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Abstract This paper may be understood as a continuation of Topsøe’s seminal paper ([16]) to character-

ize, within an abstract setting, compact subsets of finite inner regular measures w.r.t. the weak topology.

The new aspect is that neither assumptions on compactness of the inner approximating lattices nor nonse-

quential continuity properties for the measures will be imposed. As a providing step also a generalization

of the classical Portmanteau lemma will be established. The obtained characterizations of compact subsets

w.r.t. the weak topology encompass several known ones from literature. The investigations rely basically

on the inner extension theory for measures which has been systemized recently by König ([8], [10],[12]).

Keywords: Inner premeasures, weak topology, generalized Portmanteau lemma.

AMS classification 46E27, 28A33, 28A12

JEL classification C65

∗This research partly supported by Deutsche Forschungsgemeinschaft through the SFB 649 “Economic Risk”.

1



0 Introduction

The most influential result concerning compactness of spaces of measures has been presented by

Prokhorov ([15]) for probability Borel-measures on Polish spaces. His equivalent characterization of

relative compactness by uniform tightness has turned out to be an important tool to check conver-

gence in law for many stochastic processes. Therefore nowadays this criterion may be found in most

of standard textbooks of probability theory (see e.g. [14], [2], [5], [3]). Another characterization of

compact sets of Borel Probability measures on Polish spaces has been shown by Huber and Strassen

([6]) in terms of a continuity property that the upper envelopes of these sets satisfy. Prokhorov as

well as Huber and Strassen used the so called topology of weak convergence which is derived from

the weak ∗ topology on the algebraic dual of the space of bounded continuous mappings. Of course

this topology may be extended to spaces of finite Baire-measures on general topological spaces.

This has been done by Varadarajan ([19]) who has also found an equivalent characterization for

compact sets. However the topology of weak convergence rely on hidden regularity properties. Fi-

nite Baire-measures are inner regular w.r.t. the functionally closed sets, and in the special context

of metrizable spaces they coincide with the finite Borel-measures, being inner regular w.r.t. the

closed subsets. But in general finite Borel-measures are not inner regular w.r.t. the closed sub-

sets. So for spaces of such measures the topology of weak convergence is not a reasonable concept

because the measures are not uniquely determined by the restrictions of the integrals to bounded

continuous mappings. Furthermore it seems to be necessary to impose regularity for the measures

to find tractable extensions of the topology of weak convergence.

Fresh ideas had been presented by Topsøe in two seminal publications (cf. [16], [17]). The frame-

work is based on a pair S,G of lattices on an abstract set Ω, where S is stable under countable

intersections. One may think of G as a topology and S as the set of closed or closed compact sets.

It is known from extension results (e.g. [8], Theorem 6.31) that a finite measure on the σ−algebra

σ(S) generated by S which is inner regular w.r.t. S may be extended to the σ−algebra σ(S>S)

2



generated by the transporter S>S := {A ⊆ Ω | A ∩ B ∈ S for every B ∈ S}. In particular for S

containing the closed compact subsets, we obtain extensions to Radon measures. So, assuming that

the complements of the members of G are contained in S>S, Topsøe considered the space of finite

measures on σ(S>S) which are inner regular w.r.t. S, and he equipped this space with the coarsest

topology such that Q 7→ Q(G) is lower semicontinuous for G ∈ G∪{Ω}, and even continuous in the

case of G = Ω. It is a generalization of the topology of weak convergence in view of the classical

Portmanteau lemma, and so he called it weak topology. Under the assumption that disjoint sets

from S may be separated by disjoint sets from G, he succeeded in giving a general characterization

of relatively compact subsets in two cases. Firstly, if S is semicompact, and secondly for subsets

in the topological subspace of finite measures P satisfying inf
A∈M

P (A) = P(B) for every downward

directed family M in S with
⋂

A∈M

A = B ∈ S if Ω ∈ S (cf. [17]).

This paper takes up the investigations by Topsøe. The aim is to characterize the relatively compact

sets of finite measures which are inner regular w.r.t. the lattice S without further assumptions. So

S need not to be semicompact, and the nonsequential continuity property of the measures will be

not assumed.

The paper is organized as follows. In the next section some basic concepts and results from abstract

measure and integration theory will be recalled. Besides a useful general Daniell-Stone represen-

tation theorem some inner extension results will be reviewed, and a new one will be established,

which will be crucial for the following investigations. Afterwards we shall introduce in section 2

the weak topology on spaces Mf (Ω,S) of finite measures which are inner regular w.r.t. lattices S

containing the sample space Ω and being stable under countable intersections. However, we shall

propose a slightly different approach which does not rely on an additional lattice G in general.

It coincides with Topsøe’s suggestion in many relevant cases, in particular under his separation

property. The advantage of the version used throughout this paper is that it enables us to weaken

Topsøe’s separation property. The rationale is as follows. We shall assume to have a second lattice
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S̃ ⊆ S also stable under countable intersections and containing Ω such that finite measures on σ(S̃)

which are inner regular w.r.t. S̃ may be extended uniquely to a measure from Mf (Ω,S). Sufficient

conditions are provided by the extension result from the first section. Then we can endow the space

Mf (Ω, S̃) of the finite inner regular measures on σ(S̃) also with a weak topology. The crucial idea

is to find conditions that the topological spaces Mf (Ω, S̃) and Mf (Ω,S) are homeomorphic. Then

it will turn out that the adaption of Topsøe’s separation property for S̃ instead of S ensures that

the Mf (Ω, S̃) and Mf (Ω,S) are regular Hausdorff spaces. Afterwards we shall assume in section

3 that S̃ is generated by weak upper level sets of special kind of function systems. Such function

systems suggest to define topologies on Mf (Ω,S) analogously to the classical topology of weak

convergence. The subject of section 3 is to compare it with the weak topology. The investigations

lead to a generalized version of the Portmanteau lemma, in particular Mf (Ω,S) is a completely

regular Hausdorff space without imposing the adaption of Topsøe’s separation property. The results

from sections 2, 3 will be used to show several characterizations of compact subsets w.r.t. the weak

topology on Mf (Ω,S). Suitable specializations retain the contributions by Varadarajan as well as

Huber and Strassen.

