
1− pbt

) , β̄

]

.

13As our traders are considered to be risk neutral, they are indifferent between two strategies
yielding the same expected profit.
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Similarly, she is indifferent between submitting a CN order or no order at:

βb
t

(
pbt , Vt

)
=

At+Bt
2

Vt
if pbt > 0

At
Vt

otherwise
.

Deriving the seller’s cutoff values is completely symmetric. Comparing these

values with the ones found in Section 3.3, at first sight they appear to be very

similar. However, some important differences do exist.

First, as traders are uncertain about the final underlying asset value VT , the

cutoff betas now depend on their expectation of this value and of the resulting

surrounding quotes. Due to our random walk assumption, these forecasts equal

the current value of the variables (i.e. Vt, At and Bt), implying that current

variable levels will determine traders’ expected profits and hence their trading

strategy. Therefore, if news arrives in the market altering the underlying value

of the asset, the expectation for VT (and depending on the position in the pricing

grid possibly for AT and BT ) will also vary. Consequently, as compared to our

baseline model, the cutoff betas are more dynamic and also depend on the current

state of the market.14 Moreover, note that if Vt changes, but remains between the

previous bid and ask prices (such that these do not change), this will still affect

the order submission strategy of the trader since the ratio of the (expected) price

of the cross and the (expected) value of the asset changes.

Secondly, as discussed above, introducing uncertainty in the model also has

repercussions for the computation of the probability of execution, pbt . As in our

baseline model, to determine pbt trader t will account for the behavior of traders

arriving in future periods. However, these traders’ decisions will now also be

influenced by the level of V at that point in time. The current trader takes this

effect into account while determining her submission strategy.

To sum up, we have shown that it is possible to calculate cutoff values which

appear to be similar to those in our baseline model. Based on these values, a graph

comparable to Figure 3 could be drawn. However, now traders’ strategies also

reflect uncertainty on future values of V. Nevertheless, it is clear that even with

14This is obviously the case for β̄
b

t , and it is even more apparent for β
b

t
. In the baseline model,

βb
t
is in general equal to a fixed number ((A+B) /2/V ), and only changes to A/V when the

execution probability of a CN buy order becomes zero. In our extended model, βb
t
changes

every period (unless Vt = Vt−1).
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these new cutoff values and the resulting strategies, propositions 3 to 6 remain

valid. Hence, systematic patterns in order flow are still likely to be observed. In

other words, our empirical predictions in Section 3.4 are robust to the introduction

of uncertainty in the underlying value of the asset.
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