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Abstract
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1 Introduction

The challenge for an empirical model of the term structure of interest rates is to
jointly describe the cross-sectional shape of the yield curve with its development
over time. A range of alternative theoretical term structure models, based upon
no arbitrage or equilibrium arguments, has been proposed in the literature; see, for
example, Vasicek (1977), Dothan (1978), Langetieg (1980) and Cox, Ingersoll and
Ross (1985, CIR hereafter). Most of these models are formulated in continuous
time and are tightly parametrized.

A wide range of empirical studies exists examining the term structure of interest
rates exploiting either the cross-sectional or the time-series dimension of the data.
Some recent examples are Brown and Dybvig (1986), Chan et al. (1992), Brown
and Schaefer (1994), Aït-Sahalia (1996) and Gray (1996). Several recent stud-
ies focus upon both dimensions of the term structure simultaneously and provide
empirical results for a¢ne term structure models; see for example Longsta¤ and
Schwartz (1992), Chen and Scott (1993), Pearson and Sun (1994), Jegadeesh and
Pennacchi (1996), Bams and Schotman (1997), Duan and Simonato (1998) de Jong
and Santa-Clara (1999), de Jong (2000), Duarte (2000) and Piazzesi (2000). These
studies use panel data to estimate the models’ parameters more e¢ciently than
is possible from considering a single dimension only. They di¤er in their assump-
tions about the number of factors that drive the term structure, their stochastic
processes, and the random measurement errors upon (some of) the observed yields.
A signi…cant number of studies allow for normally distributed measurement errors
upon all maturities and use maximum likelihood combined with a Kalman …lter
to estimate the model (and to extract the unobserved factors).

In this paper we formulate a discrete time a¢ne term structure model based
upon two underlying factors thereby focussing on both dimensions of the term
structure simultaneously. Starting from a discrete time pricing kernel approach,
assumptions are made about the conditional distribution of the (log) stochastic
discount factor as a function of two unobserved factors; see also Backus and Zin
(1994), Campbell, Lo and MacKinlay (1997) and Gong and Remolona (1997).
From these assumptions direct implications can be derived for the observed term
structure data that correspond to an a¢ne yield speci…cation. Next, we allow for
additional noise in the observed yields by introducing mean zero measurement er-
rors. In contrast to other studies, we only impose weak distributional assumptions
and estimate the model parameters using the generalized method of moments ex-
ploiting a fairly small number of moment conditions. This procedure allows us to
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examine the empirical performance of the models in a way that does not depend
upon, for example, assumed joint normality or the imposition of zero measurement
errors upon some of the yields. Moreover, the use of GMM enables us to calculate
the overidentifying restrictions test that automatically provides a general misspec-
i…cation test for the a¢ne term structure models estimated in this paper. Such a
test is typically not performed in previous studies.

Empirical results for the USA generally indicate that a¢ne term structure
models are not very successful in explaining the term structure of interest rates
(see, for example, Duan and Simonato, 1998, and Geyer and Pichler, 1998), while
empirical studies that investigate the implications of a¢ne term structure models
for other countries are scarce. To analyze whether a¢ne term structure models
produce more favorable results in other countries, we estimate identical models for
four di¤erent countries: the USA, Germany, Japan and the UK. To do so, we use
weekly data on zero-coupon bond yields as implied by LIBOR and swap rates.

The remainder of the paper is organized as follows. Section 2 introduces the
two-factor a¢ne term structure models that are used in this paper. Section 3
describes the econometric model and the estimation technique. In section 4 we go
into more detail about the data we use throughout the paper, while in Section 5 the
empirical results are presented. In Section 6 we provide some further explanations
of the empirical results and …nally, Section 7 concludes.

2 A Two-Factor A¢ne Model for the Term Struc-
ture

A¢ne term structure models have the property that all bond yields are a¢ne1

functions of a set of state variables (Du¢e, 1992, and Du¢e and Kan, 1996). In
the empirical literature, a¢ne models are very popular because of their tractabil-
ity. Moreover, the class of a¢ne model nests several well-known equilibrium term
structure models, like those proposed by Vasicek (1977) and CIR (1985). On the
other hand, the assumption in a¢ne yield models that the mean and variance
functions are a¢ne in the state variables imposes substantive restrictions upon the
shape of the mean yield curve and the term structure of volatility. It is therefore
an interesting question to analyze to what extent a relatively simple two-factor
a¢ne model is able to capture the observed term structure of interest rates for a
number of countries.

1A function f is called a¢ne in x if it can be written as f (x) = ® + ¯x; for some constants ®
and ¯.
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It is well known that any asset pricing model can be written as

Pt = EtfMt+1Xt+1g; (1)

where Pt is the price of an asset at time t, Xt+1 is the asset’s payo¤ at time t+1;
Et is the expectation operator conditional upon all information available at time
t, andMt+1 is the stochastic discount factor (SDF). The stochastic discount factor
is a strictly positive random variable that does not vary across assets. Alternative
asset pricing models imply di¤erent expressions for Mt+1 (see, e.g., Cochrane, 1999
or Campbell, 2000).

The pricing equation (1) prices all assets, including bonds. Let us denote the
price at time t of a zero-coupon bond that pays o¤ one dollar at time t+n by Pnt.
Then, relationship (1) implies

Pnt = EtfMt+1Pn¡1;t+1g: (2)

The price of a single-period bond (n = 1) is

P1t = EtfMt+1g =
1

1 + Rft+1
(3)

where Rft+1 is the short-term risk free rate. This shows that the conditional ex-
pectation of the stochastic discount factor is simply the price of the short-term
riskless asset. Solving (2) we obtain

Pnt = EtfMt+1Mt+2:::Mt+ng = EtfM (n)
t+1g; (4)

whereM (n)
t+1 denotes the n-period SDF, de…ned as the product of n successive one-

period SDFs. Thus, the price of an n-period bond is simply the expectation of the
n-period SDF, so that for an investor with a horizon of n periods, the n-period
bond is riskless (Campbell, 2000). The result in (4) makes clear that a model of
bond prices is equivalent to a time-series model of the SDF; see Backus and Zin
(1994), who explore this fact empirically. The yield on an n-period bond, denoted
by Ynt; is de…ned as the discount rate that solves

Pnt =
1

(1 + Ynt)n
: (5)

The yield equates the bond price to the discounted value of its future payment.
Taking logs of (5) results in

ynt = ¡ 1
n
pnt; (6)
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where ynt = ln(1 + Ynt) and pnt = ln(Pnt). This equality shows that the log bond
yield is a simple linear transformation of the log bond price.

Following Campbell, Lo and MacKinlay (1997, p. 428) and Gong and Remolona
(1997), we make the assumption that the stochastic discount factor and bond prices
are conditionally jointly lognormal. Then (2) can be written as

pnt = Et fmt+1 + pn¡1;t+1g + 1
2
V art fmt+1 + pn¡1;t+1g (7)

where mt+1 = ln(Mt+1). The second term in this expression is due to Jensen’s
inequality. A¢ne yield models have the property that all log bond prices are
linear in the set of state variables describing the movement of the SDF. That is,
the left-hand side of (7) is a linear function of the (potentially unobserved) state
variables. Du¢e and Kan (1996) derive necessary conditions for the SDF to imply
an a¢ne yield model.

The time-series process of the log SDF mt+1 can be represented by the sum of
its conditional expectation and an innovation term, i.e.

mt+1 = Etfmt+1g ¡ "¤t+1;

where Etf"¤t+1g = 0 by construction. The model we investigate is a discrete-
time version of the multifactor CIR model, as introduced by Langetieg (1980).
Several related empirical studies, e.g., Chen and Scott (1993), Duan and Simonato
(1998) and de Jong and Santa Clara (1999) analyze multifactor CIR models for
the USA and …nd that a relatively simple two-factor model is able to describe the
average yield curve reasonably well. For example, Chen and Scott (1993) conclude
that their two factor model signi…cantly outperforms a (non-nested) three factor
model. In line with these studies, we restrict ourselves to two factors and consider
a discrete time version of the two-factor model of Longsta¤ and Schwarz (1992).
Consequently, it is assumed that Etfmt+1g is the sum of two independent state
variables x1t and x2t

Etfmt+1g = ¡x1t ¡ x2t; (8)

where both state variables are assumed to follow a square root process given by

xi;t+1 = (1 ¡ Ái)¹i + Áixit + ¾i
p
xit»i;t+1, i = 1; 2; (9)

and where it is assumed that the shocks »1;t+1 and »2;t+1 are conditionally normally
distributed and mutually independent with mean zero and unit variance. Further-
more, we assume that the error term "¤t+1 is potentially correlated with both the
state variables in the following implicit way:

"¤t+1 = ¸1¾1
p
x1t»1;t+1 + ¸2¾2

p
x2t»2;t+1: (10)
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The coe¢cient ¸i, i = 1; 2;measuring the correlation between the i-th state variable
and the (log)stochastic discount factor, can be interpreted as the market price of
risk of the i-th state variable.