1 Notations and preliminaries

Let us begin with recalling some basic notions from abstract measure and integration theory. The

reader is referred to the monograph by König (cf. [8], overview in [12]) for a comprehensive account.

Let Ω be a nonvoid set. Nonvoid collections of subsets of Ω are called lattices if they are stable

under finite unions and intersections. For a lattice S on Ω, we define the set system S⊥ consisting

of all Ω \ A with | A ∈ S and the transporter S>S := {B ⊆ Ω | A ∩ B ∈ S for all A ∈ S}. The

symbol σ(S) stands for the σ−algebra on Ω generated by the set system S. Furthermore we define

Sσ/Sσ to consist of all at most countable unions/intersections of sets from the lattice S.

4



A set function φ : S → [0,∞] on a lattice S is said to be isotone if φ(A) ≤ φ(B) holds for every

pair A,B ∈ S with A ⊆ B, and it is defined to be modular if φ(A∪B)+φ(A∩B) = φ(A)+φ(B)

for A,B ∈ S. We shall call an isotone set function φ on the lattice S to be upward/downward

continuous at A if A ∈ S, and sup
n
φ(An) = φ(A)/ inf

n
φ(An) = φ(A) whenever (An)n is an

isotone/antitone sequence in S with
∞⋃

n=1

An = A/
∞⋂

n=1

An = A. If it is upward/downward continuous

at each A ∈ S, we shall say that it is upward/downward continuous.

Another important concept within measure theory is regularity. Setting inf ∅ := ∞, sup ∅ := 0 an

isotone set function φ on a lattice S is said to be inner/outer regular w.r.t. T if T ⊆ S, and

φ(A) = sup
A⊇T∈T

φ(T ) resp. φ(A) = inf
A⊆T∈T

φ(T )

for all A ∈ S. An isotone set function φ on a lattice S with ∅ ∈ S and φ(∅) = 0 is defined to be

an inner premeasure if it can be extended to a measure on a σ−algebra which is inner regular

w.r.t. Sσ, a so called inner extension of φ. An inner extension µ of an inner premeasure φ will

be named maximal if every inner extension of φ is a restriction of µ. It is known that every inner

premeasure φ has a unique maximal inner extension (cf. [8], Theorems 6.18, 6.31). We shall need

the following extension results by König.

Proposition 1.1 Let φ be a bounded isotone, modular set function φ on a lattice S with ∅ ∈ S

and φ(∅) = 0. Then we have:

.1 Let T ⊆ (S>S)⊥ be a lattice with ∅ ∈ T such that two disjoint sets from S may be separated

by two disjoint sets from T . Then the mapping

φ̂ : S → R, A 7→ inf
A⊆G∈T

sup
G⊇B∈S

φ(B)

is an inner premeasure if it is downward continuous at ∅.

.2 Let φ be an inner premeasure with maximal inner extension µ : F → R, and let T ⊇ S

be a lattice such that every set from T is enclosed in some set from S. Furthermore let the
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mapping ϕ : Tσ → R be defined by ϕ(G) = inf{µ(B) | G ⊆ B ∈ F}. Then ϕ|T is the

unique inner premeasure on T with ϕ|S = φ if ϕ|T is downward continuous at ∅, and if

ϕ(G ∪H) ≥ ϕ(G) + ϕ(H) holds for disjoint G,H from Tσ.

Statement .1 follows from Theorem 6.31 in [8] combined with Proposition 3.3 in [11] and statement

.2 is just Theorem 19.11 in [8].

The following application of Proposition 1.1, .2 is basic for the investigations later on.

Theorem 1.2 Let S̃ be a lattice on an abstract set Ω with ∅,Ω ∈ S̃, and let P be a finite measure

on σ(S̃) which is inner regular w.r.t. S̃σ. Furthermore let S denote a lattice on Ω, enclosing S̃ as

well as satisfying

(1) for every antitone sequence (An)n in S with
∞⋂

n=1

An = ∅ there exists an antitone sequence

(Bn)n in σ(S̃) with An ⊆ Bn for each n and
∞⋂

n=1

Bn = ∅,

(2) disjoint sets A1, A2 from Sσ may be separated by disjoint B1, B2 ∈ σ(S̃).

Then there exists a unique finite measure Q on σ(S) which is inner regular w.r.t. Sσ, and extends

P . Furthermore we have Q(A) = inf{P(G) | A ⊆ G ∈ S̃σ⊥} for every A ∈ Sσ.

The proof of Theorem 1.2 will be worked out in appendix A.

We shall make also use of a general inner Daniell-Stone representation result. Let us recall that a

function system E ⊆ [0,∞[Ω is called a Stonean lattice cone if for X, Y ∈ E and λ ≥ 0, t > 0

the mappings X +Y,min{X, Y },max{X, Y } as well as λX,min{X, t},max{X − t, 0} belong to E.

A functional I : E → R is defined to be isotone and positive-linear if I(X) ≤ I(Y ) for X ≤ Y

and I(λX) = λI(X) as well as I(X + Y ) = I(X) + I(Y ) for X, Y ∈ E, λ ≥ 0. The announced

inner Daniell-Stone theorem may be found in [10] (Theorem 2.5 with Theorem 1.3 and Theorem

4.2 in [9]).
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Proposition 1.3 Let I : E → R be an isotone and positive-linear functional on a Stonean lattice

cone E ⊆ [0,∞[Ω which contains the nonnegative constants. Furthermore let S⊥ ⊆ (Sσ)σ be valid,

where S consists of all X−1([x,∞[) with X ∈ E and x > 0.

Then there exists a finite measure P on σ(S) which is inner regular w.r.t. Sσ and satisfies
∫
X dP =

I(X) for every X ∈ E if and only if inf
n
I(Xn) = 0 for Xn ↘ 0 and sup

n
I(Yn) = I(Y ) for Yn ↗ Y.

In this case all representing finite measures are inner regular w.r.t. Sσ and coincide.

