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Abstract

In this paper we estimate and test a multi-factor CIR model for three countries: the
USA, Germany and the UK. We find that the estimated model reproduces not only the
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Keywords: multi-factor CIR model, Kalman filter, common factors.

J.E.L.: G15.

*Address for correspondence: Center for Economic Studies, Naamsestraat 69, B-3000 Leuven, Belgium. Tel:
+32 (0)16 326859. Fax: +32 (0)16 326796. email: hans.dewachter@econ.kuleuven.ac.be Konstantijn Maes is
currently working as a second year Research Assistant of the Fund for Scientific Research (F.W.O.-) Flanders.
We acknowledge Peter De Goeij for constructive comments and for providing the data.



1 Introduction

In this paper we estimate and test a multi-factor CIR model, which is exponential-affine in
the state variables, for three countries: the USA, Germany and the UK. The goal of this
cross-country estimation and testing is twofold. First, although the literature on empirical
tests of the CIR model (either single or multi-factor) is vast, most empirical tests have been
performed on US data only. To our knowledge there is no paper that estimates this model
for different countries over an identical sample period with the proposed methodology. By
bringing together the empirical findings for these three countries we are able to compare
the outcome of this model in terms of factor dynamics, risk premia and factor composition.
Second, we want to determine to what extent multi-factor models can be useful in explaining
(fitting) correlation not only within but also between national bond markets. A positive
answer to this question is of obvious relevance for developing parsimonious international
multi-factor models for the yield curves with obvious applications in international finance.
Some of the applications of arbitrage free pricing in international finance can for instance be
found in Backus, Foresi and Telmer (1998) and Ahn (1997).

The strong cross-sectional correlation between bond yields of differing maturities has inspired
various researchers to find and determine a limited set of factors that may drive the entire
yield curve of a given (national) bond market. One popular route in the finance literature to
find this set of factors as well as its dynamics is to assume some diffusion process for the short
rate and then use arbitrage arguments to find the functional form of and relations between
observed yields of bonds with varying maturities. Seminal examples of this approach include
Cox, Ingersoll and Ross (1985, CIR hereafter) and Chen and Scott (1993). Even within this
framework, however, closed form solutions for bond prices (and yields) are hard to obtain
without rather strong assumptions on the diffusions of the short rate process. One class of
diffusions for which closed form solutions exist is the class of affine term structure models, see
Duffie and Kan (1996). This class embeds as special cases the Vasicek (1977), CIR (1985),
Chen and Scott (1993) and Hull and White (1990) models.

We follow the recent literature on multi-factor exponential-affine term structure model esti-
mation (Duan and Simonato (1998), de Jong (1997) and Geyer and Pichler (1998)). More in
particular we use a Kalman filter approach to filter the actual dynamics for the latent factors.
This methodology, as is well known by now, has the advantage over other alternatives in that
it efficiently combines the time series and the cross-sectional dimension of the yield curve.
Traditional empirical models of interest rates focused either on fitting a cross-section of bond
prices (e.g. Brown and Dybvig (1986)) or on fitting a time-series model to one particular
maturity (e.g. Chan, Karolyi, Longstaff and Sanders (1992)). Moreover, the Kalman filter
approach has the advantage that no ad hoc assumptions have to be made about the mea-

surement error structure, which is not the case for some alternative filtering methods (e.g.



inverting approach of Pearson and Sun (1994) and Chen and Scott (1993)). Although the
Kalman filter does not represent the optimal filtering methodology (some of its assumptions
do not hold true in the exponential-affine term structure setup) it can still be interpreted as
quasi-optimal filtering. Biases tend to be small for the relevant parameter ranges and sample
sizes (Duan and Simonato (1998), de Jong (1997) and Bollerslev and Woolridge (1992)).

The remainder of the paper is organized in five sections. Section 2 describes the multi-factor
CIR model, section 3 describes the state space representation of the exponential-affine term
structure model and explains the Kalman filter procedure and the econometric properties of
the estimator. Section 4 presents the estimation results along with some diagnostic checks
and subsequently verifies whether the specific multi-factor model can replicate the observed
correlation within and between bond markets of the three countries considered. Finally,

section 5 concludes.

2 The multi-factor CIR model for bond prices and yields

The set-up is standard and widely understood (for a more extensive discussion, see e.g.
Duffie (1996) and Duffie and Kan (1996)). In short, we fix a standard Brownian motion
W(t) = [Wi(t),..., Wk ()" in RE (K > 1), restricted to a given time interval [0,7] on a
given! complete probability space (Q,F, P). Tmplicitly we assume that bond markets are
frictionless, that investors are insatiable and that arbitrage opportunities are absent in the
market. Moreover we assume that dW;(t)dW;(t) = 0 for all i = {1, ..., K} and j # i. We also
fix the information structure as the standard filtration IF = {F, : 0 <t < T} of W(t).

We consider K factors or state variables, X(t) = [X1(¢), ..., Xk (t)]’, describing bond prices in
the economy. Each factor X;(t), 7 € {1, .., K}, is the solution of a (Markovian) CIR stochastic

differential equation :

dX; (1) = ki (0; — Xa(t)) dt + 03/ X (1) AW, (1) . (1)

The dimensions of the parameters are standard. The instantaneous riskless return is defined

re =Y Xi(t), (2)
i=1

generating what is known as a multi-factor CIR model. The CIR model assumes moreover

that the market price of risk for each state variable is proportional to its standard deviation :

M(Xi(1), 1) = 2 /X, (3)

T;

'Tt is nontrivial to show that one can always construct a probability space so that there exist standard
Brownian motions.



Under these assumptions and in the absence of arbitrage, merely technical conditions are
required for the existence of an equivalent martingale measure (see Duffie (1996, pp.110-
111)). Such a probability measure () has the property that any security with certain payoff
1 at time of maturity T'=t 4+ 7 > t has a price P;(7) at any time ¢t < T of:

Py(r) = B2 {exp (— | /;HT rudu> - 1] X () s Xk () 7), ()

where EtQ denotes Fi-conditional expectation under (). The above process P;(7) as a function
of the time to maturity 7 is denoted as the term structure of interest rates at time ¢t. Given
the above general representation of the solution (4), the Feynman-Kac formula provides us

with the (fundamental) partial differential equation that corresponds to this solution. Loosely
dPt(T)

put, Feynman and Kac prove that EtQ { } =1, or more formally :

Fy(7)

DQf(Xl (f) 7'“'7XK (f) 77-) - th(Xl (t) ’ 7XK (t) 77-) = 07 (5)
with boundary condition f(ry,T) = 1, where D is the Dynkyn operator and in this case
stands for :

Af o~ Of 1o~ 82f
DXL (), X (1), 7) = =L — W)+ =S —=L02X; (1),
PO e X 0.7) = 5 =32 om0+ 53 Gt X, 1) ©

(1) = Ki(0; — Xi(t)) — MXi(2). (7)

In general closed form solutions for the bond prices, i.e. functions f solving (5), are not
available. By restricting the instantaneous drift and variance functions (under @) and r; to
be affine in the state variables?, as is the case in the present CIR multi-factor setting, one
can solve (5) quite easily by solving a system of 2 - K ordinary differential equations. In CIR

(1985) it is proven that the following arbitrage free, closed form solution can be obtained :

Py(r;9) = [ [ exp (Ai(r;05) — Bi(m39:) Xi(t)) (8)
i=1

where ¥; is the set of parameters corresponding to factor i, ¥; = [k;,0;, 0, Ai]’, and where

2¢z’,1 eXP(¢z’,2 ’ %) > Pia
Pi4
2(exp(¢;1 - 7) — 1)

Bi(1;9;) = bea (10)

A 0;) = ln(

2Note that under @ the dynamics of the factors behave as:

dX1(t) = m(t)dt + oV XL(t)dWL (t),

where dWi;(t) is obtained from dW;(t) via the Girsanov theorem, dW;(t) = dWi(t) + \i(Xi(t),t).
#A function fi(z) is called affine (in x) if there exist constants @ and 3 such that for all z, f;(z) = o + Sz.



are continuously differentiable functions of 7 and ¢, ; = \/(HZ + Ai)2 + 202, Gio = KitAit¢; 1,
G55 = 20 /07, and ;4 = 2¢; 1 + ¢; o(exp(dyq - T) — 1).

