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Abstract

Here we develop methods for efficient pricing multidimensional discrete-

time American and Bermudan options by using regression based algo-

rithms together with a new approach towards constructing upper bounds

for the price of the option. Applying the sample space with payoffs at

the optimal stopping times, we propose sequential estimates for contin-

uation values, values of the consumption process, and stopping times on

the sample paths. The approach admits constructing both low and up-

per bounds for the price by Monte Carlo simulations. The methods are

illustrated by pricing Bermudan swaptions and snowballs in the Libor

market model.
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1 Introduction

Valuation of high-dimensional American and Bermudan options is one of the most diffi-
cult numerical problems in financial engineering. Besides its practical relevance, investi-
gations in this field are of great theoretical importance because pricing of the American
style options is an archetype for high-dimensional optimal stopping problems. Several
approaches have been proposed recently for pricing such options using Monte Carlo sim-
ulation technique (see, e.g. [1]-[14], [16]-[20], [24, 25, 27] and references therein). With
simulation approaches it is often an open question whether or not an obtained numerical
result is sufficiently accurate. As a rule, during the realization of a numerical procedure
there arise many errors of different kind which are difficult to take into account. That is
why in a number of works (see, e.g. [3, 4, 8, 16, 17, 19, 20, 24, 25]), different procedures
are proposed that are able to produce lower and upper bounds for the true price. The
knowledge of lower and upper bounds makes possible to evaluate the accuracy of price
estimates. Our aim is to construct effective numerical methods providing with both lower
and upper bounds for the price of American and Bermudan options.

In [3] we develop an approach for pricing American options both in the case of discrete-
time and continuous-time financial models. The approach is based on the fact that an
American option is equivalent to a European one with a consumption process involved
(the so called Earlier Exercise Premium representation). It allows us, in principle, to
construct iteratively a sequence v1, V 1, v2, V 2, v3, ..., where v1, v2, v3, ..., is an
increasing sequence of lower bounds and V 1, V 2, ..., is a decreasing sequence of upper
bounds. Unfortunately, the construction of the above sequence of bounds requires very
laborious calculations. Even V 2 is, as a rule, too expensive. In [4] we propose to use
an increasing sequence of low bounds for constructing both upper bound and low bound
at initial position (t0, X0). It is assumed that the sequence is not too expensive from
computational point of view. This can be achieved by using local low bounds which take
into account a small number of steps ahead. The method of [4] is suitable for getting
rough estimates. However, for obtaining more accurate results one needs rather expensive
calculations.

Let us consider a discrete-time financial model

(Bti , Xti) = (Bti , X
1
ti , ..., X

d
ti), i = 0, 1, ..., I,

where Bti is price of a scalar riskless asset (we assume that Bti is deterministic and
Bt0 = 1) and Xti = (X1

ti , ..., X
d
ti) is price vector of risky assets. Along with index ti we

shall use below the index i, writing (ti, Xi) instead of (ti, Xti). Let fi(x) be a payoff
at time ti provided that Xti = Xi = x, x ∈ X ⊂ Rd, where X is a state space (e.g.,
X = Rd, X = Rd

+).
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We assume that the modelling is based on the filtered space (Ω,F , (Fi)0≤i≤I , P ),
where the probability measure P is the risk-neutral pricing measure for the problem
under consideration, and Xi is a Markov chain with respect to the filtration (Fi)0≤i≤I .

With respect to the probability measure P the discounted process Xi/Bi is a mar-
tingale and the price ui(Xi) of the American option is given by

ui(x) = sup
τ∈Ti,I

BiE

(
fτ (X

ti,x
τ )

Bτ

)
. (1.1)

In (1.1) Xti,x
tj

is the value of Markov chain at instant tj ≥ ti starting at ti from x, Ti,I is
set of stopping times τ taking values in {i, i + 1, ..., I}.

The value process ui (Snell envelope) can be determined by induction as follows:

uI(x) = fI(x), (1.2)

ui(x) = max
{

fi(x), BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)}
, i = I − 1, ..., 0.

We see that theoretically the problem of evaluating u0(X0), the price of the discrete-time
American option at the initial position (t0, X0), is easily solved using iteration procedure
(1.2). However, if X is high dimensional and I is large, the iteration procedure is not
practical.