The two-factor model proposed by Campbell, Lo and MacKinlay (1997, p. 438-
441) is a special case of the above model, obtained by setting ¸2 to zero. In the
empirical part of this paper estimation results for the two-factor CIR model will
be presented, as well as for the restricted model with ¸2 = 0 (referred to as the
CLM model).

The model presented above meets all conditions on the log SDF and the state
variables to result in an a¢ne yield model (see Du¢e and Kan, 1993). This implies
that the price function for an n-period bond is a¢ne in the two state variables.
That is2

¡pnt = An + B1nx1t +B2nx2t (11)

for some constants An; B1n and B2n: Recursive expressions for An; B1n and B2n are
obtained in a relatively straightforward fashion. Start with n = 1 in (7). Because
p0;t+1 = 0; the price of a one-period bond is obtained as

p1t = Et fmt+1g+
1
2
V art fmt+1g = ¡x1t ¡ x2t +

1
2
x1t¸21¾

2
1 +

1
2
x2t¸22¾

2
2 =

= ¡(1 ¡ 1
2
¸21¾

2
1)x1t ¡ (1¡ 1

2
¸22¾

2
2)x2t: (12)

From this, it follows that A1 = 0, B11 = 1 ¡ 1
2¸

2
1¾21, and B21 = 1 ¡ 1

2¸
2
2¾22. Then

it is straightforward to show (see Appendix A) that An, B1n and B2n obey the
following recursive patterns:

B1n = 1+ Á1B1;n¡1 ¡ 1
2
(¸1 + B1;n¡1)2¾21;

B2n = 1+ Á2B2;n¡1 ¡ 1
2
(¸2 + B2;n¡1)2¾22;

An = An¡1 + (1¡ Á1)¹1B1;n¡1 + (1¡ Á2)¹2B2;n¡1; (13)

where Á1, Á2, ¹1, ¹2, ¾1, ¾2; ¸1 and ¸2 are the unknown parameters that have to
be estimated. Combining (6) and (11) results in an expression for the (log) bond
yields that is used in the empirical part of the paper:

ynt =
1
n
An +

1
n
B1nx1t +

1
n
B2nx2t

= an + b1nx1t + b2nx2t: (14)
2The minus sign is for convenience only.
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While the state variables x1t and x2t are typically unobserved, equation (14) implies
severe restrictions on the relationships between di¤erent yields at any given point
in time, as well as severe restrictions upon the dynamic evolution of the entire yield
curve. On the other hand, (14) is su¢ciently general to allow for various shapes
of the yield curve, depending upon the two underlying factors. In the empirical
section we shall exploit some of the implications of (14) to estimate the structural
parameters in the model, allowing for deviations from the strict equality in (14)
by introducing measurement errors.

3 Econometric Speci…cation

In this section we develop the econometric speci…cation of the model. First, a
more general notation for the a¢ne term structure model is introduced. Next, it
is shown how the model is extended to incorporate measurement errors and …nally
it is discussed how the generalized method of moments can be used to estimate
the parameters of the model and to test its overall validity.

Assume that m yields are observed, each with a di¤erent time to maturity of
ni months, i = 1; :::;m; and collect these yields in a vector

yt =

2
664

yn1t
...
ynmt

3
775 : (15)

Then de…ne the coe¢cient vector A and matrix B as

A =

2
664

an1
...
anm

3
775 and B =

2
664

b1n1 b2n1
...

...
b1nm b2nm

3
775 (16)

so that the a¢ne yield model can be written as

yt = A+ Bxt; (17)

where xt = ( x1t x2t )
0 and the underlying stochastic process for the factors is

represented by (9) for i = 1; 2. As explained in the previous section, the coe¢cients
in A and B are functions of the parameters of the stochastic processes of the
factors. Following Longsta¤ and Schwartz (1992), Chen and Scott (1993) and
several others, this paper takes a panel data approach in the sense that the model
parameters will be estimated using yield data for a large number of periods.
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3.1 Introducing Measurement Errors

The a¢ne model in (17) predicts an exact relation between the factors and the
yields. If m exceeds 2, as it will in our empirical section, the strict model in (17)
is very unlikely to …t the data. Therefore, we extend the model by introducing
random error terms. While these terms capture any kind of speci…cation and
measurement error, we shall refer to them as measurement errors, as is common
in the literature. Instead of (17), we thus consider the relationship

yobst = A +Bxt + vt; (18)

where yobst is the vector of observed yields and vt = yt ¡ yobst is the vector of
measurement errors. An obvious …rst assumption is that Efvtg = 0 but a wide
range of alternative additional assumptions can be imposed upon the measurement
error terms.

If data are used on as many maturities as factors (in our case two), one can
simply assume there is no measurement error at all and follow a procedure that
has been suggested by Pearson and Sun (1994). This involves “inverting” the
relationship (17) to derive the parameters of the underling stochastic process for
the factors (9), i = 1; 2. The obvious drawback of this approach is that the
results can di¤er substantially depending upon the maturities that are used, while
information contained in any of the other maturities is completely ignored.

Chen and Scott (1993) estimate several a¢ne yield models using data for only
four di¤erent maturities, assuming that the yields of one, two or three maturi-
ties, respectively, are observed without error. The other (linear combinations of)
yields are assumed to be measured with a normally distributed measurement error.
Under these assumptions, it is possible to apply the “inverting” technique to the
maturities observed without error. Obviously, the results will depend upon the
choice of maturities that are assumed to be observed without error.

Many other studies assume that all interest rates are observed with some mea-
surement error. For example, Jegadeesh and Pennacchi (1996) and Duan and
Simonato (1998) assume that the measurement errors are both serially and cross-
sectionally uncorrelated. Bams and Schotman (1997) allow for correlation between
the errors for di¤erent maturities, where the strength of this correlation depends
on the di¤erence in maturity. Lund (1994) and de Jong (2000) assume that the
measurement errors are serially uncorrelated, but cross-sectionally correlated with
a time-invariant covariance matrix. Because all these studies use maximum likeli-
hood and the Kalman …lter to obtain estimates, the common assumption is that
the measurement errors are normally distributed.
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In contrast to the studies mentioned above, we make extremely weak assump-
tions in this paper about the measurement errors. The advantages of this are
that the parameter estimates are robust and that we can test to what extent the
two-factor model is able to explain the observed term structure data even if one
allows for very general forms of measurement errors. The potential price for these
weak assumptions is that very little structure is imposed upon the model such
that parameter estimates may become relatively inaccurate. In the sequel, we
shall exploit a number of moment conditions implied by the model to estimate the
unknown coe¢cients and use the overidentifying restrictions test to test the overall
speci…cation of the model. Note that with maximum likelihood estimation general
misspeci…cation tests (which do not involve a well-speci…ed alternative hypothesis)
are typically not performed.

The assumptions we make about the measurement errors vt can be summarized
as follows:

Efvtg = 0; V arfvitg = !2i ; i = 1; 2; :::;m; (19)

covfv1t; v1;t¡kg = 0; k = 1;2; 3; :::: (20)

That is, all measurement errors have an unconditional mean of zero, while the
measurement error on the one-month yield exhibits no autocorrelation. The latter
is an identifying assumption to ensure that the two factors drive the dynamics of the
one-month interest rate (rather than its measurement error). No restrictions are
imposed upon the contemporaneous covariance matrix of all measurement errors,
while arbitrary forms of autocorrelation in the measurement errors are allowed
for all maturities exceeding one month (up to a …nite lag length). The usual
assumption is imposed that the measurement errors are independent of the true
yields.