Finally, note that the risk premium for a bond can be easily recovered from the estimated pa-
rameters. Indeed, under the risk neutral probability we have that the instantaneous expected

return on a bond is given by:

DRF(X1(t), ., X (1), 7)
FXi (), X (1), 7)

= T%. (11)

The instantaneous expected change in price under Q, D9 f(X; (), ...., Xk (t),7) relates to the

instantaneous expected change in price under the historical measure P, DY (X1 (t) ,...., Xk (), 7),
as:
K oy
DQf(Xl (t) yeey XK (f) 7T) = DPf(Xl (t) yoees XK (f) 7T) - Z aX)‘z Xi (f) ) (12)

=1

such that the expected rate of return under P equals:

DFF(X1(8), s Xic (8),7) 5L 9In(f)
X @), X (0).7) ”*; ax, il
K
= rt—ZBi(T))\iXi(t). (13)

Note the double role of the dynamics of the factors from equation (13). First, the dynamics
determine the cross-sectional expected returns through the functions B;(-). Second, the dy-
namics through time of expected returns will depend on the value the factors take at each
point in time. The value of each of the factors will both determine the level of the instanta-
neous interest rate (r; = -5 | X, (1)) as well as the risk premium of each of the bonds. Both

dimensions thus depend on the specification of the dynamics of the factors.

3 Empirical implementation

We apply the standard Kalman-filter approach for the implementation of the exponential-
affine multi-factor CIR model, as in Duan and Simonato (1998), Geyer and Pichler (1998)
and de Jong (1997). Our aim is to filter the unobserved state variables and to estimate their

dynamics. As a by-product we obtain the model-predicted yield curve.



3.1 State space representation

Filtering the unobserved state variables usually calls for either assuming no sampling error
(such that the yield curve can be inverted at certain points to deliver the state variables), or
the use of approximate filtering techniques, such as the Kalman filter. The first approach has
been followed by, amongst others, Pearson and Sun (1994) and Chen and Scott (1993). This
approach implies a discretionary choice of maturities used to invert the yield curve and to
extract the implied state variables. Obviously, the choice of maturities used in the inversion
procedure is not innocuous and the results are thus potentially very sensitive to the particular
choice of maturities made. The second approach, followed here, is to assume that all the yields
are measured with error. Hence standard inversion procedures no longer work and one has to
rely on some filtering procedure to filter the state variables from the yield curve. The Kalman
filter approach turns out to be an approximately ’correct’ filtering technique.

In the remainder of this paper, we will work with the continuously compounded yield (or
yield curve) notation observed for a set of N different bond prices with accordingly defined

maturity set 7 = [11, ....,7n]’, the link between the two being (j = {1,..., N}):

Pi(1;) = exp(—7;-Yi(7;))-1
PN (14)
Yi(r;) = ——m(]:fj))-

Denote the (N x1) vector of yields to maturity as observed at time t as Y (7) = [Yi(71), ..., Yi(7n)]-
Define the state-space vector at time ¢ as X(t) = [X1 (¢),...., Xk ()], then the state space

representation for every yield is given by :

Yi(7) = AA(T;9) + BB(7;9) X(t) + &.(7;9), (15)

where AA(7;9) and BB(7;9) are (N x 1) and (N x K) matrices, defined as:

a(71;9) bi(r1;9) -+ br(71;9)
AA(T;9) = : and BB(7;9) = : : ; (16)
a(Tn;9) bi(tn; ) -+ br(Tn:;9)
where a(7;;9) = —% S Ay(74;9), for all maturities j = {1,..., N} in the dataset, and
bi(1;;9) = %Bi(Tj;f}i), for all maturities j = {1,..., N} in the dataset and for all state
variables ¢ = {1,..., K}. The observation errors as observed at time ¢ are gathered in the
(N x 1) vector & (7;9). For simplicity, we assume that these errors are cross-sectionally and
intertemporally uncorrelated with E (£,(7;9)) = 0 and E (&,(7;9)&,(7;9)") = H. Equation

(15) is called the measurement equation and models the cross-sectional variation in the yields.



The intertemporal dimension of the data is modelled through the transition equation. It
models the dynamics of the factors but does not rely on a complete characterization of the
transitional distribution. We use a partial characterization focussing on the affine form of the
first two moments of the transition distribution only. As such we obtain an exact likelihood
function in case we would have implemented a Gaussian model. For our non-Gaussian multi-
factor CIR model this yields an asymptotically ’correct’ approximation.

It can be shown (de Jong (1997) and Duan and Simonato (1998)) that the conditional mean
m (X (t+ A); X (t)) and conditional variance Q (X (t + A);X (t)) of the factors at time
t + A will be affine in the factors. More specifically, given the square root dynamics of the

factors in (1) the conditional mean and variance reduce to:

m (X (64 A) X (6) = i (X1 (4 8): X (1), (X (0 A): Xie ()]
(17
Q11(') 0 0
Qurayxe) = | om0t

where each m;and ¢, i = {1, ..., K}, is derived from our CIR model as :

mi (X (t+A); X (1) = 0i(1—exp(—riA)) +exp (—riA) X; (¢)

(18)
gi (Xi(t+A); X, (1) = Z—ZQ (exp (—kiA) —exp (—2k;A)) X; (t) + 0; 205 (1 —exp (—HiA))Q )
(19)

Defining 1 (t) as a zero mean unit variance random variable of dimension (K x 1) the transition

equation for X (t) can be written as:

X(t+A) =m(X{t+A);X(t)+Q(X(t+A);X ()2 n(t). (20)

The transition equation intuitively compares to the discrete time equivalent of our state

variable processes in equation (1).