2 Weak topologies on spaces of inner regular finite mea-

sures

Let S be a lattice on a nonvoid set Ω with

(2.1) ∅,Ω ∈ S;

(2.2) Sσ = S.

We shall consider the set Mf (Ω,S) gathering all finite measures on σ(S) which are inner regular

w.r.t. S. It will be equipped with the coarsest topology τw such that for each A ∈ S ∪ {Ω}

the mapping ψA : Mf (Ω,S) → R, Q 7→ Q(A), is upper semicontinuous, and such that ψΩ is

continuous. We may describe τw also by the basic neigbourhood system consisting of

Nw(P, A1, ..., An, ε) := {Q ∈Mf (Ω,S) | |P(Ω)−Q(Ω)| < ε, Q(Ai) < P(Ai) + ε, i = 1, ..., n}

for P ∈ Mf (Ω,S), n ∈ N, A1, ..., An ∈ S, ε > 0. In the following we shall call τw the weak

topology. This is in accordance with Topsøe’s suggestion to define weak topologies for finite inner

regular measures within an abstract framework, using the additional lattice G defined to consist of

all complements of sets from S (cf. [16] and introduction).
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Historically, for finite Baire-measures Alexandroff (cf. [1]) introduced the topology induced by the

weak convergence. To recall weak convergence means that a net (Q)j∈J of finite Baire-measures

converges to a finite Baire-measure Q if (
∫
X dQj)j∈J converges to

∫
X dQ for every bounded

continuous X. This topology coincides with the usual topology used for finite Borel-measures in the

context of metrizable topologies. Recall that the functionally closed subsets are exactly the subsets

of the form X−1({0}), where X denotes a real-valued continuous mapping. The functionally open

subsets are the complements of funcionally closed ones. Since finite Baire-measures are inner regular

w.r.t. the functionally closed subsets (cf. [8], Addendum 8.5), and since finite Borel-measures on

metric spaces are inner regular the closed subsets, we can recognize by classical Portmanteau lemma

(e.g. [1], p. 180) that in the topological context this classical approach coincides with the weak

topology.

Obviously for different P,Q from Mf (Ω,S) the restrictions to S differ too. Nevertheless this does

not imply that the weak topology is Hausdorff. In order to show this property we shall need some

suitable separation properties. For an exposition as general as possible let us assume that there is

some additional lattice S̃ ⊆ S with

(2.3) ∅,Ω ∈ S̃

(2.4) S̃σ = S̃.

The set Mf (Ω, S̃) gathers all the finite measures on σ(S̃) which are inner regular w.r.t. S̃. The

weak topology τw̃ on Mf (Ω, S̃) is defined analogously to the weak topology τw on Mf (Ω,S), with

respective basic neighbourhood system {Nw̃(Q, B1, ..., Bn, ε) | Q ∈ Mf (Ω, S̃), n ∈ N, B1, ..., Bn ∈

S̃, ε > 0}. According to Theorem 1.2 we have a well-defined mapping fromMf (Ω, S̃) intoMf (Ω,S)

if

(2.5) for every antitone sequence (An)n in S with
∞⋂

n=1

An = ∅ there exists an antitone sequence

(Bn)n in σ(S̃) with An ⊆ Bn for each n and
∞⋂

n=1

Bn = ∅,
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(2.6) disjoint sets A1, A2 from S may be separated by disjoint B1, B2 ∈ σ(S̃)

are satisfied. We want to investigate the continuity of this mapping, additionally assuming

(2.7) for disjoint A1 ∈ S and A2 ∈ S̃ there exists some B ∈ S̃ with A1 ⊆ B ⊆ Ω \ A2.

Proposition 2.1 Under (2.5) - (2.7) the mapping F : Mf (Ω, S̃) → Mf (Ω,S), which is defined

by F (P)|σ(S̃) = P, is a homeomorphism between τw̃ and τw.

Proof:

The mapping is well defined by Theorem 1.2, and its injectivity is trivial. For the surjectivity let

us fix some Q ∈Mf (Ω,S). Applying usual arguments, one obtains

A :=
{
B ∈ σ(S̃) | Q(B) = inf{Q(G) | B ⊆ G ∈ S̃⊥} = sup{Q(A) | B ⊇ A ∈ S̃}

}
as a σ−algebra. Moreover, in view of (2.7), S̃⊥ is enclosed because Q is inner regular w.r.t. S.

That means that Q |σ(S̃) ∈Mf (Ω, S̃), which shows that F is surjective.

Furthermore every net (Qj)j∈J in Mf (Ω,S) which converges to some Q w.r.t. τw implies the

convergence of (F−1(Qj))j∈J to F−1(Q) w.r.t. τw̃ since S̃ ⊆ S. Thus F−1 is continuous.

Conversely, let (Pj)j∈J denote any net in Mf (Ω, S̃) which converges to some P w.r.t. τw̃.

By virtue of (2.5), (2.6) the application of Theorem 1.2 yields that for every A ∈ S and arbitrary

ε > 0 there is some G ∈ S̃⊥ enclosing A such that F (P)(A) + ε > P(G). Then (2.7) guarantees

some B ∈ S̃ with A ⊆ B ⊆ G. Since ψB : Mf (Ω, S̃) → R, Q 7→ Q(B), is upper semicontinuous

w.r.t. τw̃, we obtain

F (P)(A) + ε > P(B) ≥ lim sup
j

Pj(B) = lim sup
j

F (Pj)(B) ≥ lim sup
j

F (Pj)(A).

This shows the continuity of F and completes the proof.
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First properties of the weak topology τw may be obtained by the additional assumption

(2.8) Disjoint sets A1, A2 from S̃ may be separated by disjoint G1, G2 ∈ S̃⊥.

Proposition 2.2 Let the assumptions (2.5) - (2.8) be satisfied. Then (Mf (Ω,S), τw) is a regular

Hausdorff space.

Proof:

According to Proposition 2.1 it suffices to prove that (Mf (Ω, S̃), τw̃) is a regular Hausdorff space.