3.2 The Estimation Method: GMM

The assumptions in (19), (20) are combined with (18) to derive a number of mo-
ment conditions that are exploited to estimate the unknown parameters. In the
empirical section, we shall use a set of unconditional moments based upon the ex-
pected yields, the variances of the yields and the autocovariances of the one month
yield, using weekly observations on a selected number of yields with maturities of
one month up to 60 months. The derivations of the appropriate expressions are
presented in Appendix B. These unconditional moments are subsequently used in
a GMM estimation procedure, as developed by Hansen (1982).
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Let us denote the K-dimensional vector of unknown parameters by µ and the
R-dimensional vector of moment conditions as Efut(µ)g = 0; where ut is a vector
function of µ that depends upon observable data (see Appendix B). Furthermore,
denote the corresponding vector of sample moments by gT (µ) = T¡1

P
s us(µ),

where s indexes weeks. Then a GMM estimator for µ is obtained by minimizing
the quadratic form

gT (µ)
0WTgT (µ); (21)

where WT is a weighting matrix satisfying plimWT = W; where W is a positive
de…nite symmetric matrix. Di¤erent weighting matrices lead to di¤erent consistent
estimators for µ: Under a number of regularity conditions (Hansen, 1982), the
resulting estimator, µ̂ say, is consistent and asymptotically normally distributed
with covariance matrix (see Cochrane, 1996)

V fµ̂g =
1
T
(D 0WD)¡1D 0WSWD(D0WD)¡1; (22)

where D is the K £R matrix of derivatives of the moments, i.e.

D = plim @gT(µ)
@µ

; (23)

and S is the covariance matrix of the sample moments. If W is chosen equal to
S¡1, the GMM estimator is “optimal” in the sense that its asymptotic covariance
matrix is as small as possible, and the expression for the covariance matrix reduces
to

V fµ̂g =
1
T
(D

0
S¡1D)¡1: (24)

Below we shall consider two di¤erent choices for the weighting matrix. First,
we consider a one-step estimator based uponWT = I ; the identity matrix, and use
(22) to estimate its covariance matrix. Second, we consider the two-step estimator
using the optimal weighting matrix W optT = Ŝ¡1, where Ŝ is calculated as (see
Newey and West, 1987)

Ŝ =
kX

j=¡k

k ¡ jj j
k

1
T

TX

s=1
us(µ̂1)u

0
s¡j(µ̂1); (25)

where µ̂1 denotes the one-step GMM estimator and k is the number of lags. This
estimator allows for autocorrelation up to order k in the sample moments and is
used because we employ weekly data while the shortest maturity available is equal
to one month.

If the moment restrictions imposed by the model are correct, one can expect
that the corresponding sample moments, evaluated at the GMM estimate µ̂; are
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su¢ciently close to zero. Within the GMM framework it is easy to test this by
means of an overidentifying restrictions test. If the test rejects, one has to con-
clude that the observed data are inconsistent with the joint validity of all moment
conditions. For the one-step estimator µ̂1, the test statistic is calculated as

³1 = gT (µ̂1)0[V fgT (µ̂1)g]+gT(µ̂1); (26)

where “+” denotes a pseudo-inverse and V fgT (µ̂1)g is the (singular) covariance
matrix of the sample moments (evaluated at µ̂1); see Cochrane (1996) for details.
In the case of the e¢cient two-step estimator µ̂, the test statistic can simply be
calculated as

³2 = TgT (µ̂)
0W optT gT (µ̂): (27)

Both test statistics have – under the null hypothesis that all moment conditions
are valid – an asymptotic Chi-squared distribution with R¡K degrees of freedom,
where R ¡ K corresponds to the number of overidentifying restrictions (i.e. the
number of moments minus the number of unknown parameters). The overidenti-
fying restrictions test serves as a general misspeci…cation test of the model in the
sense that the model assumptions are tested against a general unspeci…ed alterna-
tive. This is important, because most recent studies using both dimensions of the
term structure data, use maximum likelihood to estimate the model parameters.
Not only does this require the imposition of much stronger assumptions upon the
measurement errors (typically including normality, homoskedasticity and restric-
tive correlation structures), it also limits the search for misspeci…cations, if any, to
well-speci…ed alternatives.

4 Data and Summary Statistics

Empirical results for term structure models for countries other than the USA are
relatively scarce (see Brown and Schaefer, 1986, for an application using UK data).
In this paper we use data from four di¤erent countries. This way we can compare
the results across countries and answer the question whether the relative failure of
empirical term structure models for the USA extends to other countries. In order
to make a solid comparison between di¤erent countries, data that are comparable
across countries have to be used. While zero-coupon data are perhaps readily
available for the USA, corresponding data sets for other countries are more di¢cult
to obtain.3

3Moreover, in countries like Germany and Japan, investors have to pay taxes on interest
income on government bonds. This implies that government bonds issued in Germany and Japan
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To ensure that the data we use are measured as similarly as possible we con-
struct the yield curves as they are implied by LIBOR (London Interbank O¤er
Rate) and swap rates. Details about the construction of the yield curve data are
given in Appendix C. Note that our data sets do not include zero coupon govern-
ment bond yields, because the interbank LIBOR rates involve a small but nonzero
default risk. As described in Hull (2000, p. 125-127) standard practice for rela-
tively small maturities is to set the LIBOR rate equal to the Treasury note rate
plus an additional premium of about 30 basis points. This swap spread can vary
however, according to demand and supply conditions in the market. Note that
modeling the LIBOR yield curve may be more relevant than the zero coupon yield
curve for government bonds, since most interest rates derivatives are priced using
these LIBOR rates. Several other studies, including Honoré (1997), Du¢e and
Singleton (1999), Dai and Singleton (1999) and Piazzesi (2000), also use data on
LIBOR and swap rates.

The data we use are taken from Datastream, and yield curves are constructed
on the basis of maturities of 1, 3, 6, 12, 24, 36, 48 and 60 months. The data are
on a weekly basis, covering the time span April 7, 1987 to March 23, 1999 (625
observations) for Germany, the UK and the US. For Japan, swap rates were only
available since September 19, 1989, so we employ a smaller sample containing 497
observations.

Table 1 presents some summary statistics of the data. The table shows that
the average yield curve for Germany, Japan and the USA is upward sloping, while
for the UK the curve is reasonably ‡at (with a small inverted hump). For the
USA, mean yields rise from 6% to 7:3%; and for Germany from 5:8% to 6:5%. The
average yields for Japan are much lower, ranging from 3:1% to 4:0%. For each
of the countries the volatility, as measured by the sample standard deviation, is
decreasing with maturity, which makes the estimated volatility curves downward
sloping. Compared to the other countries, the slope of the curve for the USA is
relatively small.

In Figure 1 graphical presentations of the four data sets are provided. The
…gures clearly stress the large time-series variation of the yield curves. Average
yield curves are fairly low in the last few years of the sample, but very high in the
early 1990s. This is the case for each of the data sets, although the level and the
variation in the average yield curve di¤er across the countries. The …gures clearly
indicate that the sample averages of the yield curves are highly dependent on the

are not comparable with, for example, US government bonds. The swap markets are una¤ected
by withholding of taxes and are sometimes more actively traded (see Dai and Singleton, 1999).
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Figure 1: Graphical representation of the yields data
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Table 1: Sample means and standard deviations

Maturity (n) United States Germany Japan United Kingdom

1 0.0599 (0.0180) 0.0576 (0.0231) 0.0314 (0.0276) 0.0887 (0.0315)
3 0.0605 (0.0177) 0.0579 (0.0230) 0.0311 (0.0273) 0.0887 (0.0307)
6 0.0610 (0.0173) 0.0577 (0.0226) 0.0308 (0.0266) 0.0878 (0.0294)
12 0.0621 (0.0166) 0.0572 (0.0213) 0.0307 (0.0255) 0.0863 (0.0268)
24 0.0666 (0.0164) 0.0598 (0.0199) 0.0329 (0.0244) 0.0865 (0.0237)
36 0.0693 (0.0156) 0.0615 (0.0178) 0.0355 (0.0231) 0.0872 (0.0217)
48 0.0713 (0.0151) 0.0632 (0.0160) 0.0379 (0.0218) 0.0875 (0.0202)
60 0.0730 (0.0146) 0.0647 (0.0148) 0.0397 (0.0206) 0.0878 (0.0194)

nobs. 625 625 497 625

Average (annualized) yields for maturities of 1, 3, 6, 12, 24, 36, 48 and 60 months, and sample
standard deviations, April 7, 1987 – March 23, 1999 (September 19, 1989 – March 23, 1999 for
Japan).

exact sample period that is chosen. By means of the chosen moment conditions (see
Appendix B), the GMM estimation procedure used in this paper pays attention to
the average yield curves over the full sample period. However, it should be stressed
that di¤erent sample periods may result in quite di¤erent estimates.