In order to use regression methods for sequential evaluation of ui, one can consider
the (d + 1)-dimensional sample

(mXi,
Bi

Bi+1
ui+1(mXi+1)), m = 1, ..., M, i = 0, ..., I − 1, (1.3)

from (Xi,
Bi

Bi+1
ui+1(Xi+1)), where (ti, mXi) are M independent trajectories all starting

from the point (t0, X0) (see, e.g., [27] and [14]). The use of procedure (1.2) and sample
(1.3) for sequential evaluating ui(Xi) together with modern methods of multidimensional
approximation (see e.g., [12], [28] and references therein) can give effective algorithms for
pricing American and Bermudan options (see e.g. [5], [18]). The samples using optimal
stopping times τ ti,x = τ i,x were first introduced in [22] (see [11] and [14] as well). They
are from (Xi,

Bi
Bτ

fτ (X
ti+1,Xi+1
τ )) = (Xi,

Bi
Bτ

fτ (X
ti,Xi
τ )), with τ = τ ti+1,Xi+1 and have the

form

(mXi,
Bi

Bτ
fτ (mX

ti+1, mXi+1
τ )) = (mXi,

Bi

Bτ
fτ (mXti, mXi

τ )), τ = τ ti+1, mXi+1 , m = 1, ..., M.

(1.4)
Applying (1.3), we use some estimate ûi+1(Xi+1) instead of ui+1(Xi+1) while applying

(1.4), we can employ an estimate τ̂ = τ̂ ti+1, Xi+1 for τ ti+1, Xi+1 . This makes possible to
construct a low bound for continuation value (low continuation value) and an upper
bound for consumption process (upper consumption process). If the payoff at (ti, mXi)
is less or equal to a low continuation value, then first, the position (ti, mXi) belongs to
the continuation region (consequently, it is natural to take τ̂ ti, mXi = τ̂ ti+1, mXi+1) and
second the consumption process at (ti, mXi) is equal to zero. Otherwise the position
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(ti, mXi) can belong either to the exercise region or to the continuation region. In
the latter case we compute the upper consumption process at (ti, mXi) as a difference
between the payoff and the low continuation value and set τ̂ ti, mXi = ti. As a result all
the positions (ti, mXi) are equipped with stopping times and consumption processes.
Due to this it becomes possible to find the low and upper bounds for the price of the
option under consideration at the initial position (t0, X0).

In Section 2, we recall the approach (see [3], [4]) to pricing American and Bermudan
options using consumption processes in the form suitable for our purposes. Furthermore,
we give here a comparison with the dual approach (see [24], [16]) for the first time. In
Section 3, we propose a number of algorithms for subsequent estimating optimal stop-
ping times and continuation values using different regression methods. Special attention
is paid to linear regression methods (see [22] and [11]). In contrast to other works using
the regression approach in pricing American and Bermudan options, we construct to-
gether with an estimate of continuation value an upper consumption process. Section 4
gives formulas for the Monte Carlo calculation of low and upper bound at the initial po-
sition (t0, X0). Section 5 is devoted to simulations: the results of numerical experiments
for Bermudan swaptions and cancellable snowballs in a full factor Libor market model
confirm efficiency of the proposed algorithms.

2 The approach based on consumption processes

To be self-contained, let us briefly recall the approach to pricing American and Bermudan
options using consumption processes [3].

2.1 The continuation value, the continuation and exercise regions.

For the considered American option, let us introduce the continuation value

Ci(x) = BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)
, i = 0, ..., I − 1; CI(x) = fI(x), (2.1)

the continuation region C and the exercise (stopping) region E :

C = {(ti, x) : fi(x) < Ci(x)} , (2.2)

E = {(ti, x) : fi(x) ≥ Ci(x)} .

Clearly, (tI , x) ∈ E for any x.
Let Xi,x

j , j = i, i + 1, ..., I, be the Markov chain starting at the step i from the point
x : Xi,x

i = x, and mXi,x
j , m = 1, ..., M, be independent trajectories of the Markov chain.