Let (Pj)j∈J be a net in Mf (Ω, S̃) which converges to P and Q w.r.t. τw̃. The net (Pj)j∈J has

a universal subnet (Pj(i))i∈I , which induces the universal subnet (Pj(i)(Ω))i∈I that converges to

P(Ω) by assumption. In particular it has a bounded subnet (Pj(i(k))(Ω))k∈K . Since (Pj(i(k)))k∈K

is a universal net too, (Pj(i(k))(A))k∈K is a universal net in the compact set [0, sup
k∈K

Pj(i(k))(Ω)] for

every A ∈ S̃. Hence we obtain an isotone, modular set function φ : S̃ → R with φ(∅) = 0 and

φ(A) = lim
k

Pj(i(k))(A) for each A ∈ S̃. Assumption (2.8) allows us to apply Proposition 1.1, .1.

Drawing on this result the set function

φ̂ : S̃ → R, A 7→ inf
A⊆G∈ eS⊥ sup

G⊇B∈ eS φ(B),

is an inner premeasure. Indeed (Pj(i(k)))k∈K converges to P, which is inner regular w.r.t. S̃ and

outer regular w.r.t. S̃⊥, and thus

φ̂(A) ≤ inf
A⊆G∈ eS⊥ sup

G⊇B∈ eS P(B) = P(A)

holds for every A ∈ S. Hence there exists some Q1 ∈ Mf (Ω, S̃) which extends φ̂. In particular

Q1 ≤ P with Q1(Ω) = P(Ω). The same line of reasoning leads to Q1 ≤ Q with Q1(Ω) = Q(Ω). Thus

P = Q1 = Q, which shows that τw̃ is Hausdorff.

Next let us fix some P ∈Mf (Ω, S̃) and a neigbourhood Nw̃(P, A1, ..., An, ε). Since P is outer regular

w.r.t. S̃⊥ there exists for each Ai a set Gi ∈ S̃⊥ which encloses Ai and satisfies |P(Gi)−P(Ai)| < ε
2
.
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By (2.8) we may find for every Ai sets Hi ∈ S̃⊥ and Bi ∈ S̃ with Ai ⊆ Hi ⊆ Bi ⊆ Gi. Now let

(Qj)j∈J denote a net in Nw̃(P, B1, ..., Bn,
ε
2
) which converges to some Q w.r.t. τw̃. Then we may

conclude for each i ∈ {1, ..., n}

Q(Ai) ≤ Q(Hi) ≤ lim inf
j

Qj(Hi) ≤ lim inf
j

Qj(Bi) ≤ P(Bi) +
ε

2
< P(Ai) + ε

Hence the closure of Nw̃(P, B1, ..., Bn,
ε
2
) is contained in Nw̃(P, A1, ..., An, ε), which completes the

proof.

Remark:

In the case of S = S̃ the assumptions (2.5) - (2.8) reduce to the condition that disjoint sets from S

may be separated by disjoint sets from S⊥. This is just the initial separation property that Topsøe

used in [16].

Next we want to avoid separation condition (2.8). Instead we consider the case that S̃ consists

of countable intersections of level sets X−1([x,∞[) of mappings X from a Stonean lattice cone

E ⊆ [0,∞[Ω. In order to obtain properties for τw in this situation we shall provide us in the

following section with a general Portmanteau lemma.

3 A general Portmanteau lemma

Throughout this section we shall assume that there is some Stonean lattice cone E ⊆ [0,∞[Ω with

1 ∈ E such that S̃ = {
∞⋂

n=1

X−1
n ([xn,∞[) | Xn ∈ E, xn > 0}. Additionally all members of E should

be bounded, and the further condition

(3.1) supX −X ∈ E for every X ∈ E

should be fulfilled. Notice that S̃⊥ ⊆ S̃σ holds under (3.1).
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The function system E induces a topology τw,E on Mf (Ω,S) defined by the basic neigbourhood

system consisting of

NE(P, X1, ..., Xn, ε) := {Q ∈Mf (Ω,S) | |
∫
Xi dQ−

∫
Xi dP | < ε, i = 1, ..., n}

for P ∈ Mf (Ω,S), n ∈ N and X1, ..., Xn ∈ E. In view of the inner Daniell-Stone theorem 1.3

measures from Mf (Ω, S̃) whose integrals coincide on E are identical. Therefore, due to Theorem

1.2, measures from Mf (Ω,S) are uniquely determined by the restrictions of their integrals to E

provided that (2.5) and (2.6) are satisfied. In this case τw,E is obviously Hausdorff. Moreover,

transferring the proof of Theorem II.1 in [19] verbatim, we obtain that under (2.5) and (2.6)

(Mf (Ω,S), τw,E) is even a completely regular Hausdorff space. In the next step we want to compare

the topologies τw and τw,E. The investigations lead to a general Portmanteau lemma.

Theorem 3.1 Let Q ∈ Mf (Ω,S), let (Qj)j∈J be a net in Mf (Ω,S), and consider the following

statements:

.1 lim
j

Qj(Ω) = Q(Ω) and lim sup
j

Qj(A) ≤ Q(A) for all A ∈ S.

.2 lim
j

Qj(Ω) = Q(Ω) and lim inf
j

Qj(G) ≥ Q(G) for all G ∈ S⊥.

.3 lim
j

Qj(Ω) = Q(Ω) and lim sup
j

Qj(A) ≤ Q(A) for all A ∈ S̃.

.4 lim
j

Qj(Ω) = Q(Ω) and lim inf
j

Qj(G) ≥ Q(G) for all G ∈ S̃⊥.

.5 lim
j

∫
X dQj =

∫
X dQ for all X ∈ E.

Then under assumptions (2.5), (2.6), (3.1) .1 ⇒ .3 ⇔ .5 and the equivalences .1 ⇔ .2 as well as

.3 ⇔ .4 hold. If in addition assumption (2.7) is valid, then all statements are equivalent.
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Proof:

Let (2.5), (2.6), (3.1) be satisfied. Then the equivalences .1 ⇔ .2 and .3 ⇔ .4 are obvious, also

implication .1 ⇒ .3 by S̃ ⊆ S.

proof of .5 ⇒ .3:

Let A ∈ S̃ with indicator mapping 1A. Since 1 ∈ E, statement .5 implies lim
j

Qj(Ω) = Q(Ω).