5 Empirical Results

The generalized method of moments requires the numerical optimization of a
quadratic form in the sample moments, which are highly nonlinear functions of the
structural parameters of the model. This makes estimation a complicated numer-
ical exercise. A particular problem we encountered was the separate identi…cation
of ¸i and ¾i, i = 1; 2: To speed up convergence of the numerical optimization pro-
cedure and to obtain good starting values for the one-step GMM estimator, we …rst
estimated a reparametrized version of the model, where we estimated ®i ´ 1

2¸
2
i¾2i

and ¸i; rather than ¾i and ¸i separately: Using these estimates we calculated start-
ing values to obtain the estimates of the parameters of interest that are presented
below.

Moreover, to ensure that the reported estimates indeed correspond to a global
minimum of the objective function we re-started the algorithm for a wide variety
of starting values and we drew several one-dimensional graphs of the objective
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function as a function of one of its arguments. As a result, we are fairly con…dent
that the reported estimates correspond to a global minimum. In estimation, the
parameters corresponding to the measurement error variances are restricted to be
non-negative. For each of the one-month measurement error variances and for
some three-month variances, we obtained estimates at the boundary of zero. In
these cases, we …xed these parameter values at zero and re-estimated the other
parameters.

5.1 Results for the two-factor CLM model

As stressed by Cochrane (1996), the two-step GMM estimator using the optimal
weighting matrix, may involve extreme weights for one or more (linear combina-
tions of) the moment conditions. While this produces asymptotically the most
e¢cient GMM estimator, it may lead to estimators with inferior small sample
properties or to estimates that are economically less interesting. That is, the es-
timation procedure may attach a high weight to a combination of moments that
is statistically measured very accurately, but economically not very interesting.
Ideally though, we expect that the two-step estimates are reasonably close to their
one-step counterparts. Below we shall present results for both the one-step and
two-step procedures.

The estimation results for the CLM model, using the one-step GMM estimator4

are presented in Table 2. As described above, the standard errors are corrected
for the presence of heteroskedasticity and autocorrelation up to four lags. Table
2 shows that the estimates for the parameters describing the process for the …rst
factor (¹1; Á1 and ¾1) are not signi…cant for each of the countries, while most of the
estimates for the second factor are signi…cant. Estimates for the second factor’s
mean reversion parameter Á2, vary between 0.8341 and 0.8607. This indicates that
the second factor exhibits a relatively slow mean reversion with a half life5 of about
4 to 5 months. This is in contrast with the estimates of the …rst factor’s mean
reversion parameter Á1; that vary between 0.0078 for Japan (indicating a half life
of roughly half a week) and 0.6078 for the USA (a half life of almost one and a
half month).

The estimated means for the second factor, ¹2; vary between 0.0299 and 0.0886
and are very close to the sample means of the one-month yields as shown in Table
1. This holds for each of the countries. The unconditional variances of the two

4The one-step GMM estimator uses the identity matrix as the weighting matrix and employs
the moment conditions as derived in Appendix B.

5The half life of a factor is calculated as ln(0:5)= ln jÁij:

14



Table 2: One-step GMM estimation results of the CLM model

Parameters United States Germany Japan United Kingdom

Á1 0.6078 (5.9254) 0.0502 (165.57) 0.0078 (132.42) 0.5182 (5.5749)
Á2 0.8607¤ (0.0246) 0.8341¤ (0.0250) 0.8404¤ (0.0225) 0.8956¤ (0.0277)
¹1 0.0280 (0.1970) 0.0322 (4.1724) 0.0555 (5.9257) 0.0090 (0.0067)
¹2 0.0588¤ (0.0106) 0.0580¤ (0.0235) 0.0299 (0.0258) 0.0886¤ (0.0031)
¾1 0.3593 (4.1487) 0.7644 (116.64) 0.7753 (93.3397) 0.7535 (4.2995)
¾2 0.0429¤ (0.0034) 0.0622¤ (0.0057) 0.1014¤ (0.0349) 0.0532¤ (0.0087)
¸1 -3.8742 (43.545) -1.8457 (280.37) -1.8207 (218.43) -1.8767 (10.707)
¸2 0 (…xed) 0 (…xed) 0 (…xed) 0 (…xed)
!1 0 (…xed) 0 (…xed) 0 (…xed) 0 (…xed)
!3 0.0037 (0.0057) 0.0054 (0.0036) 0 (…xed) 0 (…xed)
!6 0.0095 (0.0062) 0.0144¤ (0.0037) 0.0154¤ (0.0019) 0.0111¤ (0.0033)
!12 0.0115 (0.0118) 0.0164¤ (0.0075) 0.0211¤ (0.0032) 0.0179¤ (0.0029)
!24 0.0160 (0.0151) 0.0202 (0.0147) 0.0234¤ (0.0067) 0.0196 (0.0201)
!36 0.0134 (0.0139) 0.0165 (0.0163) 0.0222¤ (0.0078) 0.0193¤¤ (0.0101)
!48 0.0136 (0.0085) 0.0149 (0.0114) 0.0211¤ (0.0060) 0.0189¤ (0.0057)
!60 0.0152¤ (0.0050) 0.0156¤ (0.0072) 0.0206¤ (0.0042) 0.0191¤ (0.0037)

Â2df 78.449 0.0000 90.108 0.0000 54.578 0.0000 68.407 0.0000
df 6 6 7 7

Notes: ¤;¤¤ denote signi…cance at the 5%, 10% con…dence level, respectively. Standard errors are shown
in parentheses, except for the overidentifying restrictions test, where the p-value is given. The column
“df” indicates the degrees of freedom of the overidentifying restrictions test. Parameters indicated
by “…xed” were …xed at 0. The estimation results were obtained using one-step GMM with the 20
unconditional moment conditions described in the appendix.

factors depend upon ¾i; ¹i and Ái (see Appendix B) and the estimates imply that
the …rst factor is much less volatile than the second factor. All estimates of the
market price of risk parameter have the expected negative sign. This implies that
the average risk premium in this model is positive. Note however that the estimates
are insigni…cantly di¤erent from zero for each of the countries. Furthermore, the
estimates for the standard deviations of the measurement errors are fairly large
and, in general, increase with maturity, while quite a few of them (especially for
Japan and the UK) are signi…cant at the 5% level. Even in the case of very weak
distributional assumptions, the measurement errors appear to play an important
role in …tting the term structure model to the empirical data. This is a clear
indication that the model does not perform very well empirically. Another way
to evaluate the estimated models is by means of an overidentifying restrictions
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Table 3: Two-step GMM estimation results of the CLM model

Parameters United States Germany Japan United Kingdom

Á1 0.5787 (3.9822) 0.0300 (22.137) -0.0148 (23.631) 0.3696 (18.495)
Á2 0.8323¤ (0.0298) 0.8284¤ (0.0174) 0.8613¤ (0.0206) 0.9007¤ (0.0213)
¹1 0.0299 (0.1623) 0.0471 (0.8642) 0.0899 (1.806) 0.0095 (0.0613)
¹2 0.0567¤ (0.0086) 0.0530¤ (0.0056) 0.0200¤ (0.0067) 0.0873¤ (0.0024)
¾1 0.3597 (2.7493) 0.7548 (15.579) 0.7674 (16.659) 0.7255 (13.584)
¾2 0.0442¤ (0.0051) 0.0622¤ (0.0027) 0.0882¤ (0.0125) 0.0499¤ (0.0054)
¸1 -3.8649 (28.643) -1.8689 (38.384) -1.8400 (39.820) -1.9480 (36.437)
¸2 0 (…xed) 0 (…xed) 0 (…xed) 0 (…xed)
!1 0 (…xed) 0 (…xed) 0 (…xed) 0 (…xed)
!3 0.0055 (0.0044) 0.0059¤ (0.0016) 0.0058¤ (0.0015) 0.0080¤ (0.0029)
!6 0.0102¤ (0.0049) 0.0141¤ (0.0011) 0.0134¤ (0.0013) 0.0136¤ (0.0030)
!12 0.0120¤¤ (0.0071) 0.0160¤ (0.0015) 0.0179¤ (0.0017) 0.0183¤ (0.0022)
!24 0.0153¤ (0.0072) 0.0191¤ (0.0020) 0.0199¤ (0.0021) 0.0198 (0.0192)
!36 0.0131¤ (0.0061) 0.0159¤ (0.0021) 0.0193¤ (0.0020) 0.0195¤¤ (0.0105)
!48 0.0131¤ (0.0039) 0.0145¤ (0.0016) 0.0187¤ (0.0018) 0.0190¤ (0.0061)
!60 0.0143¤ (0.0025) 0.0151¤ (0.0012) 0.0182¤ (0.0016) 0.0188¤ (0.0039)