The Monte Carlo estimator ûi(x) for ui(x) (in the case when E is known) has the form

ûi(x) =
1
M

M∑

m=1

Bi

Bτ
f(mXi,x

τ ), (2.3)
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where τ is the first time at which Xi,x
j gets into E (of course, τ in (2.3) depends on i, x,

and m : τ =m τ i,x). Thus, for estimating ui(x), it is sufficient to examine sequentially
the position (tj , mXi,x

j ) for j = i, i + 1, ..., I whether it belongs to E or not.
Let us give a simple sufficient condition for moving along the trajectory using a low

bound v. Introduce the set

Cv =
{

(tk, x) : fk(x) < BkE

(
vk+1(Xk+1)

Bk+1
|Xk = x

)}
.

Since Cv ⊂ C, the sufficient condition consists in fulfilment of the inclusion (tj , mXi,x
j ) ∈

Cv.
Clearly, if v1

i , ..., v
l
i are some lower bounds, then the function vi(x) = max1≤k≤l v

k
i (x)

is a lower bound as well. Besides, fi(x) is also a lower bound. Henceforth we consider
lower bounds satisfying the inequality vi(x) ≥ fi(x).

2.2 Equivalence of American options to European ones with consump-

tion processes involved.

For 0 ≤ i ≤ I − 1 equation (1.2) can be rewritten in the form

ui(x) = BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)
+

[
fi(x)−BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)]+

. (2.4)

Introduce the functions

γi(x) =
[
fi(x)−BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)]+

, i = I − 1, ..., 0. (2.5)

Due to (2.4), we have

uI−1(XI−1) = BI−1E

(
fI(XI)

BI
|FI−1

)
+ γI−1(XI−1),

uI−2(XI−2) = BI−2E

(
uI−1(XI−1)

BI−1
|FI−2

)
+ γI−2(XI−2)

= BI−2E

(
fI(XI)

BI
|FI−2

)
+ BI−2E

(
γI−1(XI−1)

BI−1
|FI−2

)
+ γI−2(XI−2).

Doing in just the same way further, we get

ui(Xi) = BiE

(
fI(XI)

BI
|Fi

)
+ Bi

I−(i+1)∑

k=1

E

(
γI−k(XI−k)

BI−k
|Fi

)
(2.6)

+γi(Xi), i = 0, ..., I − 1.

Putting X0 = x and recalling that B0 = 1, we obtain

u0(x) = E

(
fI(XI)

BI

)
+ γ0(x) +

I−1∑

i=1

E

(
γi(Xi)

Bi

)
. (2.7)

Formula (2.7) gives the value of the European option with the payoff function fi(x) and
with the consumption process γi defined by (2.5).
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2.3 Upper and low bounds using consumption processes.

The obtained result about equivalence of the discrete-time American option to the Eu-
ropean option with the consumption process cannot be used directly because ui(x) and
consequently γi(x) are unknown. We take advantage of the discovered connection in the
following way (see [3]).

Let vi(x) be a lower bound on the true option price ui(x). We introduce the function
(upper consumption process)

γi,v(x) =
[
fi(x)−BiE

(
vi+1(Xi+1)

Bi+1
|Xi = x

)]+

, i = 0, ..., I − 1. (2.8)

Clearly,
γi,v(x) ≥ γi(x).

Hence the price Vi(x) of the European option with the payoff function fi(x) and with the
upper consumption process γi,v(x) is an upper bound: Vi(x) ≥ ui(x).

Conversely, if Vi(x) is an upper bound on the true option price ui(x) and

γi,V (x) =
[
fi(x)−BiE

(
Vi+1(Xi+1)

Bi+1
|Xi = x

)]+

, i = 0, ..., I − 1, (2.9)

then
γi,V (x) ≤ γi(x).

and the price vi(x) of the European option with the low consumption process γi,V (x) is
a lower bound: vi(x) ≤ ui(x).

Thus, starting from a lower bound v1
i (x), one can construct the upper bound V 1

i (x)
as the European option with the consumption process γi,v1(x) and so on. This procedure
gives us the sequences v1

i (x) ≤ v2
i (x) ≤ v3

i (x) ≤ ... ≤ ui(x), and V 1
i (x) ≥ V 2

i (x) ≥
... ≥ ui(x). All the bounds vk and V k can in principle be evaluated by the Monte
Carlo simulations. However each further step of the procedure requires labor-consuming
calculations and in practice it is possible to realize only a few steps of this procedure.
In this connection, much attention is given to variance reduction technique and some
constructive methods reducing statistical errors are proposed (see [3]).