3.2 The Kalman Filter

The shape of the term structure at time ¢ is completely determined by the unobserved state
variables X(t). The Kalman filter is a recursive algorithm for computing the mathematical
expectation of a hidden state vector X(t), conditional on observing a history of noisy signals
on the hidden state, E[X(t)|Y¢(7), Y¢_1(7),..., Yo(7)]. Thus, in order to filter the latent

factors we apply the Kalman filter procedure to the state space representation of the model,



specified by equations (15) and (20). Denote the predictions about the conditional mean of
the state variables at time t + A, conditional on the time t values by X(t + Alt) and those

of the conditional variance as V(t + Alt) (both with obvious dimensions) :

X(t+Alt) = m(X(t+A);X(t)) (21)

Vit+At) = AVEE)A+QX(t+A);X(t)), (22)

with A a diagonal (K x K) matrix with elements A;; = exp (—k;A) . The performance of these
predictions about the drift and variance of the state variables can only be evaluated indirectly

through the fit of the yield curve. Given that our model is affine we have that the pricing or
fitting errors will be determined as 1, A (T;9, ) = W, A (7139, @), ..., LA (Tn; 0, 0)]:

Yeon(T:9,0) = Yeira(r) — AA(T,9) — BB(7,9) - X(t + Alt), (23)

with a corresponding (N x N) variance matrix F(t + A; 9, ¢) :

F(t+ A;9,¢) = H(¢) + BB(7,9) - V(t + Alt) -BB(7,9)". (24)

The latter comnsists of two components. The measurement errors of the yield curve with
variance matrix H (see equation (15), H is a diagonal (N x N) matrix with parameters
h%,i={1,...,N}, h; being the standard deviation of measurement error i, ¢ = [hq, ..., hn]’)
and the uncertainty introduced by the predictions of the future state variables. Indeed,
information about X(t) stems from two sources: the predicted value, determined by the
historic term structures, and the observed vector of interest rates at time ¢. Both sources
contain some error. The prediction because of the innovation in the vector state variables
between ¢t — A and ¢ as well as the uncertainty about the estimate, the interest rates because
they contain a measurement error. The optimal predictor is formed by combining these two
pieces of information, and the Kalman filter solves this problem. The weights given to the
interest rates and to the prediction depend on the relative sizes of their covariance matrices,
so if the interest rates are very noisy, the updated estimated predictor will differ only little
from the ex ante predictor.

Finally, using the observed pricing errors 1y, A (7; 19, ¢) the predictions are updated resulting

in the filtered state variables for time ¢ + A as well as their conditional variance matrix:

X(t+A;9,¢) = X(t + Alt) + V(t + Alt)-BB(:9)" (F(t + A;9,9)) " ey alT:9,9),

V(t+Aid,¢) = V(t+ Alt) - V(t + Alt) BB(r; 9)- (F(t + A9, ¢)) " -BB(r:9) - V(t + Alt),
(25)



whereafter the same prediction-updating procedure is performed for the next (noisy) obser-
vation, finally yielding the filtered state variables.

Summarizing the above, the Kalman procedure updates the estimation every time a new ob-
servation becomes available. The filter first forms an optimal predictor of the unobserved state
variables, conditional on the previous estimated values. These estimates for the unobserved
state variables are then updated using the information provided by the observed variables.
As a by-product the filter provides fitting errors together with their conditional variance that

can be used to construct the quasi-(log)likelihood function:

3

Do —

(1n (F(6:9. 9))) + w439, 9)- (F(t:9,0)) " vy (:9,9) )
(26)

which in its turn can be used to find ML estimates of the parameters governing the dynamics

mltELm:—N In (27)—

t=1

of the state variables and the yield curve. Unfortunately, the properties of the ML estimator
are unknown for square root factor models. The ML estimator can only be used in case
the factors and the measurement errors are normally distributed and is only under these
restrictive conditions efficient and asymptotic normal. The exponential affine class of term
structure models will in general fail to generate normally distributed factors (the Vasicek
model is an exception) so that one has to resort to QML estimators. However, even though
the QML estimator has been shown to be consistent and asymptotically normal (Bollerslev
and Woolridge (1992)), parameter estimates are likely to be biased within the context of
the exponential-affine class with time varying variances. The reason for this inconsistency
lies in the fact that the exact factors are not observed and that filtered state variables will
enter in the conditional variance matrix F(t; 9, ¢) imputing errors in the likelihood function
(Duan and Simonato (1998) and de Jong (1997)). While the theoretical properties of the
QML estimates based on the Kalman filter remain largely unknown, Monte Carlo simulations
show that the bias in the parameter estimates tends to be reasonable small for the relevant
parameter combinations of the exponential-affine class of term structure models, even for
sample sizes as small as 150 datapoints (Duan and Simonato (1998) and Lund (1997)). In
the remainder of the paper, we discard the biases and assume that the QML estimator can
be used for statistical inference. That is, following Duan and Simonato (1998), we assume
that the estimator of the ((4% K + N) x 1) parameter vector ¢, ¢ = [§', @], is consistent and

asymptotically normal :

where



and

[1]

m %ifta
with fy the (4% K + N) x (4% K + N)) matrix !
O g 2D ADREQ o ) (2L9)).

4 Empirical analysis on the LIBOR Yield Curve

f, =

4.1 Data description

While data are abundantly available for the USA, such data sets are more difficult to obtain
for other countries. The lack of conformable data sets lead us to partially construct the data
ourselves as stipulated in Piazzesi (2000, page 17). We reconstructed the yield curves for
the different countries from the LIBOR rates and the observations on swap rates. Evidently
these samples will not represent the standard type of yield curve because of the presence
of financial risk (default risk caused by the fact that we are forced to use non-government
rates). Modelling the LIBOR yield curve may however be relevant since most of the interest
rate derivatives, e.g. swaps, are priced by use of the financial market interest rates, i.e. the
LIBOR discount rate.

Monthly observed LIBOR rates from 1 to 12 month maturities for the USA, Germany and the
UK are readily available from Datastream. SWAP rates for maturities of 2 up to 5 years as
well. To capture the richness of the term structure while remaining parsimonious, we included
the 3 month, 6 month, 12 month and 60 month maturities in our analysis (N = 4 maturities).
For the 60 month maturity, we need to construct the (zero-coupon) LIBOR yields from the
SWAP rates.

First observation is 07/04/1987, last observation is 23/03/1999. This yields 144 monthly
observations for each maturity and for each country. The as such constructed (LIBOR) yield
dynamics for the selected maturity set is shown in figures 1a/b/c. Some descriptive statistics

are reported in table 1.
Insert figures 1a/b/c here < Insert table 1 here

We reject the null of no excess kurtosis statistically at the 90% confidence level for the USA
at all maturities, for the other two countries even at the 95% level. The null of skewness is
statistically rejected at the 95% confidence level for the 3 month, the 6 month and the 1 year
maturity for Germany and the UK. Autocorrelations for the 1 month and 12 month lagged
yield series are high. Obviously, from figures 1a/b/c, there is a remarkable difference in the
average term structure and in its dynamics across our sample of countries for the period under

consideration. Notice for instance that roughly speaking the USA has a normally inclined

10



term structure for the entire sample, Germany has an inverted one only between '91 and ’94,
while the UK is inverted in the first halve of the sample. On average, the UK term structure

is inverted (see below).