Â2df 80.990 0.0000 87.344 0.0000 36.876 0.0000 49.760 0.0000
df 6 6 6 6

Notes: ¤;¤¤ denote signi…cance at the 5%, 10% con…dence level, respectively. Standard errors are shown
in parentheses, except for the overidentifying restrictions test, where the p-value is given. The column
“df” indicates the degrees of freedom of the overidentifying restrictions test. Parameters indicated by
“…xed” were …xed at 0. The estimation results were obtained using two-step GMM (with the optimal
weighting matrix (25)), with the results of Table 2 as starting values for the parameters and the 20
unconditional moment conditions described in the appendix.

test. For each of the four countries, this test indicates a sound rejection of the
CLM model, which implies that the CLM model is insu¢ciently ‡exible to explain
the imposed moment conditions, even if measurement errors are allowed for. We
discuss the probable causes for these results in section 6 below.

In contrast with the one-step GMM estimator, the two-step GMM estimator
uses an optimal weighting matrix (see Hansen, 1982) and puts a larger weight
on those (linear combinations of) moments that are statistically more accurate.
Asymptotically this can be shown to lead to more e¢cient estimators of the model
parameters.6 The two-step estimation results are reported in Table 3. We can

6The two step GMM estimator is asymptotically e¢cient within the class of estimators that
exploits the set of moment conditions as described in Appendix B.
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Figure 2: Factor loadings for the CLM model (United States and Germany)

see from the table that the magnitudes of the two-step estimates are more or
less comparable to the one-step estimates. In general, the standard errors of the
two-step estimates are smaller, which is to be expected. Almost all the estimated
standard deviations of the measurement errors are signi…cantly di¤erent from zero
and, as before, increase with maturity. Considering the overidentifying restrictions
tests, we can again clearly reject the CLM model for each of the four countries.
Overall, the two-step estimates do not show a more positive picture than the one-
step results.

The implied factor loadings b1n and b2n provide information about the statistical
behavior of the factors and their impact on the shape of the yield curve. Like in
Geyer and Pichler (1998), de Jong (2000), Duarte (2000) and Piazzesi (2000) we
draw these factor loadings for all factors and countries (see Figures 2 and 3). For
a clear interpretation of the factors, we ensure that the sum of both factors is
equal to the one-month yield and therefore we scaled all factor loadings such that
both b1n and b2n are equal to one for the one-month yield (n = 1).7 Moreover,

7For the U.K., we plot the scaled …rst factor loading divided by 100.
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Figure 3: Factor loadings for the CLM model (Japan and United Kingdom)

this scaling eases the comparison of our …gures with those reported in the above
studies.

From Figures 2 and 3 it follows that the coe¢cient of the …rst factor is maximal
for maturities around 25–30 months. This …nding is consistent across countries,
although the magnitude of the factor loadings are somewhat di¤erent. The hump
shape of the curves for the …rst factor indicate that this factor is mainly responsible
for the “curvature” of the yield curve. For the UK this factor seemingly has a huge
impact on the yield curve. However, because the unconditional variance of the …rst
factor is very low, only a very small proportion of the variation in the yield curve
can be attributed to movements of the …rst factor. On the other hand, the second
factor loadings are gradually decreasing with maturity, so that we interpret this
factor to be mainly responsible for the slope of the yield curve.

As explained above, the CLM model is a special case of the two-factor CIR
model, obtained by setting ¸2 to zero. In the next subsection we relax this restric-
tion and present empirical results for the two factor CIR model.
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5.2 Results for the two-factor CIR model

The empirical performance of the two-factor CLM model is unsatisfactory for two
reasons. First, the estimated standard deviations for the measurement errors are
unreasonably large, compared to the sample standard deviations of the yields as
shown in Table 1. Second, the overidentifying restrictions tests uniformly indicate
that the CLM model should be rejected, even when such large measurement errors
are allowed for. One reason why the performance of the two-factor CLM model
is disappointing could be that it is incorrect by assuming that the price of risk of
the second factor is zero (¸2 = 0). Therefore, we shall now relax this restriction
and estimate a two-factor CIR model where both factors are priced. The estima-
tion results for the one-step and two-step GMM estimates of the two-factor CIR
model are presented in Tables 4 and 5, respectively. First, we discuss the one-step
estimates of Table 4.

As in the CLM model, the estimates for the …rst factor parameters, Á1, ¹1
and ¾1 are insigni…cant, while the estimates for the second factor parameters are
signi…cant. The estimates of the Á1 parameter vary between -0.0729 and 0.7464,
while the estimates of Á2 vary between 0.8877 and 0.9848. This indicates that, like
in the CLM model, the …rst factor exhibits relatively fast mean reverting behavior.
This is in contrast with the slow mean reverting behavior of the second factor.
We also …nd that the estimates for the second factor’s mean parameter ¹2 (which
varies between 0.0593 and 0.0888) are very close to the sample mean of the one-
month yield. Japan is the only exception of this …nding. Again, the combined
estimates of Ái, ¹i and ¾i imply that the …rst factor is less volatile than the second
factor for each country. Furthermore, for each country the estimate for ¸1; the
market price of risk of the …rst factor, has the expected negative sign, although
it is very inaccurately estimated. The estimates for ¸2; the price of risk of the
second factor, are positive and signi…cant only for Japan. While this …nding is
in contrast with previous studies for the USA (see, for example, Chen and Scott,
1993, Duan and Simonato, 1998, Geyer and Pichler, 1998 and de Jong, 2000), when
we calculate the average (log) risk premia for all maturities, these are all strictly
positive. For the other countries, some of the average risk premia (especially for
the shorter maturities) were negative. We suspect that for the UK this probably
can be explained by the fact that we are dealing with an inverted average yield
curve.

Again, the estimates for the standard deviations of the measurement errors
are large and in general increasing with maturity, which is an indication that
also the two-factor CIR model is not performing very well. Moreover, almost all
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Table 4: One-step GMM estimation results of the CIR model

Parameters United States Germany Japan United Kingdom

Á1 0.7464 (1.5575) -0.0729 (16.266) 0.2008 (15.744) 0.2679 (38.449)
Á2 0.8953¤ (0.0364) 0.8877¤ (0.0250) 0.9848¤ (0.0364) 0.9143¤ (0.0260)
¹1 0.0317 (0.0624) 0.0880 (1.1960) 0.2002 (3.795) 0.0119 (0.1744)
¹2 0.0586¤ (0.0100) 0.0593¤ (0.0077) 0.0866 (0.0856) 0.0888¤ (0.0032)
¾1 0.2392 (1.0912) 0.7921 (11.480) 0.5786 (11.033) 0.8053 (27.815)
¾2 0.0363¤ (1.0077) 0.0491¤ (0.0037) 0.0500¤ (0.0097) 0.0468¤ (0.0071)
¸1 -5.7023 (24.514) -1.7803 (25.568) -2.4353 (48.097) -1.755 (60.591)
¸2 5.3586 (7.9079) 4.7882 (3.0603) 23.096¤ (7.7838) 0.8454 (1.2330)
!1 0 (…xed) 0 (…xed) 0 (…xed) 0 (…xed)
!3 0.0041 (0.0076) 0.0078¤ (0.0016) 0.0064¤ (0.0024) 0 (…xed)
!6 0.0085 (0.0083) 0.0140¤ (0.0016) 0.0119¤ (0.0028) 0.0110¤ (0.0040)
!12 0.0095 (0.0142) 0.0152¤ (0.0018) 0.0162¤ (0.0034) 0.0168¤ (0.0028)
!24 0.0150 (0.0129) 0.0195¤ (0.0014) 0.0205¤ (0.0032) 0.0196 (0.0321)
!36 0.0129 (0.0119) 0.0166¤ (0.0012) 0.0207¤ (0.0026) 0.0190 (0.0184)
!48 0.0132¤¤ (0.0077) 0.0149¤ (0.0010) 0.0202¤ (0.0021) 0.0188¤¤ (0.0104)
!60 0.0147¤ (0.0048) 0.0151¤ (0.0009) 0.0197¤ (0.0017) 0.0191¤ (0.0067)