2.4 Comparison with the dual approach

Without loss of generality we assume in this section that Bi ≡ 1. The dual approach,
developed in [24] and [16] is based on the following observation. For any 0 ≤ i ≤ I and
any supermartingale (Sj)i≤j≤I with Si = 0 we have that

ui(Xi) = sup
τ∈Ti,I

E (fτ (Xτ )|Fi) ≤ sup
τ∈Ti,I

E (fτ (Xτ )− Sτ |Fi) (2.10)

≤ E

[
max
i≤j≤I

(fj(Xj)− Sj) |Fi

]
,
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hence the right-hand side provides an upper bound for ui(Xi). It can be shown that the
equality in (2.10) is attained at the martingale part of the Doob-Meyer decomposition of
the price process ui:

Mi = 0, Mj =
j∑

l=i+1

(ul(Xl)−E (ul(Xl)|Fl−1)) , i < j ≤ I.

The duality representation provides a simple way to estimate the Snell envelope from
above, using a lower approximation process {vi(Xi)}. Let Mv be the martingale

Mv
0 = 0; (2.11)

Mv
j = Mv

j−1 + vj(Xj)− E (vj(Xj)|Fj−1)

=
j∑

l=1

vl(Xl)−
j∑

l=1

E (vl(Xl)|Fl−1) , 1 ≤ j ≤ I.

Then, for any 0 ≤ i ≤ I the process M̃ij = Mv
j −Mv

i , j = i, . . . , I, is a martingale with
M̃ii = 0 and according to (2.10)

V D
i (Xi) := E

[
max
i≤j≤I

(
fj(Xj)− M̃ij

)
|Fi

]
≥ ui(Xi).

In particular, for i = 0

V D
0 (X0) = v0(X0)

+ E

[
max

0≤j≤I

(
fj(Xj)− vj(Xj) +

j−1∑

l=0

(E (vl+1(Xl+1)|Fl)− vl(Xl))

)]
. (2.12)

The upper bound V0(X0) obtained in section 2.3 can be transformed to

V0(X0) = E (fI(XI)) + E
I−1∑

i=0

[fi(Xi)− E (vi+1(Xi+1)|Fi)]
+

= v0(X0) + E
I−1∑

i=0

(max {fi(Xi), E (vi+1(Xi+1)|Fi)} − vi(Xi)) , (2.13)

where it is assumed that

fi(Xi) ≤ vi(Xi), i = 0, . . . , I − 1, vI(XI) = fI(XI).

It is interesting to compare V0 and V D
0 starting from the same low bound vi. A compre-

hensive comparison of V0(X0) and V D
0 (X0) seems to be difficult and we restrict ourselves

to some examples. First, we construct examples where V0(X0) ≤ V D
0 (X0). Let us define

τ := min {0 ≤ i ≤ I − 1 : fi(Xi) ≥ E (vi+1|Fi)} ,

and τ = I if fi(Xi) < E (vi+1|Fi) for all i. We see that if τ = I or

fi(Xi) ≥ E (vi+1(Xi+1)|Fi) , i ≥ τ,
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with probability 1, then

V0(X0) = v0(X0) + E
τ−1∑

i=0

(E (vi+1(Xi+1)|Fi)− vi(Xi))

+ E(fτ (Xτ )− vτ (Xτ )) + E
I−1∑

j=τ+1

(fj(Xj)− vj(Xj)) ≤ V D
0 (X0).

The strict inequality V0 < V D
0 is achieved in the following simple example with I = 3.