Moreover, it is known that there exists some antitone sequence (Xn)n in E with 1A = inf
n
Xn (cf.

[9], Proposition 3.2). Therefore ψA = inf
n
ψXn , where

ψA : Mf (Ω,S) → R, Q 7→ Q(A), and ψXn : Mf (Ω,S) → R, Q 7→
∫
Xn dQ (n ∈ N).

In particular ψA is upper semicontinuous w.r.t. τw,E, and thus lim sup
j

Qj(A) ≤ Q(A) follows

immediately from statement .5.

proof of .3 ⇒ .5:

Let Mb(Ω) denote the space of all bounded real-valued mappings on Ω. It will be equipped with

the supremum norm ‖ · ‖∞.

Let X ∈ E. Since X ∈Mb(Ω) with X−1([x,∞[) ∈ S̃ for x > 0 we may approximate it uniformly by

an isotone sequence (Xn)n of nonnegative functions with finite range and level setsX−1
n ([x,∞[) (x >

0, n ∈ N) belonging to S̃ (cf. [8], Proposition 22.1). We may describe for each n ∈ N and

P ∈ {Q,Qj | j ∈ J} the integral
∫
Xn dP by

rn∑
i=1

λi P(Ai) for some λ1, ..., λrn > 0 and A1, ...Arn ∈ S̃

(cf. [8], Properties 11.8). Thus statement .3 implies

lim sup
j

∫
X dQj ≤ lim sup

j
(Qj(Ω)‖X −Xn‖∞ +

∫
Xn dQj) ≤ Q(Ω)‖X −Xn‖∞ +

∫
Xn dQ

for every n ∈ N. Hence lim sup
j

∫
X dQj ≤

∫
X dQ by monotone convergence. Since supX−X ∈ E

due to (3.1), we may employ the same line of reasoning to obtain lim sup
j

∫
(supX − X) dQj ≤∫

(supX −X) dQ . This shows lim
j

∫
X dQj =

∫
X dQ .

Finally, additional assumption (2.7) forces implication .3 ⇒ .1 due to Proposition 2.1. This means

that all statements are equivalent, and the proof is complete.
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As a consequence of the Portmanteau lemma and the discussion on τw,E we can emphasize the

following property of τw.

Proposition 3.2 (Mf (Ω,S), τw) is a completely regular Hausdorff space if the conditions (2.5),

(2.6), (2.7) and (3.1) are valid.

Remark 3.3 In order to find for the lattice S a lattice S̃ and the Stonean lattice cone E in the

Portmanteau lemma 3.1, a first attempt might be to choose the set system E defined to consist of the

bounded nonnegative X ∈ RΩ with X−1([x,∞[), X−1(]−∞, x]) ∈ S for x > 0. It is indeed a Stonean

lattice cone which satisfies (3.1). Then one has to look whether in addition the assumptions (2.5),

(2.6) and (2.7) are satisfied with S̃ := {X−1([x,∞[) | X ∈ E, x > 0}. For prominent applications

of this line of reasoning let (Ω, τΩ) be a topological space:

1) If S is the set of the functionally closed subsets, then E is the set of nonnegative bounded

continuous mappings on Ω with S̃ = S. Then all the assumptions (2.5) - (2.7) are satisfied.

Therefore Theorem 3.1 retains the classical Portmanteau lemma for finite Baire measures, and

for finite Borel-measures in the case of metrizable τΩ. Moreover, the classical Portmanteau

lemma may be extended to finite Borel-measures if τΩ is perfectly normal (notice 1.5.19 in

[4]).

2) If S is the set of the closed subsets, then again E is the set of nonnegative bounded continuous

mappings on Ω, but with S̃ gathering all the functionally closed subsets. Then in view of

Urysohn’s lemma the assumptions (2.5) - (2.7) are fulfilled for (Ω, τΩ) being normal and

countably paracompact. Thus the classical Portmanteau lemma may be extended to finite

Borel-measures which are inner regular w.r.t. the closed subsets if (Ω, τΩ) is normal and

countably paracompact.
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4 Compactness in spaces of inner regular measures

Let S, S̃ be lattices on a nonvoid set Ω with S̃ ⊆ S, and satisfying the conditions (2.1) - (2.4).

Furthermore let us retake the further notations from section 2. We want to investigate necessary

and sufficient conditions for compactness w.r.t. the weak topology τw on Mf (Ω,S). Let us begin

with the considerations under the assumptions (2.5) - (2.8).

Theorem 4.1 Let cl(∆) be the closure of some ∆ ⊆ Mf (Ω,S) w.r.t. τw, let ν := sup
Q∈cl(∆)

Q .

Additionally, let the assumptions (2.5) - (2.8) be satisfied, and consider the following statements:

.1 ∆ is relatively compact w.r.t. τw.

.2 ν is real-valued, and ν|S̃ is downward continuous.

.3 ν is real-valued with ν(A) = inf
A⊆G∈ eS⊥ sup

G⊇B∈ eS ν(B) for each A ∈ S̃, and ν|S̃ is downward

continuous at ∅.

Then the implications .3 ⇒ .1 ⇒ .2 are valid. Moreover, in the case of S̃⊥ ⊆ S̃σ all the statements

.1 - .3 are equivalent.

Remark:

It is already known that the implication .3 ⇒ .2 is even valid when ∆ is not relatively compact (cf.

[13], Lemma 1.4).