Â2df 75.830 0.0000 90.748 0.0000 30.537 0.0000 44.970 0.0000
df 5 5 5 6

Notes: ¤;¤¤ denote signi…cance at the 5%, 10% con…dence level, respectively. Standard errors are shown
in parentheses, except for the overidentifying restrictions test, where the p-value is given. The column
“df” indicates the degrees of freedom of the overidentifying restrictions test. Parameters indicated
by “…xed” were …xed at 0. The estimation results were obtained using one-step GMM with the 20
unconditional moment conditions described in the appendix.

the estimates are signi…cant at the 5% level. Furthermore, even with such large
measurement errors, the overidentifying restriction indicate that the two-factor
CIR model is rejected for each of the four countries.

The two-step GMM estimates of the CIR model are shown in Table 5 and are
in general comparable with the one-step estimates. For the USA, the estimates
more or less correspond to the two-factor results of Chen and Scott (1993). Again,
we …nd lower standard errors due to the use of a more two-step e¢cient estimator.
Relative to the …rst factor, the second factor exhibits a slower mean reversion and
is more volatile (as can be calculated from the combined Ái, ¹i and ¾i¡ estimates).
Moreover, the estimates for the second factor’s parameters are signi…cant, while
their …rst factor counterparts are not, which is probably due to the very low impact
of the …rst factor on the observed variation in the yield curves. The market price

20



Table 5: Two-step GMM estimation results of the CIR model

Parameters United States Germany Japan United Kingdom

Á1 0.8501¤ (0.2278) -0.1212 (5.3411) 0.1760 (8.2967) -0.3545 (183.74)
Á2 0.9070¤ (0.0686) 0.9140¤ (0.0231) 0.9994¤ (0.0190) 0.9057¤ (0.0075)
¹1 0.0363¤¤ (0.0195) 0.2019 (0.9373) 0.2300 (2.2318) 0.0142 (1.3080)
¹2 0.0577¤ (0.0153) 0.0599¤ (0.0085) 1.4221 (45.207) 0.0865¤ (0.0044)
¾1 0.1418 (0.1594) 0.8044 (3.7592) 0.5978 (5.8281) 1.2198 (130.65)
¾2 0.0329¤ (0.0044) 0.0448¤ (0.0033) 0.0447¤ (0.0078) 0.0476¤ (0.0017)
¸1 -9.1184 (8.9171) -1.7544 (8.1649) -2.3590 (22.872) -1.1589 (202.67)
¸2 14.999 (10.142) 12.2813¤ (4.7773) 31.380¤ (7.4718) 0.0576 (2.2701)
!1 0 (…xed) 0 (…xed) 0 (…xed) 0 (…xed)
!3 0 (…xed) 0.0055¤ (0.0017) 0.0060¤ (0.0014) 0.0084¤ (0.0004)
!6 0.0058¤ (0.0012) 0.0112¤ (0.0016) 0.0098¤ (0.0018) 0.0141¤ (0.0039)
!12 0.0066 (0.0042) 0.0125¤ (0.0017) 0.0135¤ (0.0021) 0.0181¤ (0.0511)
!24 0.0120¤ (0.0045) 0.0165¤ (0.0013) 0.0171¤ (0.0020) 0.0198 (0.0279)
!36 0.0107¤ (0.0047) 0.0143¤ (0.0012) 0.0179¤ (0.0017) 0.0193 (0.0146)
!48 0.0113¤ (0.0034) 0.0130¤ (0.0011) 0.0179¤ (0.0015) 0.0188¤ (0.0085)
!60 0.0128¤ (0.0021) 0.0133¤ (0.0010) 0.0176¤ (0.0013) 0.0187¤ (0.0055)

Â2df 77.046 0.0000 78.654 0.0000 22.464 0.0000 49.822 0.0000
df 6 5 5 5

Notes: ¤;¤¤ denotes signi…cance at the 5%, 10% con…dence level, respectively. Standard errors are shown
in parentheses, except for the overidentifying restrictions test, where the p-value is given. The column
“df” indicates the degrees of freedom of the overidentifying restrictions test. Parameters indicated by
“…xed” were …xed at 0. The estimation results were obtained using two-step GMM (with the optimal
weighting matrix (25)), with the results of Table 4 as starting values for the parameters and the 20
unconditional moment conditions described in the appendix.

of risk parameters are negative for the …rst factor and positive for the second, now
being signi…cant for Japan as well as Germany. This implies that when we test the
restriction ¸2 = 0 by means of a simple Wald test, it follows that the two-factor
CLM model is rejected in favor of the two-factor CIR model only for these latter
two countries. Nevertheless, the overidentifying restrictions tests indicate that the
small set of moment conditions implied by the CIR model is not supported by the
data. Again the models are very clearly rejected.

As before, we present graphs of the implied factor loadings b1n and b2n, scaled
such that both b1n and b2n are equal to one for n = 1. Figure 4 shows the factor
loadings for the USA and Germany as a function of maturity. For the USA it
appears that the …rst factor is mainly responsible for the general level of the yield
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Figure 4: Factor loadings of the CIR model (United States and Germany)

curve, while the second factor is related to the slope of the yield curve. These
…ndings are in line with previous studies that estimate two-factor CIR models for
the USA (see Geyer and Pichler, 1998 and de Jong, 2000). For Germany we …nd
both factors to have similar impacts on the yield curve.

Figure 5 presents the factor loadings for Japan and the UK. For Japan the
conclusions regarding the two factors are similar to those for the USA and Germany.
In contrast, the …rst factor for the UK appears to determine the curvature of the
yield curve, while the second factor is related to the slope of the yield curve.
While not as extreme as in the CLM model, the …rst factor again has a seemingly
large impact on the yield curve. When taking into account the low unconditional
variance of this …rst factor, however, the impact on the yield curve is almost
negligible.. In general, these …ndings are in line with the results of the CLM model
for the UK.

To summarize our …ndings, our results show that the two-factor CLM model
is unable to satisfactorily explain observed term structure data. The estimated
standard deviations for the measurement errors are unreasonably large, while the
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Figure 5: Factor loadings of the CIR model (Japan and United Kingdom)

overidentifying restrictions tests indicate that the model should be rejected. Allow-
ing for two priced factors rather than one and estimating a two-factor CIR model
basically does not a¤ect these conclusions. Apparently, the poor performance of
these two-factor models as is typically found for the USA (see, for example, Duan
and Simonato, 1998, and Geyer and Pichler, 1998) extends to other countries as
well (Germany, Japan and the United Kingdom). In the next section we will fur-
ther explore the question which aspects of the term structure the two-factor models
have particular problems with explaining.

6 Explanations for the Statistical Rejections of
the Models

The moment conditions that are imposed in estimation (see Appendix B) can be
divided into three subsets. A …rst subset is based upon the unconditional expecta-
tions of the yields and corresponds to the average yield curves. A second subset is
based upon the unconditional expectations of the squared yields and corresponds,
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Figure 6: Implied average yield curves and volatility curves for the United States

indirectly, to the volatility curves. Finally, a last subset of moment conditions is
related to the dynamic evolution of the two factors and thus to the movement of the
yield curves over time. The fact that the overidentifying restrictions tests soundly
reject both the two-factor CLM and the two-factor CIR model either indicates that
some of the above sample moments are, in an economic sense, quite far from their
values implied by the estimated models, or that these sample moments are close
to, but nevertheless statistically signi…cantly di¤erent from, their estimated coun-
terparts. In this section, we will further explore these alternative explanations and
analyze which aspects of the term structure the estimated models have particular
problems with.