Due to (2.12), the dual price at time 0 can be computed via the formula

V D
0 = E max{f0, f1 − v1 + Ev1, max{f2, E(u3|F2)}+ Ev1 + E(v2|F1)− v1 − v2}

= E max{f0, f1 − v1 + Ev1, E(v2|F1) + u2 − v2 − v1 + Ev1}
= E max{f0, max{f1, E(v2|F1) + u2 − v2} − v1 + Ev1}, (2.14)

where we use the equality u2 = max{f2, E(u3|F2)} and the dependence of quantities
involved on the underlying process Xi is not shown explicitly for the sake of simplicity.
Formula (2.13) gives

V0 = E max{f0, Ev1}+ E(max{f1, E(v2|F1)} − v1)

+ E(max{f2, E(v3|F2)} − v2). (2.15)

Let us take constant payoffs satisfying

f0 < f1 < f2 < f3, f1 + f2 < f0 + f3.

Clearly, ui = f3, i = 0, . . . , 3 and any low bound vi satisfies

f0 ≤ v0 ≤ f3, f1 ≤ v1 ≤ f3, f2 ≤ v2 ≤ f3, v3 = f3.

Formula (2.15) gives V0 = f3 and (2.14) implies

V D
0 = E max{f0, E(v2|F1) + f3 − v2 + Ev1 − v1}.

Clearly,
V D

0 ≥ E[E(v2|F1) + f3 − v2 + Ev1 − v1] = f3.

If v1 and v2 are such that the inequality

E(v2|F1) + f3 − v2 + Ev1 − v1 ≥ f0

is fulfilled with probability 1, then V D
0 = f3. However, if

E(v2|F1) + f3 − v2 + Ev1 − v1 < f0 (2.16)

with positive probability, then

max{f0, E(v2|F1) + f3 − v2 + Ev1 − v1} > E(v2|F1) + f3 − v2 + Ev1 − v1
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with the same probability and consequently V D
0 > V0. The inequality (2.16) is achieved,

for example, if Ev1 is close to f1, E(v2|F1) is close to f2 and v1 and v2 are equal to f3

with positive probability.
At the same time it is possible to construct examples when V D

0 ≤ V0. Indeed, let us take
vi(Xi) = fi(Xi) for all i = 0, . . . , I − 1, then according to (2.12)

V D
0 = f0 + E

[
max

0≤j≤I

j−1∑

l=0

(E (fl+1|Fl)− fl)

]

and due to (2.13)

V0 = f0 +
I−1∑

i=0

(E (fi+1|Fi)− fi)
+ ≥ V D

0 .

However, the method based on the representation (2.6) has some advantages over dual
approach. First, V0(X0) depends on vi monotonically that is if we have two low bounds
v and ṽ such that vi(Xi) ≤ ṽi(Xi) for all i, then V0(X0) ≥ Ṽ0(X0). This immediately
follows from the first line in (2.13). For the dual method this is not always the case.
Indeed, with three exercises (I = 2) formula (2.12) gives

V D
0 = E max{f0, E(v1|F0) + u1 − v1}.

Consider the case when the probability of event A := {Ev1−u1−v1 ≥ f0} is positive and
v1 < u1 − θ with some constant θ > 0. Then taking ṽ1 = v1 + θ/2 on A and ṽ1 = v1 + θ

outside A we obtain

Ṽ D
0 := E max{f0, E(ṽ1|F0) + u1 − ṽ1} > V D

0 ,

though ṽ1 > v1. Second, adaptive local low bounds of the form

vi(x) = max
1≤k≤l

vk
i (x), i = 0, . . . , I − 1,

where v1(x), . . . , vl(x) are low bounds at x ordered according to their complexity and l

may depend on x, can be used to construct V0(X0) (see [4]). Third, V0(X0) is computa-
tionally less expensive than V0(X0). It is also worthwhile mentioning that our approach
allows us to construct low bounds using upper ones.

2.5 Bermudan options.

As before we consider the discrete-time model

(Bi, Xi) = (Bi, X
1
i , ..., Xd

i ), i = 0, 1, ..., I.

However, now an investor can exercise his right only at time belonging to the set of
stopping times S = {s1, ..., sl} within {0, 1, ..., I} where sl = I. The price ui(Xi) of the
Bermudan option is given by

ui(Xi) = sup
τ∈TS∩[i,I]

BiE

(
fτ (Xτ )

Bτ
|Fi

)
,
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where TS∩[i,I] is the set of stopping times τ taking values in {s1, ..., sl} ∩ {i, i + 1, ..., I}.
The value process ui is determined as follows:

uI(x) = fI(x),

ui(x) =





max
{

fi(x), BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)}
, i ∈ S,

BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)
, i /∈ S.