4.2 Estimation results and discussion

In this subsection we present estimation results for the three models under the empirical
probability measure P for each of the countries!. We estimate one-, two- and three-factor
models (K = 1,2,3 respectively) for each of the LIBOR yield curves. The results for the
diffusion parameters and the measurement errors’ estimated standard deviations are reported
in tables 2-4 for the USA, Germany and the UK respectively. The dynamics of the state

variables in the three-factor model for each of the countries is shown in figures 2a/b/c.
Insert figures 2a/b/c here < Insert tables 2-4 here

For all countries we find that the inclusion of extra factors increases the performance of
the model in terms of likelihood value as well as in terms of measurement errors’ standard
deviation sizes. Focussing on the standard deviation sizes, there seems to be some cross-
country similarity in what the factors capture. The addition of the second factor basically
reduces the size of the measurement errors for the long maturities, while the third factor
substantially reduces measurement errors at the short end of the yield curve. The three-
factor models price discount bonds well with a typical standard deviation of measurement
errors of merely 5 basis points on average. Retaining the assumption of normality of the
measurement errors, the model would price bonds correctly roughly up to 20 basis points in

95% of the cases. In practice, however, confidence bounds based on the normality assumption

‘Technicalities. Estimation was performed with the GAUSS®) constrained maximum likelihood (CML)
routine, using Newton-Raphson’s algorithm with step-halving line search. We scaled some parameter values
to improve convergence performance. Before initiating the optimization procedure, the parameter space was
brute-forcely searched to find suitable starting values for the parameters (a priori grid search). This is done
by generating vectors of random drawings within a reasonable range for each parameter (typically 500 draw-
ings). This range compares to the imposed CML bounds ([0, 3] for each &, [0,0.10] for each 6, [0, 2] for each
o, [—00,—0.001] for each A, and [0,0.05] for each h.), but is set tighter for the standard deviations of the
measurement errors. Starting values for the latent factors are derived from the unconditional distribution
of the factors. That is each factor X;(t), ¢ = {1, ..., K}, is started at the instantaneous unconditional mean
X; (0) = 6; with instantaneous unconditional variance % (Oiof/m) . We approximated the analytical derivative
using a two-sided increment approximation, 0.999 - 2* and 1.001 - 3 * respectively, where 3 * are the optimal
parameter values. The convergence criterion, based on the maximum absolute difference in both parameter
and functional values between two successive iterations, is set to le — 4. The (discrete) sampling frequency
considered in the estimation is monthly, i.e. A = 1/12. A last point to mention is the handling of negative
state variable levels, principally allowed for in the Kalman filter procedure. If this were the case we imposed
the factor to be zero, solving the problem with the square root in (1). Thus, the Kalman filter estimator
is linear only for X;(t) > 0. Prior to estimation on our dataset, we checked our program for correctness by
plugging in identical datasets as used by Duan and Simonato (1998, the Fama and Bliss dataset). We were
able to reproduce their estimation results precisely (in optimal parameter levels and robust standard errors)
raising confidence in the correctness of our program.

11



may not be valid and filtering (or prediction) errors will have to be considered next to these
measuremnient errors (see below).

In terms of factor dynamics another similarity arises. For the three-factor model we find an
extremely inert factor (factor 2) in each country. The estimated halving time for this factor
(In(2) /k2) is roughly 385 years for the USA, 86 for the UK and approximately 3500 years for
Germany. The second factor is close to being non-stationary. Caution is needed since it is well
known in the time series literature that the standard asymptotic properties of the estimators
do not hold in the presence of a unit root (since the distribution does not resemble a normal
distribution anymore). The other factors have stronger mean reversion and halving times of
about 0.3 and 3 years for the USA, 0.33 and 4.5 years for Germany and 0.3 and 1.8 years for
the UK. The fast mean-reverting factor is denoted factor 1, the moderate mean-reverting one

is factor 3. For an interpretation of the factors see below.
Insert figure 3 here

The As within each country are all negative, a necessary condition for positive risk premia.
For all three countries, the second factor has by far the highest market price of risk. Risk
premia calculated on the basis of equation (13) are quite small for the first three maturities,
on average approximately 0.55%, 0.20% and 0.33% respectively for the three countries. The
average 5 year maturity risk premium is substantially higher, 0.72% for the USA and the UK,
1.19% for Germany. The latter are plotted in figure 3 for the three countries.

It is easy to check whether the Feller condition (2k6 > ¢2) holds for our estimates. If not,
the factors” upward drifts are not sufficiently large to ensure that the origin is inaccessible.
For the three-factor model, all second factors and the third UK factor are prone to become
negative sooner or later”.

Insert figures 4a/b/c here

Finally, the estimated factor loadings for the three factor model of each country are plotted
in figures 4a/b/c. Our reported loading pattern for the three factor model unfortunately does
not allow us to neatly isolate the interpretation of our three factors as ’level’, curvature’ and
’slope’ of the term structure (as pioneered by Chen and Scott (1993)). Indeed, our third factor
is not merely a slope effect, since its downward trend at the long end of the term structure
is not negligible, blurring the interpretation especially for the UK. The interpretation of our
second factor is not intuitive at all at first sight. Our first factor captures the slope effect
unambiguously.

How can these factors be interpreted 7 We found correlation coefficients as high as 93% for
each of the countries between the third factor and the short term yield, correlation coefficients

of on average 80% between the lyear-3month spread and the first factor and correlation

®In the technicalities footnote above, we explained how we dealt with negative state variables.
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coefficients of over 75% between the Syear-lyear spread and the second factor for the US and
Germany. The UK second fector is a noteworthy exception, it seems to capture the long term
yield with a correlation of 75%.

It is interesting to assess the impact of each single factor in explaining the time series vari-
ability of the yields within each market. Together they explain between 95 and 99% of the
variation in yields at each end of the term structure. However, the bulk is accounted for by
factor 3 alone, around 85% for each country and at each end of the term structure. Factor
2 essentially makes up the difference while factor 1 is only marginal in adding explanatory
power to their combination and on its own. However, from the RMSE and the standard devi-
ation sizes of the measurement errors, the usefulness of the inclusion of a first factor was clear.

Factor 2 and especially factor 1 capture the cross-sectional dimension of the term structure.

4.3 Diagnostic checks

Diagnostic checking is a necessary requirement in order to make assessments about model
misspecifications. There is a battery of methods put forward in the literature to assess the
quality of the derived model. A formal way to test the model statistically is to perform
a robust Lagrange multiplier test, as in Duan and Simonato (1998). This test essentially
opposes the cross-sectional restrictions imposed by the model against the time series dimension
6

restrictions®. From the p-values from the y?-test in tables 2-4, we find a firm statistical

rejection of the model, a usual finding in the literature.
Insert figures 5a/b/c < Insert tables 5 and 6 here

Table 5 reports the RMSE statistics for the different models, revealing that the inclusion
of a second and third factor dramatically improves the fit of the term structure (which was
already suggested by the firm increase in quasi-loglikelihood value of tables 2-4), especially
at the long end of the term structure. The RMSE statistic takes the errors implied by the
filtering methodology into account next to the above mentioned measurement errors, making
them more suitable for model evaluation. From the table, one can see that the first factor
fails to fit the long end of the term structure relative to the short end, with errors more than
twice as high for the long end. The inclusion of the second factor tackles this pricing problem
to a large extent at the cost of somewhat higher RMSE at the other maturities. The inclusion
of the third factor corrects for this and shaves off RMSE over the entire maturity spectrum.
To complement these RMSE statistics, we included pricing error histograms (figures 5a/b/c)

and the corresponding table 6. From these one has to remark that the three-factor model

SThis test is comprable but more general than the test as proposed in de Jong (1997) since more flexibility
in the alternative specification is allowed for.
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performs well, and this in spite of the statistical model rejection’. For example, the probability
of mispricing more than 1% is less than 5% in all cases, the chance of making an error of less
than 10 basis points goes from 20% to 50% depending on the country and maturity considered.
Focussing on the histograms, we see graphically that roughly most of the probability mass
is situated between errors of —30 and +30 basis points. Notice the presence of an outlier
in each histogram. This is due to misspecification. Indeed, at the initialisation of the filter
we impose it to start at its unconditional mean and variance, while this may be way off
the mark. Some researchers chose to omit the likelihood of the first couple of observations
to reduce the impact of this likely misspecification. Obviously, we could have tabulated
the means and autocorrelations of the pricing errors, rendering more support to the above
graphical statements, namely that the pricing errors are biased, autocorrelated, and by far
non-normally distributed. All this is strong evidence against the multi-factor CIR model.
The reasons for this apparent failure are to be sought in the restrictive and rigid constraints
imposed by the model (non-negativity is one of them). The multi-factor model seems to be
performant in mimicking the shape of the term structure, but when it comes to mimicking
the dynamics of the observed term structure, the model breaks down.