Proof:

proof of .1 ⇒ .2:

By definition the mapping ψΩ : cl(∆) → R, Q 7→ Q(Ω), is continuous w.r.t. the relative topology

of τw to cl(∆). Then, due to compactness of cl(∆), the set {Q(Ω) | Q ∈ cl(∆)} is compact. In

particular ν is real-valued.
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Next, let (An)n denote an antitone sequence in S̃ with
∞⋂

n=1

An =: A ∈ S̃. By definition of the weak

topology the mappings

ψB : cl(∆) → R,Q 7→ Q(B) (B ∈ {A,An | n ∈ N})

are upper semicontinuous w.r.t. the relative topology of τw to cl(∆). Since cl(∆) is assumed to be

a compact Hausdorff space w.r.t. the relative topology of τw, we may apply the general Dini lemma

(cf. [7], Theorem 3.7), and we obtain

inf
n
ν(An) = inf

n
sup

Q∈cl(∆)

ψAn(Q) = sup
Q∈cl(∆)

inf
n
ψAn(Q) = sup

Q∈cl(∆)

ψA(Q) = ν(A)

proof of .3 ⇒ .1:

Let F : Mf (Ω, S̃) → Mf (Ω,S) be the homeomorphism according to Proposition 2.1. It suffices

to prove that F−1(∆) is relatively compact w.r.t. τw̃. Since (Mf (Ω,S), τw̃) is a regular Hausdorff

space, it is known that F−1(∆) is relatively compact if and only if every universal net in F−1(∆)

converges (cf. [18], Lemma 2.3). So let us fix a universal net (Qj)j∈J in F−1(∆). It induces for each

A ∈ S̃ the universal net (Qj(A))j∈J in R and the relatively compact subset {Qj(A) | j ∈ J} since

ν is real-valued. Therefore, we obtain some mapping φ : S̃ → R such that φ(A) = lim
j

Qj(A) for

every A ∈ S̃. Routine procedures yield that φ is an isotone modular set function with φ(∅) = 0

and φ ≤ ν|S̃.

By assumption on ν|S̃ we have φ̂ ≤ ν|S̃ for the isotone set function

φ̂ : S̃ → R, A 7→ inf
A⊆G∈ eS⊥ sup

G⊇B∈ eS φ(B),

which is even downward continuous at ∅ because ν|S̃ satisfies this property. Thus, drawing on

Proposition 1.1, .1, we obtain φ̂ as an inner premeasure with φ(Ω) = φ̂(Ω). This means that there

is some Q ∈ Mf (Ω, S̃) with φ̂ = Q |S̃. Moreover, lim sup
j

Qj(A) ≤ Q(A) for A ∈ S̃ due to φ ≤ φ̂,
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and lim
j

Qj(Ω) = φ(Ω) = φ̂(Ω). Therefore (Qj)j∈J converges to Q w.r.t. τw̃ with Q ≤ ν. Thus

F−1(∆) is relatively compact w.r.t. τw̃.

Now let S̃⊥ ⊆ S̃σ. It remains to prove the implication .2 ⇒ .3.

proof of .2 ⇒ .3:

Let us fix A ∈ S̃. By assumption there exists an isotone sequence (An)n in S̃ with Ω \A =
∞⋃

n=1

An.

Moreover, for each n we may find by (2.8) disjoint G1n, G2n ∈ S̃⊥ with A ⊆ G1n and An ⊆ G2n.

Then we can define by Gn :=
n⋂

m=1

G1m and Bn :=
n⋂

m=1

Ω \G2m antitone sequences (Gn)n and (Bn)n

in S̃⊥ and S̃ respectively with A ⊆ Gn ⊆ Bn ⊆ Ω \ An, implying A =
∞⋂

n=1

Gn =
∞⋂

n=1

Bn. Hence we

may conclude from statement .2

ν(A) = lim
n→∞

ν(Bn) ≥ lim
n→∞

sup
Gn⊇B∈ eS ν(B) ≥ inf

A⊆G∈ eS⊥ sup
G⊇B∈ eS ν(B) ≥ ν(A).

Since ν|S̃ is downward continuous at ∅ by statement .2 again, statement .3 is shown, which com-

pletes the proof.

Drawing on Topsøe’s investigations in [16] we may give a further characterization of relatively

compact subsets in the topological subspace Mf (Ω,S, τ) consisting of all Q ∈ Mf (Ω,S, τ) with

inf
A∈M

Q(A) = Q(B) for every nonvoid downward directed family M ⊆ S with
⋂

A∈M

A = B ∈ S.

Theorem 4.2 Let ∆ ⊆ Mf (Ω,S, τ) and ν̄ := sup
Q∈∆

Q . If for any A ∈ S and every ω ∈ Ω \ A

there is some B ∈ S̃ with ω ∈ B ⊆ Ω \ A, then under the assumptions (2.5) - (2.8) the following

statements are equivalent

.1 ∆ is relatively compact w.r.t. the relative topology of τw to Mf (Ω,S, τ).

.2 ν̄(Ω) < ∞, and inf
A∈M

ν̄(A) = 0 for each nonvoid downward directed family M ⊆ S with⋂
A∈M

A = ∅.
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Proof:

Let the assumptions (2.5) - (2.8) be valid, and let F : Mf (Ω,S) →Mf (Ω, S̃) be the homeomor-

phism according to Proposition 2.1. Furthermore let Mf (Ω, S̃, τ) ⊆Mf (Ω, S̃) be the counterpart

of Mf (Ω,S, τ). Obviously F−1(∆) ∈Mf (Ω, S̃, τ).

Topsøe showed (cf. Theorem 5 in [16]) that statement .2 holds if and only if F−1(∆) is relatively

compact w.r.t. the relative topology of τw̃ to Mf (Ω, S̃, τ). So it remains to prove that statement

.1 is fulfilled if and only if F−1(∆) is relatively compact w.r.t. the relative topology of τw̃ to

Mf (Ω, S̃, τ). The only if part is trivial. For the if part it suffices to show that F (Q) ∈Mf (Ω,S, τ)

for every Q ∈ Mf (Ω, S̃, τ). So let Q ∈ Mf (Ω, S̃, τ), and let M ⊆ S be downward directed with⋂
B∈M

B =: A ∈ S.

For ε > 0 Theorem 1.2 and condition (2.7) yield that there is some Â ∈ S̃ with A ⊆ Â and

F (Q)(A) + ε > Q(Â). Then M̂ := {B ∪ Â | B ∈M} ⊆ S is downward directed with
⋂

D∈cM D = Â.