Thus, we obtain that the Bermudan option is equivalent to the European option with
the payoff function fi(x) and with the consumption process γi defined by

γi(x) =





[
fi(x)−BiE

(
ui+1(Xi+1)

Bi+1
|Xi = x

)]+

, i ∈ S,

0, i /∈ S.

From here all the results for discrete-time American options obtained in this section can
be carried over to the Bermudan options. For example, if vi(x) is a lower bound of the
true option price ui(x), the price Vi(x) of the European option with the payoff function
fI(x) and with the consumption process

γi,v(x) =





[
fi(x)−BiE

(
vi+1(Xi+1)

Bi+1
|Xi = x

)]+

, i ∈ S,

0, i /∈ S,

is an upper bound: Vi(x) ≥ ui(x).

3 Optimal stopping times and algorithms with low contin-

uation values

The samples with optimal stopping times are introduced first in [22] (see [11] as well).

3.1 Basic relations for optimal stopping times

The optimal stopping time τ i,x = τ ti,x depends on the initial position (ti, x). It is defined
recurrently by the dynamic programming principle in the following way. We set

τI,x = τT,x = T, (3.1)

τ i,x = tiχ{Ci(x)≤fi(x)} + τ i+1,Xi,x
i+1χ{Ci(x)>fi(x)}

= tiχ{ui(x)=fi(x)} + τ i+1,Xi,x
i+1χ{ui(x)>fi(x)},

i = I − 1, ..., 0.

Thus, for any position (ti, x), the optimal stopping time τ i,x is either equal to ti : τ i,x =
ti, or τ i,x > ti. It is also clear that (ti, x) is a stopping point (i.e., τ i,x = ti) iff (ti, x) ∈ E
(i.e., (ti, x) belongs to the exercise region). The instant τ i,x is the first one at which the
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trajectory (tj , X
i,x
j ) either gets into E during i ≤ j ≤ I−1 or τ i,x = I. So, (τ i,x, Xi,x

τ i,x) ∈ E
(see (2.2). Let us give some recurrence relations for ui(x) and Ci(x) :

ui(Xi) = max{fi(Xi), Ci(Xi)}, uI(x) = f(x), (3.2a)

Ci(Xi) =
Bi

Bi+1
E(ui+1(Xi+1)|Xi), CI(x) = f(x), (3.2b)

Ci(Xi) =
Bi

Bi+1
E(max{fi+1(Xi+1), Ci+1(Xi+1)}|Xi), (3.2c)

ui(Xi) = max{fi(Xi),
Bi

Bi+1
E(ui+1(Xi+1)|Xi)}. (3.2d)

We note that

ui+1(Xi+1) = Bi+1E

(
fτ (X

ti+1,Xi+1
τ )
Bτ

|Xi+1

)
, (3.3)

E(ui+1(Xi+1)|Xi) = E

(
Bi+1E

(
fτ (X

ti+1,Xi+1
τ )
Bτ

|Fi+1

)
|Fi

)
(3.4)

= Bi+1E

(
fτ (X

ti+1,Xi+1
τ )
Bτ

|Xi

)
,

where
τ = τ ti+1,Xi+1 .

Hence due to (3.2b),

Ci(Xi) = BiE

(
fτ (X

ti+1,Xi+1
τ )
Bτ

|Xi

)
. (3.5)

We emphasize that for any stopping time τ̃ ≥ ti+1 the function

vi+1(x) = Bi+1E

(
feτ (X

ti+1,x
eτ )

Beτ

)
(3.6)

is a low bound for ui+1(x).
Since

Ci(x) = sup
τ∈Ti+1,I

BiE

(
fτ (X

ti+1,Xi+1
τ )
Bτ

|Xi = x

)
= sup

τ∈Ti+1,I
BiE

(
fτ (X

ti,x
τ )

Bτ

)
, (3.7)

the function

ci(x) = BiE

(
feτ (X

ti,x
eτ )

Beτ

)
(3.8)

is a low continuation value for any stopping time τ̃ ≥ ti+1.
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3.2 Subsequent estimating optimal stopping times

Considering Ci(x) as a regression function (see (3.5)), it is natural to introduce after [22]
and [11] the sample

(mXi,
Bi

Bτ
fτ (mX

ti+1, mXi+1
τ )) = (mXi,

Bi

Bτ
fτ (mXti, mXi

τ )), (3.9)

τ = τ ti+1, mXi+1 , m = 1, ..., M,

from (Xi,
Bi
Bτ

fτ (X
ti+1,Xi+1
τ )) = (Xi,

Bi
Bτ

fτ (X
ti,Xi
τ )), where τ = τ ti+1,Xi+1 .