Another (less formal) way to assess the quality of the model is to examine the fit of the
modelled term structure to the actual term structure visually. There is an abundance of
possible time points at which to confront the model versus reality, raising the question which
datapoints to pick out. We decided to plot three specific term structures for each country
(together with their K = {1,2,3} model predictions); (i) the average yield curve (figures
6a/b/c), (i) the *steepest normal’® yield curve (figures 7a/b/c) and (iii) the ’steepest inverted’
average yield curve (figures 8a/b/c). Note that the latter two series are extreme observations,

making it interesting to see how the model behaves in these circumstances.
Insert figures 6a/b/c — Ta/b/c — 8a/b/c here

From these term structure graphs, one notices that the multi-factor CIR models are rather
flexible in the shapes that it may assume. We notice the superiority of the three-factor model
over the one- and two-factor models in fitting the average term structure. For the two other
series of graphs, the fit is reasonable in general and the superiority of the three-factor model

is frequently clear.

Insert figures 9a/b/c here

"In spite of the statistical rejection and in order to demonstrate the usefulness of the model, we plan to
oppose our one period ahead term structure prediction against a random walk model where the one period
ahead forecast of the term structure is the current term structure.

®'Steepest normal’ is to be understood as there where the spread between the 5 year rate and the 3 month
rate is maximally positive, 'steepest inverted’ as there where the same spread is maximally negative.

14



Another test consists in simply regressing yields on factors and comparing the regression
coeflicients with the factor loadings. If the model is any good, these should be comparable
in shape and magnitude. We only included the test for the three-factor model. From figures
8a/b/c, we can graphically see that the model performs well in this respect, though there is

no econometric method available to formalize this statement.

4.4 Explaining Correlations

Multi-factor models are designed to model the correlations among the different bonds by a
limited number of factors. If any good, these models should also account for the correlation
between markets. This will be investigated by means of a correlation structure analysis. Table
7 provides the correlation matrix of a selected number of bond yields for the USA, Germany

and the UK. Interest rates taken are the 3-month, 6-month, 1 year and 5 year rates.
Insert table 7 here

It is clear from the tabulated correlations that single-factor models must fail dramatically.
Typically, the within market correlations tend to be the highest, of the order of 85% or more.
Also, we find that the correlations tend to decline with the difference in maturities of the
bond considered. This pattern is observed in all three countries and calls for a multi-factor
approach to the term structure. Although within market correlations are without exception
the highest, correlations between markets are not negligible. Relatively high correlations
between the USA and the UK as well as between Germany and the UK are observed while
correlations between Germany and the USA are weak and only exist for the longer maturities
at best. If multi-factor models are to be used for pricing or risk management, these models
should also be able to model the observed international correlations. The one-factor models
will fail to fit simultaneously the high correlations between the USA and the UK and that
between the UK and Germany on the one hand and the weak correlations between the USA
and Germany on the other hand. Here we focus on the three-factor models in trying to
replicate the observed correlations.

The within and between market (unconditional) correlations can be recovered from the esti-
mated parameters of the model and the covariance matrices of the factors. More specifically,

considering bonds with maturities 71 and 75 for markets H and F, respectively, we have that

Z ZBivH (71) Bj,r (72) cov (X 1, X F)
corr (Y (71),Yp(19)) = =14=1 ‘ 97
(Yu(71),Yr(72)) Joar a ) o o) (27)
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Note that we have imposed zero correlation for all maturities and countries with the mea-
surement error. Obviously, this condition might breakdown in practice. We did not impose
the conditions that the factors driving a market’s yield curve should be uncorrelated. Factors
can be correlated between markets. Note that the correlation can be decomposed into K2
components, each of these components focuses on a specific relation among the factors. We
are therefore able to determine the contribution of the co-movement among factors (interna-
tionally) to the final correlation of the yields. This decomposition together with the computed

values for the model’s correlations are tabulated in tables &-11.
Insert tables 8-11 here

First, the models’ implied correlations are broadly speaking in line with the observed within
market correlations. In this respect the model seems to match and model the data rather well.
The deviations between the implied correlation and the observed one is due to covariation
with the measurement errors. Note, however, that the assumption of uncorrelated factors
does not verify completely. In table 8 there is evidence that the alternative factors have some
correlation, most outspoken in the USA. Thus the model tends to reproduce the observed
within market correlations rather well.

Tables 9-11 present the implied correlation of yield curves between countries as well as the
contribution of each combination of the factors. Again, we see that the empirical correlations
tend to be reproduced rather well by the model. The interesting aspect of these tables is
that they give us a clear view of what causes the correlations. One could ague for instance
that the German and USA market are not correlated, especially so at the short end of their
term structures. However, there is a clear correlation between the German third factor and
the UK third factor and between the USA third factor and the UK third factor. Hence,
a tentative explanation would be to assume that there are two autonomous blocks in the
world, Germany and the USA, being linked only at the long end of their term structures,
while the UK is somewhere in between, undergoing the effects of both blocks. Whatever the
interpretation, an important finding is that the factors for each of the countries tend to have
strong correlations internationally, suggesting that some of these factors may be international

factors.

5 Conclusion

In this paper we have estimated a multi-factor CIR model for the yield curves of the USA,
Germany and the UK for the period 1987-1999. To identify the latent factors we applied the
Kalman filter procedure, which efficiently incorporates both the cross-sectional information

in the yield curve as well as the intertemporal information for the interest rates.
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The high correlation among the yields within a market has been the main motivation for
explaining yield curve dynamics by means of a limited set of factors. We find that the three-
factor version of the CIR model broadly reproduces the high correlations observed within each
of the markets. Moreover, the CIR model (estimated separately for each of the countries)
reproduces the observed correlations between markets as well. An important finding here
is that the factors for each of the countries tend to have strong correlations internationally,
suggesting that some of these factors may be common factors.

We found that the three-factor models give an economically more or less adequate description
of the yield curves. This conclusion is in line with previous research, indicating that two to
three factors are necessary but sufficient for describing the yield curve dynamics by means
of multi-factor CIR models. In line as well with the literature, we find firm evidence to
statistically reject the CIR multi-factor model as an adequate method of describing the term
structure. Pricing errors are biased, autocorrelated, and non-normal. We argue that the
multi-factor model performs well in capturing the dynamics of the term structure, but fails
to mimick the shape of the term structure simultaneously. An interesting and promising way
to tackle this problem is to allow for a more flexible parametrization of the market price of
risk, as in Duarte (1999).