Now let N consist of all B ∈ S̃ with D ⊆ B for some D ∈ M̂, at least Ω belongs to N. Furthermore,

N is downward directed since M̂ satisfies this property. Moreover, for any ω ∈ Ω \ Â there is some

D ∈ M̂ with ω ∈ Ω \ D. By assumption we may find a set B ∈ S̃ with ω ∈ B ⊆ Ω \ D, which

implies by condition (2.7) that there is a set B̂ ∈ S̃ with D ⊆ B̂ ⊆ Ω \ B. Thus B̂ ∈ N as well as

ω ∈ B ⊆ Ω \ B̂, and therefore Ω \ Â =
⋃

B∈N

Ω \B.

Finally

F (Q)(A) ≤ inf
B∈M

F (Q)(B) ≤ inf
D∈M̂

F (Q)(D) ≤ inf
B∈N

Q(B) = Q(Â) < F (Q)(A) + ε,

which means F (Q)(A) = inf
B∈M

F (Q)(B), and the proof is complete.

In the following we want to use the general Portmanteau lemma 3.1 to obtain a result concerning

compactness w.r.t. the weak topology.

Theorem 4.3 Let E ⊆ {X ∈ [0,∞[Ω| X bounded } denote a Stonean lattice cone with 1 ∈ E,

let further L := E − E and S̃ := {X−1([x,∞[) | X ∈ E, x > 0}. Furthermore cl(∆) denotes the

18



closure of some subset ∆ of Mf (Ω,S) w.r.t. τw, and induces the mappings ν := sup
Q∈cl(∆)

Q as well

as I : L→]−∞,∞], which is defined by I(X) = sup
Q∈cl(∆)

∫
X dQ .

Then under the assumptions (2.5) - (2.7), (3.1) I(X) = sup
Q∈∆

X dQ for X ∈ L, and the following

statements are equivalent:

.1 ∆ is relatively compact w.r.t. τw.

.2 I is real-valued, and I(Xn) ↘ I(X) whenever (Xn)n is an antitone sequence in L with Xn ↘

X ∈ L.

Furthermore each of the statements .1, .2 implies

.3 ν is real-valued, and ν|S̃ is downward continuous.

If in addition assumption (2.8) is satisfied, then the statements .1 - .3 are equivalent, and each of

them is equivalent with

.4 ν is real-valued, and ν|S̃ is downward continuous at ∅ with ν(A) = inf
A⊆G∈ eS⊥ sup

G⊇B∈ eS ν(B) for

each A ∈ S̃.

Proof:

Firstly, Portmanteau lemma 3.1 means that τw = τw,E under (2.5) - (2.7) and (3.1). Hence in this

situation I(X) = sup
Q∈∆

∫
X dQ holds for each X ∈ L.

Since (3.1) induces S̃⊥ ⊆ S̃σ, the equivalence of .1, . 3, .4 in the case of (2.5) - (2.8) follows

immediately from Theorem 4.1, whereas under (2.5) - (2.7), (3.1) the implication .1 ⇒ .3 can be

shown as in the proof of Theorem 4.1. Therefore it remains to prove equivalence of .1 and .2 if

(2.5) - (2.7) and (3.1) are valid.

proof of .1 ⇒ .2:

For every X ∈ L the mapping ψX : Mf (Ω,S) → R, Q 7→
∫
X dQ is continuous w.r.t. the weak
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topology due to the general Portmanteau lemma. Therefore I is real-valued by statement .1. Let

(Xn)n be an antitone sequence in L with Xn ↘ X for some X ∈ L. Then the general Dini lemma

(cf. [7], Theorem 3.7) yields

I(X) = sup
Q∈cl(∆)

ψX(Q) = sup
Q∈cl(∆)

inf
n
ψXn(Q) = inf

n
sup

Q∈cl(∆)

ψXn(Q) = inf
n
I(Xn),

which shows statement .2.

proof of .2 ⇒ .1:

Let L∗ denote the space of real linear forms on L. It will be equipped with the so called weak ∗

topology, i.e. the relative topology of the product topology on RL to L∗.

By assumption I is a real sublinear form on L, and it is therefore associated with the nonvoid set

∆(I) consisting of all Λ ∈ L∗ with Λ ≤ I. It is known that ∆(I) is a compact subset w.r.t. the

weak ∗ topology. This follows from ∆(I) = L∗ ∩
X∈L

[−I(−X), I(X)]. This description also

ensures that every linear form from Λ(I) is positive, in particular the restrictions to E are isotone

and positive-linear.

Let (Qj)j∈J be a net in ∆. Then, defining ΛQj
∈ L∗ by ΛQj

(X) =
∫
X dQj, we obtain by (ΛQj

)j∈J

a net in Λ(I). Compactness of Λ(I) implies that there is a subnet (ΛQj(k)
)k∈K which converges to

some Λ ∈ Λ(I) w.r.t. the weak ∗ topology. Moreover, statement .2 ensures that lim
n

Λ(Xn) = 0 =

lim
n

Λ(Y −Yn) holds for any antitone sequence (Xn)n in E with Xn ↘ 0 and every isotone sequence

(Yn)n in E with Yn ↗ Y ∈ E. Thus we may apply the inner Daniell-Stone theorem 1.3 to Λ|E.

Hence we can find some P ∈ Mf (Ω, S̃) with Λ(X) =
∫
X dP for X ∈ E. Drawing on Theorem

1.2, P can be extended uniquely to some finite measure Q ∈ Mf (Ω,S), so that Λ(X) =
∫
X dQ

holds for X ∈ E. In particular lim
k

∫
X dQj(k) =

∫
X dQ for every X ∈ E. That means that

(Qj(k))k∈K converges to Q w.r.t. the weak topology due to the general Portmanteau lemma. Thus

∆ is relatively compact, which completes the proof.
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In the following we shall present a criterion to replace condition (2.8), which implies the following

variant of Theorem 4.3.

Corollary 4.4 Let us retake notations and assumptions from Theorem 4.3. If X
Y
∈ E holds for

X, Y ∈ E with Y > 0, then under the assumptions (2.5) - (2.7) and (3.1) all the four statements

from Theorem 4.3 are equivalent.