Let us …rst consider the upper part of Figure 6. This …gure displays the average
yield curve for the USA over the period April 1987–March 1999, as well as the
unconditional expected yield curves as implied by the parameters estimates of
the two-factor models. The …gures show that both two-factor models explain the
average yield curve reasonably well. For the one-step estimates, the implied yield
curves almost exactly match the actual average yield curves, while for the two-
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step estimates the slope is pretty well captured, though the level of the curve is
slightly too high or too low. Previous studies using data for the USA, like Chen
and Scott (1993), Geyer and Pichler (1998) and de Jong (2000) …nd similar results
when comparing the implied yield curve with the data. As in Cochrane (1996),
the “economic” …t for the one-step estimates is much better than for the two-step
estimates.8

The lower part of Figure 6 displays the actual and estimated volatility curve.
The actual volatility curve is based upon the sample variances of the observed
yields, while the estimated curves correspond to the variances of the yields as
implied by the estimated two-factor CLM and CIR models, not taking into account
the measurement error variances. The implied variances that do take into account
the measurement errors are indicated by unconnected points in the …gures (circles
for the CLM model and squares for the CIR model). Note that the points that
include the measurement error variances correspond most closely to the moment
conditions that are imposed in estimation. It should be stressed though that the
exploited moments are based upon expected squared yields rather than variances
of yields. This may have an impact if expected yields are not captured very well
by the model.

The lower part of Figure 6 clearly indicates that both two-factor models perform
extremely poorly in capturing the actual volatility curves. While the model’s
volatility curves are downward sloping they substantially underestimate the actual
volatilities, except occasionally for the very short end of the yield curve. Also note
that the CIR model is able to explain the volatility curve better than the CLM
model, which is probably due to the fact that it does not restrict the market price
of risk of the second factor to be zero. The …gures also explain why the estimates
for the standard deviations of the measurement errors, as reported in Tables 2, are
so large, at least for the longer maturities.

The estimation results reported in the previous section show that for maturities
exceeding three months, the standard deviations of the measurement errors are
typically signi…cantly positive and quite large, relative to the standard deviations

8The better performance of the one-step estimator in explaining the average yield curve can
be understood as follows. The use of the identity matrix in the one-step estimator implies
that each moment is equally important. When the two-step estimator is used, with the optimal
weighting matrix, it is likely that some (linear combinations of) moments get very high weights in
estimation (because these moments are statistically the most accurate ones). While this increases
the e¢ciency of the parameter estimates, as is indeed the case with our results, it may deteriorate
the …t of some aspects of the data. In the same spirit, using a GLS estimator in a linear regression
model will always provide a lower R2 than using the OLS estimator. See Cochrane (1996) for
additional discussion.
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Figure 7: Implied average yield curves and volatility curves for Germany

of the observed yields. Recall that the measurement error variances are restricted
to be nonnegative. In some cases boundary solutions were obtained and if this was
the case, the standard deviations were set to zero and the other parameters were
re-estimated. The …gure explains both results. For the shorter maturities, the
estimated volatility curve is very close to its sample equivalent, so the estimated
standard deviations of the measurement errors are typically very small or zero.
For the larger maturities however, the estimated volatility curve lies considerably
below the sample volatility curve. In order to …t the model’s moments to the
sample moments as imposed by the estimation procedure, the standard deviations
of the measurement errors have to be large and this is exactly what we …nd.

The large variances of the measurement errors are an indication that the two-
factor models are performing poorly. Apparently, the empirical failure of the two-
factor CLM and the two-factor CIR model for the USA cannot be attributed to
the typically restrictive assumptions about the distributions of the measurement
errors, but is inherent in the insu¢cient ‡exibility of these two-factors models to
simultaneously capture both the average yield curve and the volatility curve.
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Figure 8: Implied average yield curves and volatility curves for Japan

Figures 7-9 report the actual and estimated yield curves and volatility curves
for Germany, Japan and the United Kingdom, respectively. For these countries we
also …nd that the one-step estimates do a reasonably good job in approximating the
average yield curves, while the two-step estimates provide inferior results, especially
for Germany and Japan. For the volatility curves, the situation is no di¤erent than
for the USA. Especially for the longer maturities, the volatilities of the yields,
as implied by the models, are to a large extent driven by the variances of the
measurement errors. These …ndings con…rm the fact that the two-factor a¢ne
model does not possess su¢cient ‡exibility to simultaneously capture both the
average yield curve and volatility curve of the term structure of interest rates.

Overall, our results indicate that two-factor a¢ne term structure models are
very unlikely to provide an accurate description of the yield curve and its develop-
ment over time. While several studies show that models with three or more factors
outperform two-factor models (see, for example, Chen and Scott, 1993, Duan and
Simonato, 1998 and Geyer and Pichler, 1998), which is to be expected, there is no
reason to believe that these models are overall acceptable. Without exception, the
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Figure 9: Implied average yield curves and volatility curves for the United Kingdom

extended models are tested against more restrictive versions rather than against
more general, unspeci…ed, alternatives. Tests of the latter kind are easily per-
formed in the context of the GMM estimator (with overidentifying restrictions),
but are not straightforward in a maximum likelihood context.

7 Conclusions

In this paper we considered the question whether a two-factor a¢ne term structure
model is able to describe the term structure of interest rates, while imposing only
very weak assumptions on the distributions of the measurement errors on the
yields. We estimated two discrete time versions of the Longsta¤ and Schwarz
(1992) two-factor model, for the USA, Germany, Japan and the UK, and found that
these models do not possess su¢cient ‡exibility to simultaneously explain multiple
aspects of the yield curve. This shows that the poor empirical performance of
two-factor a¢ne term structure models for the USA is not due to restrictive and
inappropriate assumptions about the measurement errors and, moreover, extends
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to several other countries. Overall, our results are surprisingly similar across the
four countries.

In line with other studies (see, for example, Chen and Scott, 1993, Duan and
Simonato, 1998, Geyer and Pichler, 1998, de Jong and Santa-Clara, 1999 and
de Jong, 2000), it is found that the model is very well capable of explaining the
average yield curve for each of the countries. In contrast, while imposing only very
weak assumptions upon the distributions of the measurement errors, we …nd very
large estimates for the standard deviations of these measurement errors which is an
indication of poor performance of the model. Indeed, when looking at the volatility
curves, we see that measurement error variances are mainly responsible for the
shape and location of these curves. Furthermore, the overidentifying restrictions
tests show that both the models have to be rejected statistically for each country,
even if such large measurement errors are allowed for.

To improve the empirical …t of term structure models, models will have to be
constructed that possess more ‡exibility to explain the volatility structure of the
yield curve. While a simple extension of the number of factors, could provide
a better explanation of the volatility curve, several recent studies suggest other
extensions that may be helpful, see, for example, Duarte (2000), Piazzesi (2000)
and Ahn, Dittmar and Gallant (2000).
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Appendix A: Derivations of the factor loadings

Consider the price function (11), which implies that the two terms on the right
hand side of (7) are

Et fmt+1+ pn¡1;t+1g = ¡x1t ¡ x2t ¡ An¡1 ¡B1;n¡1(1¡ Á1)¹1 ¡B1;n¡1Á1x1t
¡B2;n¡1(1 ¡ Á2)¹2 ¡B2;n¡1Á2x2t (28)

and

V art fmt+1 + pn¡1;t+1g (29)

= V artf¾1
p
x1t(¸1 + B1;n¡1) + ¾2

p
x2t(¸2 +B2;n¡1)g

= x1t(¸1 + B1;n¡1)2¾21 + x2t(¸2 + B2;n¡1)2¾22:

Thus, if we combine (11), (28) and (29), we obtain

pnt = ¡An ¡B1nx1t ¡B2nx2t
= ¡x1t ¡ x2t ¡ An¡1

¡B1;n¡1(1¡ Á1)¹1 ¡B1;n¡1Á1x1t
¡B2;n¡1(1¡ Á2)¹2 ¡B2;n¡1Á2x2t

+
1
2
(¸1 + B1;n¡1)2¾21x1t +

1
2
(¸2 +B2;n¡1)2¾22x2t: (30)

From these conditions the factor loadings as given in the main text are easily
derived.
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Appendix B: Moment conditions

As derived in the main text (see (18)), the model can be written as

yobst = A+Bxt + vt

where vt is the vector of measurement errors of all available maturities of interest
rate data. We assume that

Efvtg = 0; V fvitg = !2i ; i = 1; 2; :::;m; (31)

covfv1t; v1;t¡kg = 0; k = 1; 2; 3; ::: (32)

Using this assumptions, we derive the moment conditions that we use in the GMM
estimation procedure.