A logical next step is then to try to model the correlations both within and between markets
by means of a limited set of national and common factors. Such extension may prove essential
for applications of the CIR-models in international finance. We plan to pursue this direction

of research in the near future.
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Table 1: Summary statistics of the USA, Germany and UK yield data.

USA
Maturity 3 6 12 60
Mean 6.04 6.09 6.20 7.28
Stan.Dev. 1.76 1.72 1.65 1.46

Excess kurtosis  -0.6660 -0.6629 -0.7101  -1.3009
(.10)¢ (.10)¢ (.08)¢ (.00)*

Skewness 0.2572  0.2527  0.2288 0.1968
(20 (21)® (26  (.33)°
p(l) 0.9973  0.9971  0.9968 0.9967
p(12) 0.9973  0.9971  0.9968  0.9967
GERMANY
Maturity 3 6 12 60
Mean 5.78 5.77 5.71 6.47
Stan.Dev. 2.32 2.27 2.15 1.48

Excess kurtosis  -1.4059 -1.3815 -1.3166 -0.9555
(.00)¢ (.00)* (.00)* (.02)¢

Skewness 0.4038 0.4116 0.4434  0.2654
(.05)°  (04)° (03 (19)°

p(1) 0.9987 0.9986 0.9984  0.9979
p(12) 0.9987 0.9986 0.9984  0.9979
UK
Maturity 3 6 12 60
Mean 8.91 8.81 8.65 8.79
Stan.Dev. 3.09 2.95 2.69 1.96

Excess kurtosis  -0.9455 -0.9037 -0.8654 -0.8008
(0.02)*  (.03)* (.03)% (.05)%

Skewness 0.6548 0.6534 0.6134 0.2902
(.00)° (00 (00)°  (15)°

p(1) 0.9964 0.9963 0.9964  0.9965
p(12) 0.9964 0.9963 0.9964  0.9965

Mean and standard deviations reported in percentages p.a. Maturity
expressed in months. p(k) is the kth order autocorrelation. Superscript
“ denotes the significance level in percentage at which the null of no
excess kurtosis can be rejected. Superscript ° denotes the significance
level in percentage at which the null of skewness can be rejected.
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Table 2: Estimated parameters for K-factor models for the USA.

K=1 K=2 K=3

K1 0.2575 0.4185 2.4274
(0.0538) (0.0885) (0.1698)

0, 0.0568 0.0372 0.0196
(0.0096) (0.0077) (0.0005)

o1 0.0463 0.0550 0.1071
(0.0032) (0.0099) (0.0603)

A -0.1180 -0.0125 -0.0090
(0.0459) (0.0849) (0.0450)

K2 0.0002 0.0018
(0.1082) (0.0207)

0, 0.0001 0.0001
(0.0523) (0.0012)

o 0.0503 0.0435
(0.0204) (0.0233)

Ao -0.1855 -0.2993
(0.1041) (0.0171)

K3 0.2285
(0.1018)

03 0.0292
(0.0134)

o3 0.0865
(0.0317)

A3 -0.1054
(0.1084)

Ram 0.0014 0.0012 0.0006
(0.0002) (0.0001) (0.0001)

Rgm 0.0005 0.0000 0.0000
(0.2296) (0.0008) (0.0007)

Piom 0.0019 0.0014 0.0006
(0.0001) (0.0001) (0.0001)

Rgom 0.0073 0.0008 0.0005
(0.0003) (0.0009) (0.0008)

Log L 2551 2772 2890

% 10 276 661 104 135 2437 379
p — value 0.00000 0.00000 0.00000
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Table 3: Estimated parameters for K-factor models for Germany.

K=1 K=2 K=23
K1 0.3350 0.3368 1.8788
(0.0492) (0.0493) (0.1233)

0, 0.0490 0.0209 0.0234
(0.0064) (0.0030) (0.0015)

o1 0.0415 0.0538 0.0918
(0.0035) (0.0063) (0.0419)

A -0.1056 -0.0010 -0.0214
(0.0469) (0.0490) (0.1004)

Ko 0.0000 0.0002
(0.0899 ) (0.0187)

0, 0.0000 0.0000
(0.0324) (0.0011)

o 0.0336 0.0139
(0.0117) (0.0081)

Ao -0.2827 -0.6788
(0.0888) (0.0199)

K3 0.1555
(0.0129)

03 0.0440
(0.0015)

o3 0.0761
(0.0249 )

A3 -0.0010
(0.0118)

R3m 0.0017 0.0015 0.0008
(0.0002) (0.0001) (0.0001)

Rem 0.0000 0.0000 0.0001
(4.0801) (0.0002) (0.0006)

Riom 0.0025 0.0017 0.0003
(0.0002) (0.0001) (0.0001)

Rom 0.0068 0.0005 0.0000
(0.0003) (0.0023) (10.0000)

Log L 2523 2755 2966
% 7 006 068 57 670 171 569
p — value 0.00000 0.00000 0.00000
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Table 4: Estimated parameters for K-factor models for the UK.

K=1 K=2 K=3

K1 0.3346 0.6505 2.3033
(0.0479) (0.0517) (0.1537)

0, 0.0802 0.0395 0.0365
(0.0096)  (0.0027)  (0.0006)

o1 0.0550 0.0793 0.1149
(0.0058) (0.0138) (0.0710)
A -0.0110 -0.0010 -0.0010
(0.0418) (0.0436) (0.0070)

PR 0.0001 0.0008
(0.0521) (0.0070)

05 0.0001 0.0001
(0.0357) (0.0008)

o 0.0517 0.0483
(0.0183) (0.0102)

A2 -0.1523 -0.3068
(0.0531) (0.0047)

K3 0.3756
(0.0078)

03 0.0180
(0.0012)

03 0.1274
(0.0527)

A3 -0.0010
(0.0065)

Ram 0.0022 0.0019 0.0009
(0.0003) (0.0001) (0.0001)

Rem 0.0000 0.0000 0.0000
(0.0910) (0.0004) (0.0000)

Riom 0.0027 0.0018 0.0006
(0.0002) (0.0001) (0.0001)

Rom 0.0086 0.0012 0.0009

(0.0004) (0.0017) (0.0006)

Log L 2365 2574 2725
X2 87 257 38 968 83 279
p —value 0.00000 0.00000 0.00000
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Table 5: RMSE for K factor models.

RMSE K=1 K=2 K=3

USA | 29.7 36.8 31.2
3month GER | 27.7 289 259
UK 45.3 65.3  56.1

USA | 322 396 339
6 month GER | 28.3 309 276
UK 46.8 65.8 56.2

USA | 41.1 453 37.7
lyear GER | 39.7 376 283
UK 56.0 66.9 54.2

USA | 787 489 39.7
dyear GER | 71.7 379 336
UK 93.1 59.2 50.1

RMSE is reported in basis points.

Table 6: Fitting the yield curve: fitting errors.