Proof:

It remains to prove that assumption (2.8) is valid. For this purpose let A1, A2 ∈ S̃ be disjoint. By

definition there exist X1, X2 ∈ E and positive numbers x1, x2 with Ai = X−1
i ([xi,∞[) for i = 1, 2.

Then Zi := 1 − min{Xi,xi}
xi

belongs to E with 0 ≤ Zi ≤ 1 and Ai = Z−1
i ({0}) for i = 1, 2. Since

A1, A2 are disjoint, Z1 + Z2 ∈ E with Z1 + Z2 > 0. Hence by assumption Yi := Zi

Z1+Z2
is a member

of E for i = 1, 2. Thus, Y −1
i ([0, 1

4
[) (i = 1, 2) are disjoint elements of S̃⊥ with Ai ⊆ Y −1

i ([0, 1
4
[) for

i = 1, 2, which completes the proof.

Corollary 4.4 is useful to characterize relatively compact subsets of finite Baire measures, and finite

Borel-measures which are inner regular w.r.t. closed subsets. Let us start with relatively compact

subsets of finite Baire measures on Hausdorff spaces. We may apply Corollary 4.4 directly.

Corollary 4.5 Let τΩ be a Hausdorff topology on Ω, and let S, T be respectively the sets of func-

tionally closed and functionally open subsets w.r.t. τΩ. Furthermore cl(∆) denotes the closure of a

set ∆ of finite Baire-measures w.r.t. the topology generated by weak convergence, and induces the

mapping ν := sup
Q∈cl(∆)

Q . Additionally let L consist of all bounded real-valued continuous mappings

on Ω, and let I : L→]−∞,∞] be defined by I(X) = sup
Q∈cl(∆)

∫
X dQ .

Then the following statements are equivalent:

.1 ∆ is relatively compact w.r.t. the topology induced by weak convergence.

.2 ν is real-valued, and ν|S is downward continuous.
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.3 ν is real-valued, and ν|S is downward continuous at ∅ with ν(A) = inf
A⊆G∈T

sup
G⊇B∈S

ν(B) for

each A ∈ S.

.4 I is real-valued, and lim
n→∞

I(Xn) = I(X) if (Xn)n is an antitone sequence in L with Xn ↘

X ∈ L.

Remark:

Varadarajan has also shown the equivalence of the statements .1, .4 in Corollary 4.5 (cf. [19],

Theorem 25).

In order to apply Corollary 4.4 to finite Borel-measures let us consider a normal and countably

paracompact topology on Ω. For instance perfectly normal and metrizable topologies satisfy these

properties (cf. [4], 5.2.5, 4.1.13). Then we may choose for S the lattice of all closed subsets, and for

S̃ the set of all functionally closed subsets. Additionally E is defined to consist of all nonnegative

bounded real-valued continuous mappings on Ω. Noticing Urysohn’s lemma, S, S̃ and E satisfy

the requirements of Corollary 4.4 to guarantee the equivalence of all the statements there. Then

Theorem 4.3 reads as follows.

Corollary 4.6 Let (Ω, τΩ) be a normal and countably paracompact space, and let S, S̃, T be re-

spectively the set of closed, functionally closed and functionally open subsets w.r.t. τΩ. Furthermore

∆ denotes a set of finite Borel-measures which are inner regular w.r.t. the closed subsets, and let

cl(∆) be the closure of ∆ w.r.t. the topology generated by weak convergence. Additionally, let L

consist of all bounded real-valued continuous mappings on Ω, and let I : L →] −∞,∞] be defined

by I(X) = sup
Q∈cl(∆)

∫
X dQ .

Then, setting ν := sup
Q∈cl(∆)

Q, the following statements are equivalent:

.1 ∆ is relatively compact w.r.t. the topology induced by weak convergence.

.2 ν is real-valued, and ν|S̃ is downward continuous.
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.3 ν is real-valued, and ν|S̃ is downward continuous at ∅ with ν(A) = inf
A⊆G∈T

sup
G⊇B∈ eS ν(B) for

each A ∈ S̃.

.4 I is real-valued, and lim
n→∞

I(Xn) = I(X) if (Xn)n is an antitone sequence in L with Xn ↘

X ∈ L.

Remark:

Corollary 4.6 encompasses the case that (Ω, τΩ) is perfectly normal. Since in perfectly normal spaces

all closed subsets are functionally closed, and each open subset is functionally open (cf. [4], 1.5.19),

we may replace then in Corollary 4.6 S̃ by S and T by τΩ. Moreover, Corollary 4.6 generalizes also

a result by Huber and Strassen who showed the equivalence of statements .1, .2 in Corollary 4.6 for

probability measures on Polish spaces ([6]). Note that metrizable topologies are perfectly normal.

A Appendix

Proof of Theorem 1.2:

φ := P |S̃ is an inner premeasure, and P is the restriction of the maximal extension µφ : Fφ → R

of φ. Additionally, let the mapping ϕφ : Sσ → R be defined by ϕφ(A) = inf{µφ(B) | A ⊆ B ∈ Fφ}.

Obviously, ϕφ(A) = inf{P(B) | A ⊆ B ∈ S̃σ⊥} holds for every A ∈ Sσ since µφ is outer regular

w.r.t. S̃σ⊥ and extends P .

The restriction ϕφ|S is downward continuous at ∅ due to assumption (1) of Theorem 1.2.

Next, let A1, A2 ∈ Sσ be disjoint. Under assumption (2) of Theorem 1.2 we may find disjoint sets

B1, B2 from σ(S̃) with Ai ⊆ Bi for i = 1, 2. Furthermore there exists for arbitrary ε > 0 some

B ∈ σ(S̃) with A1 ∪ A2 ⊆ B and ϕφ(A1 ∪ A2) + ε > µφ(B). Then

ϕφ(A1 ∪ A2) + ε > µφ(B) ≥ µφ(B ∩B1) + µφ(B ∩B2) ≥ ϕφ(A1) + ϕφ(A2).

Hence the statement of Theorem 1.2 follows from Proposition 1.1, .2.
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