The expectations of the yields can be determined as

Efyobsnt g = Efan + b1nx1t + b2nx2t + vtg =

= an + b1nEfx1tg+ b2nEfx2tg =

= an + b1n¹1 + b2n¹2:

The …rst set of moment conditions that is used corresponds to

Efyobsnt ¡ [an + b1n¹1+ b2n¹2]g = 0 (33)

for all available maturities n. Note that Efyobsnt g > 0, so that an + b1n¹1 + b2n¹2
should be positive: This is a restriction we impose in the estimation procedure.

Next, the variance of the yields is determined as

V arfyobsnt g = V arfan + b1nx1t + b2nx2t + vtg =

= b21nV arfx1tg+ b22nV arfx2tg +!2n;

where the unconditional variances of x1t and x2t are given by

V arfx1tg = ExfV arfx1tgg + V arxfEfx1tgg
= Exf¾21x1;t¡1g+ V arxf(1¡ Á1)¹1 ¡ Á1x1;t¡1g
= ¾211¹1 + Á

2
1V arfx1;t¡1g

=
¾21¹1
1¡ Á21

and
V arfx2g = ¾22¹2

1¡ Á22
;
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respectively. Furthermore we know that for any stochastic variable z, it holds that

Efz2g = V arfzg+ (Efzg)2:

Thus we can derive moment conditions based on Ef(yobsnt )2g as

Ef(yobsnt )2 ¡ (an + b1n¹1 + b2n¹2)2 ¡ b21n ¾
2
1¹1

1¡Á21
¡ b22n ¾

2
2¹2

1¡Á22
¡ !2ng = 0: (34)

Finally, assuming that Covfv1t; v1;t¡kg = 0 for all k = 1; 2; 3; ::: we can derive

Covfyobs1t ; yobs1;t¡1g
= Covfa1 + b11x1t + b21x2t + v1t; a1 + b11x1;t¡1 + b21x2;t¡1 + v1;t¡1g
= Covfb11 [(1¡ Á1)¹1 ¡ Á1x1;t¡1] + b21 [(1 ¡Á2)¹2 ¡ Á2x2;t¡1] ;
b11x1;t¡1 + b21x2;t¡1g

= b211Á1V arfx1g + b221Á2V arfx2g:

In general, we have

Covfyobs1t ; y
obs
1;t¡kg = b211Á

k
1V arfx1g+ b221Ák2V arfx2g:

The moment conditions based on the autocovariances are then given by

Efyobs1t yobs1;t¡k ¡ (a1 + b11¹1 + b21¹2)2 ¡ Covfyobs1t ; yobs1;t¡kgg = 0: (35)

We exploit these conditions for k = 1; 2; 3; 4:
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Appendix C: Constructing the LIBOR yield curve

Use LIBOR rates whenever possible

Consider a bond that pays out its $1 principal at time T , but also makes payments
of varying amounts at times t+ ´i (i = 1; ::;m). The amount of payment made at
time t+ ´i is determined by the LIBOR (London Interbank O¤er Rate) rate, set
at time t :

L´it =
1
´i

Ã
1
P´it

¡ 1
!

(36)

where ´i 2 IR+ is the maturity of the LIBOR rate (see Baxter and Rennie, 1996, p.
166) and where interest rates are de…ned in per annum terms. The actual payment
made at time t+ ´i is ´iL´it =

1
P´it

¡ 1:
Up to 1 year, LIBOR rates are readily available, so the yield curve for LIBOR

rates for ni · 1 is known for all t (take for example, ´i = i ¢ ® where ® is a
…xed interval of one month (® = 1

12) and take i = 1; ::; 12): Moreover, given the
convention that these assets are denoted in discrete time we have that the price of
any zero coupon bond with maturity ´ i is given by:

P´i t =
1

1 + ´iL´it
: (37)

From the price of these bonds we can de…ne the observed continuously compounded
interest rates for maturity ´i; yobst (´ i) as:

yobst (´i) = ¡ 1
´i

lnP´i t: (38)

Note that we will need these continuously compounded rates for discounting pur-
poses.

Filtering Bond Prices from Swap rates
The swap rate

A plain vanilla swap is a contract that simply exchanges a stream of varying
payments for a stream of …xed amount payments (or vice versa). Typically in
such a contract one agrees on receiving a regular sequence of …xed amounts (the
swap-rate, S´mt) while paying amounts depending on the prevailing LIBOR interest
rates, at each payment date.

Suppose the payment dates are t + ´1; t + ´2; ...., t + ´m¡1, t + ´m and the
time between pay-outs, measured in years, is ·; implying the identity: ´i = i:·;
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i = 1; ::;m: The ith payment will be determined by the ·-period LIBOR rate, set
at time t+´ i¡1: Furthermore, the swap-contract pays out a …xed rate S´mt at each
time period. The swap contract is similar to a portfolio that consists of a long
position in a …xed coupon bond and a short position in a variable coupon bond.
Following Hull (2000, p. 120-130) we know that the value Vf(t; ´m; S´mt) of the
…xed coupon bond is

Vf(t; ´m; S´mt) = expf¡´myobst (´m)g + ·S´mt
mX

i=1
expf¡´iyobst (´i)g; (39)

while the value of the variable coupon bond Vv(t; ´1; L´1t) is

Vv(t; ´1; L´1t) = (1 + ´1L´1t) expf¡´1yobst (´1)g (40)

which is equal to 1, if we use de…nitions (37) and (38). At time t (the start of the
contract) the contract must have a value equal to zero:

Vf(t; ´m; S´mt)¡ Vv(t; ´1; L´1t) = 0: (41)

Using the initial condition (41) and plugging the de…nitions (37) and (38) into
(39), we calculate the …xed swap rate S´mt to be

S´mt =
1¡ P´mt
·

Pm
i=1 P´it

(42)

(see also Baxter and Rennie, 1996, p. 166 - p. 168).
The price of zero coupon discount bonds can in general not be recovered from

swap rates because swaps tend to pay out every six months (· = 6=12); while we
only observe swap rates up to and including 5 years, every year. One way to recover
the prices of discount bonds is to linearly interpolate the prices of zero coupon
bonds with non-integer maturities (measured in years). To …x notation, denote the
integer maturities by the even-numbered indices ´2; ´4; ..., ´m: By construction,
the odd-numbered indices denote the non-integer maturities and de…ne the linear
approximation for ´i (i = 1; 3; 5; 7; 9) as

P´i t =
´i+1 ¡ ´i
´i+1 ¡ ´i¡1

P´i¡1t +
Ã
1¡ ´i+1 ¡ ´i
´i+1 ¡ ´ i¡1

!
P´i+1t; (43)

where we assume that P´1t and P´2t are known and correspond to the six month
and one-year zero-coupon bond, the price of which can be recovered from the
corresponding LIBOR rate directly, using (37).
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Filtering the Bond Prices and Discount Rates from Swap Rates

One can recover the bond prices for integer maturities from the swap rate yield
curve. As stated above, swap contracts tend to pay out every six month, but only
swap rates from integer maturities (“whole”years) are available from the …nancial
markets. Using the linear approximation (43) and equation (42), we can derive
bond prices for the same maturities as swap rates. Bond prices for the six month
and one-year maturity are available from LIBOR rates and using (43) for i =
3; 5; 7; 9 together with (42) and · = 1

2we derive that for j = 4; 6; 8; 10;

S´jt =
1
2

³
1¡ P´jt

´

P´1t +
3
2

³
P´2t +P´j t

´
+2 Pj¡2

i=4 P´it
: (44)

Then using simple algebra, we have that

P´jt =
2 ¡ S´jt

h
P´1t +

3
2P´2t +2

Pj¡2
i=4 P´it

i

2 +S´jt
; (45)

which can be used to calculate the bond prices from the swap rates for the matu-
rities 2,3,4 and 5 years (j = 4; 6; 8; 10). Continuously compounded interest rates
are then obtained with equation (38).
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