Pyl < 0.01%] P[] <0.1% P[] <05% P[¢] < 1.0% P[d] < 3.0%)
USA 4.9 34.7 91.0 99.3 100.0
3 month GER 6.3 47.2 93.7 99.3 100.0
UK 2.8 33.3 86.1 95.1 99.3
USA 2.8 29.9 88.2 99.3 100.0
6 month GER 5.6 42.4 93.7 98.6 100.0
UK 4.9 30.6 83.3 95.1 99.3
USA 1.4 24.3 84.7 98.6 100.0
1 year GER 2.8 41.0 93.7 98.6 100.0
UK 2.1 28.5 80.6 95.1 99.3
USA 1.4 21.5 84.0 97.9 100.0
5 year GER 4.2 25.0 93.7 98.6 100.0
UK 2.1 21.5 84.7 96.5 99.3

The probabilities in the table are reported as percentages.
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Table 7: Correlations within and between bond markets.

USA USA USA USA GER GER GER GER UK UK UK UK

sm Tem rlu r5y sm Tem rlu r5y Tsm Tem rly r5y
I.USA K
tra
rfSA 1 99 99

SA
rl: 85 .87 .90

gL 05 -06  -05 .21 :
PR 00 00 .00 26 | .99 :

PR o7 06 07 32 | .99 99 -
rgPfl 20 20 22 46 | 88 90 .93

rg ks 72 .70 .68 74 .59 63 67 .66 :
gK o2 6 57 61 .66 66 | .99 :

rgg | 6 75 7479 | 55 .59 .64 67 | .99 .99 -
rg | 70 71 72 8 | 58 .62 67 .78 | 90 91 .94

Bold numbers refer to correlations across bond rates within the same market (country). Normal font is
used for correlations of bonds between markets (countries). The correlations were computed on a sample
containing monthly observation of the yield curves.

25




Table 8: Loading factor weighted correlations within the same market .

Gy |ealenlen|eylen | ad|a] @] otal | rea |
Correlation between US bond rates
( Yyl 100]-06|-01]-06| .07 |-01]-01]-01].05].95].99
corr (Y450, yise) | .99 | -07 | -01 | -06 | .08 | -00 | -.01 | -01 | .03 | .95 | .99
corr (Y450, yuse) | 88 | -14 | -00 | -05 | .17 | -00 | -.01 | -02 | .01 | .82 | .85
corr(ygsd, yis) | .99 | -.07 | -01 | -06 | .08 | -01 | -.01 | -01 | .03 | .96 | .99
( )
( )

usa usa
corr y3m 7y6m
usa usa

corr(yysa yusa) | 88 | -15 | -.00 [ ~05 | .19 | -00 | -.01 | -.02 | .01 | .84 | .87
89 | -15 | -00 | -06 | .21 | -.00 | -.01 | -01 | .00 | .88 | .90

usa usa
corr yly ,y5u
Correlation between German bond rates

corr(Yar Y ) | 299 | -01 | -.04 | -01 | .00 | -.00 | -.05 | -.00 | .09 | .97 | .99
corr (Y3, Y1y ) | 1.01 | 02 | -03 | -01 | .00 | -.00 | -.05 | -.00 | .07 | .97 | .99
corr (Y3, Y2y ) | 1.09 | -14 | -01 | -01 | .01 | -.00 | -.05 | -.03 | .02 | .89 | .88
corr(Ygpm Y1y ) | 1.01 | -02 | -03 | -.01| .00 | -.00 | -.04 | -.00 | .06 | .97 | .99
corr(Ygem » ‘57;7") 1.09 | -14 | -01 | -.01 | .01 | -.00| -.04 | -.02 | .02 | .90 | .90
corr(yt, ,yay ) | 111 | -14 | -01 | -.02| .02 | -.00 | -.03 | -02 | .01 | .92 | .93

Correlation between UK bond rates
y3m, yﬁm) .75 .05 -.01 .05 .03 .00 -.01 .00 .06 93 | .99

corr

(
corr (k| yly By | 75 | .06 | -00| .05 | .03 | .00 |-01| .00 .04 93].99
Con(y3m,y5y) 55 | .17 | -00 | .03 | .09 | 00 | -.00 | .01 | .01 | .85 | .90
corr(yk | yly By | 75| .06 | -.00 | .05 | .03 | .00 |-01| .00 | .03 | .93 |.99
c011(y6m,y5g) 55 | 17 | -00 | .04 | .09 | 00 | -00| .01 | .01 | .86 | .91
(

corr

YT 1y y5y) .95 A7 | -00 | .04 A1 .00 | -.00 [ .01 .01 .88 | 94

Note that correlation contributions (¢, 7) and (j,4), 7 7 ¢ should not be identical since the respective loadings
are different, certainly at the long end of the term structure.
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Table 9: Correlations between USA and German markets and state factor corre-
lations.

(33) | (32) | 3D [ (23) [ (22) | (21 | (1,3) | (1,2) | (11) | total | real

corr(y4s® yg "y | .02 | .00 | .25 | .16 | -.00 | .01 | .03 | 00 | .01 | -.01 | -.05
corr(y§s%, yde"y | .02 | .01 | -21 | .16 | -.00 | .01 | .03 | -.00 | .01 | .02 | .00
corr(y§mts Y1, ) | 02 | .01 | -15 | .16 | -.00 | .01 | .03 |-00 | .01 | .08 | .07
corr(Y§mt sy, ) | 02 | .06 | -05 | .17 | -00| .00 [ .03 |-03 | .00 | .20 | .20
corr(ygs® yfy | .02 | .00 | -.25 | .17 | -.00 | .01 | .02 | 00 | .01 | -.01 | -.06
corr(ygse y*"y | 02 | .01 | -21 | .17 | -00 | .01 | .02 | -00 | .01 | .03 | .00
corr(ygt s Y1, ) | 02 | .01 | -15 | .17 | -.00 | 01 | .02 | -00 | .01 | .08 | .06

usa ,,9€er

( )
( )
( )
( )
( )
( )
( )
corr(Ygt sy, ) | 02 | .06 | -.05 | .18 | -.00 | .00 | .03 |-03 | .00 | .21 | .20
Wi Yqm) | 02 | 00 | -26 | .19 | -00 | .02 | .02 | -00 | .01 | -00 |-.05
( )
( )
( )
( )
( )
( )
( )

corr

corr(yip®, yga) | 02 | 01 | =21 | 19 | -00 | 01 | .02 | -00 | .01 | .04 | .00
corr(yiy®,yt, ) | 02 | .01 | -16 | .19 | -00 | .01 | .02 | -00 | .00 | .09 | .07
corr(yiy®,yg, ) | 02 | .06 | -05 | .20 | -.00 | .00 [ .02 |-02| .00 | .23 | .22
corr(yge®, yqn) | 02 | .00 | -22 | 41 | -00 | .04 | 00 | -00 | .00 | .25 | .21
corr(yge®, ygr) | 02 | .00 | -19 | 41 | -00 | 03 | .00 | -00 | .00 | .28 | .26
corr(ygs®,yf, ) | 02 | .01 | -14 | 42 | -00 | .02 [ .00 |-00 | .00 | .33 | .32

usa ,,9er

corr(y¥sa y ") | 02 | 05| -05 | 45 | -01 | .01 | .00 | -00| .00 | 47 | .46

Table 10: Correlations between USA and UK markets and state factor correlations.

B3y 6nle3d ]| e ey )] a2 | a1 ttotal | real
corr yggg,ygm) 55 | .03 | -09] .06 | .03 .02 .06]-01] .04 .68].72
corr ygﬁ,yﬁm) 55 | .04 | -08] .06 | 03] 01| .06]-01].03]|.69]|.74
y;j,fg,yly) 55 | .04 | -06| .06 | .04 | 01| .06 |-01].02]|.71]|.76
corr yggg,%y) 40 | 12 | -02 | 04 | 10 | 00 | 04 | -03 | 01 | 67 | .70
yg;f,ySm) 55 | .03 |-10] 06 | 03] 02| .05|-01].03]|.67|.70
yggg,yﬁm) 55 | .04 | -08] .06 | .03 ] .02 .05 |-01].02]|.69|.72
yggg,yly) 55 | 04 |-06] .06 | .04 | 01| .05 |-01]w.02]|.71]|.75
)

(
(
(
(
(
(
(
corr(yggg,y@ 40 | 12 | -02 | .04 | 11 | .00 | .04 | -02 | .01 | .67 |.71
(
(
(
(
(
(
(
(

corr

corr

corr

corr

cor

-

yga,yﬁm 56 | .04 | -08| .07 | 04 | .02 | .03|-00]|.02|.68 .71

y?f;a,yly) 56 | .04 | -06 | .07 | .05 | .01 | 03 |-01] .01 | .71 |.74
)

corr

yﬁja,ygm) 56 | .03 |-10 | .07 | 03 | .02 | .03 |-00]| .02 | .67 | .68
)

corr

yﬁ“,y@ 41 | a2 | -02 | .05 | 12 | 00 | 02 | -02 | .00 | .69 | .72

corr ygysa,ySm) 49 | .03 | -08 | .15 | .08 | .05 | .01 | -00 | 00 | .72 | .74

corr ygysa,yﬁm) 49 | .03 |-07 | .15 | 08 | .04 | .01 | -00| .00 | .73 | .76

corr ygga,yly) 49 | .04 |-05| .15 | 10 | .03 | .01 | -00 | .00 | .76 | .79

corr yg—fg“,y@) .36 A0 | -02 ) .11 27 .01 .01 -.00 [ .00 .83 | .86

corr
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Table 11: Correlations between UK and German markets and state factor corre-
lations.

33) 132 G |23 ]22]ED]13) ] 12 | ({1 | total | real
Yo ,ygm) 55 | .09 | .08 | -.01 | .00 [ -.00 | -17 | -01 [ .05 | .58 | .59
YT yuky 1 55 | .10 | .07 | <01 | .00 | -00 | -17 | -.01 | .04 | .57 | 57
y3m,y1y) 55 | 12 | .05 | -01 | .00 | -00 | -17 | -.01 | .03 | .55 | .55

ger ydRy | 40 | 32 | 01 | -01 | .01 | -00|-12 | -03 | .01 | .59 | .58

corr
corr
corr
corr y3m,y5y
me,y3m) 55 | .09 | .08 | -01| .00 |-00]|-14|-01| .04 | .60 | .63
y6m,y6m) 55 | 10 | .07 | -01 | 00 | 00 | ~14 | 01 | .03 | 59 | .61

y6m,y3y) 55 | 12 | .05 | -01 | .00 | -00 | -14]-01| .02 | .58 | .50
L)

corr

corr

(

(

(

(

(

(

(

(Y2 40 | 32 | .02 | -01 | .01 | -00|-10]-03 | .01 | .62 | .62
corr(yggr,y3m) 56 | .09 | .08 | -.01 | .00 | -.00 | -.10 | -.01 | .03 | .64 | .67

(yfj’“,yﬁm) 56 | .10 | .07 | -01 | .00 | -00 | -.10 | -.01 | .03 | .63 | .66

Y, ,yly) 56 | 12 | .05 | -.01 | .00 | -.00 | -11 | -.01 | .02 | .62 | .64

Wl yeky | 41 | 33 | 02 | -01 | .01 |-00|-08|-02]| .01 | .66 | .67

(ygzr,%m) 60 | .10 | .09 | -11 | .02 | -04 | -04 | -.00 | .01 | .64 | .66

(Y8, »yém) | 60 | 11 | .07 | -11 | 03 | -.03 | -04 |-00 | .01 | .64 | .66

(ygj‘,yly) 60 | 13 | 05 | -11 | .03 | -02 | -04 | 00 | .01 | .65 | .67

(e YRy | 44 | 35 | .02 | -08 | .08 |-01 |-03|-01]| .00 | .77 | .78
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Factor loading

Figure 9a : USA 3 factor model : model test.
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Figure 9b : Germany 3 factor model : model test.
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Figure 9c : UK 3 factor model : model test.
2.5
) /
15
14
0.5
0 ! : : :
0 30 40 50 60 70

Maturity in months

—a— factor 1/3 model
—a— factor 2/3 model
—eo— factor 3/3 model
—m—factor 1/3 ols
—a— factor 2/3 ols
—e— factor 3/3 ols

70

—g— factor 1/3 model
—a—factor 2/3 model
—o— factor 3/3 model
—m—factor 1/3 ols
—a— factor 2/3 ols
—e— factor 3/3 ols




frequency (144 datapoints)

Figure 5a : USA 3 factor model : histogram of fitting errors.
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Figure 5b : Germany 3 factor model : histogram of fitting errors.

B3 month

B6 month

B 12 month

60 month

T T T T T T =
-09% -04% -0.2% 0.0% 0.2% 0.5% 0.7% 0.9% 1.1% 1.3% 1.6% 1.8% 2.0% 2.2% 2.4%
absolute fitting errors in %
Figure 5c : UK 3 factor model : histogram of fitting errors.
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Figure 8a : USA : steepest inverted term structure (month 28, yield difference -0.00588) and the K

factor model fits.
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Figure 8b : Germany : steepest inverted term structure (month 72, yield difference -0.01819) and the K

factor model fits.
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Figure 8c : UK : steepest inverted term structure (month 32, yield difference -0.03231) and the K
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Figure 8a : USA : steepest term structure (month 62, yield difference 0.03184) and the K factor model

fit.
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Figure 8b : Germany : steepest term structure (month 112, yield difference 0.02536) and the K factor

model fit.
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Figure 8c : United Kingdom : steepest term structure (month 88, yield difference 0.0344) and the K

factor model fit.

10

20

30 40

maturity in months

50

60

70

data

—— 3 factor model
—X— 2 factor model
—B— 1 factor model

data

—24— 3 factor model
—X— 2 factor model
—B&—1 factor model




% p.a.

2.2
21
2.0
1.9
1.8
17
1.6
15
14
13
1.2
11
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Figure 3 : 5 year yield risk premia for the different countries considered.
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Figure 1a : USA yield data for selected maturities.

10%

4%

2%

——3 month
—*—6 month
—— 12 month
—=— 60 month

—3 month
—*—6 month
——12 month
—=—60 month

——3 month
——6 month
——12 month
—=—60 month

0% T T T T T T T T T T T
Apr-87  Apr-88  Apr-89  Apr-90  Apr-91  Apr-92  Apr-93  Apr-94  Apr-95  Apr-96  Apr-97  Apr-98
Date
Figure 1b : German yield data for selected maturities.
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Figure 1c : United Kingdom yield data for selected maturities.
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