We are about to use (3.10) for subsequent constructing an estimate τ̂ ti, mXi for op-
timal stopping time τ ti, mXi . Clearly, τI, mXI = τ̂I, mXI = I. Let τ ti+1, mXi+1 , i =
I − 1, ..., 1, (in reality τ̂ ti+1, mXi+1) be known. Using the sample (3.10) at the step ti, we
evaluate Ci(mXi) as a regression due to (3.5). Let Ĉi(mXi) be an estimate of Ci(mXi)
(we recall that knowledge of Ĉi(mXi) gives ûi(mXi) due to (3.2a)). If fi(mXi) ≥ Ĉi(mXi)
then τ̂ ti, mXi = ti, otherwise τ̂ ti, mXi = τ̂ ti+1, mXi+1 (see (3.1)). As a result we obtain the
sample like (3.10) at the step ti−1:

(mXi−1,
Bi−1

Bτ
fτ (mXti, mXi

τ )) = (mXi−1,
Bi−1

Bτ
fτ (mX

ti−1, mXi−1
τ )), (3.10)

τ = τ ti, mXi , m = 1, ..., M.

Coming to τ t1, mX1 , we can evaluate u0(X0). Indeed, since X0 is a nonrandom vector, we
have (see (3.2d) and (3.4)

u0(X0) = max{f0(X0),
1

B1
E(u1(X

t0,X0
1 )} = max

{
f0(X0), E

(
fτ (X

t1,X1
τ )

Bτ

)}
, τ = τ t1,X1 .

(3.11)
So, our main problem is to evaluate the continuation value Ci(mXi) using sample

(3.10). There are a lot of nonparametric regression methods to attain this objective
(see, e.g., [15]). In the next subsection we propose some algorithms basing both on local
modelling and least squares estimation. In contrast to other works using the regression
approach in pricing American options, we construct together with the estimate Ĉi(mXi)
an upper consumption process.

The most appropriate are methods for which the estimate Ĉi(mXi) is a low continu-
ation value. Then we are able to construct both a low and an upper bounds.

3.3 Algorithms with the local Monte Carlo approach

For every position (ti, mXi), m = 1, ...M, let us construct N = Ni,m additional inde-
pendent trajectories on [ti, ti+1], i.e., the trajectories with the length of one step. To the
instant ti+1 we obtain N +1 points nXti, mXi

ti+1
, n = 0, 1, ..., N, where we put 0X

ti, mXi
ti+1

=m

Xi+1. Introduce the notation m,nXi+1 :=n Xti, mXi
ti+1

. Let τm,n := τ ti+1, m,nXi+1 . Due to
(3.5) and the Monte Carlo approach (let us note that τm,n = τ ti+1, m,nXi+1 is equal to
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τ ti, mXi provided τ ti, mXi ≥ ti+1; see also (3.7)) , we have

Ci(mXi) = BiE

(
fτ (X

ti+1,Xi+1
τ )
Bτ

|Xi =m Xi

)
' Bi

N + 1

N∑

n=0

fτm,n(Xti+1, m,nXi+1
τm,n )
Bτm,n

.

(3.12)
For every point m,nXi+1 =n Xti, mXi

ti+1
we find the nearest one among kXi+1, k = 1, ...M,

let it be k(m,n)Xi+1. For the position (ti+1, k(m,n)Xi+1), it is known the estimate τ̂k(m,n)

of the optimal stopping time τ ti+1, k(m,n)Xi+1 . To avoid confusion, let us emphasize that
the points m,nXi+1 lie on the trajectories starting from the same position (ti, mXi)
while the points k(m,n)Xi+1 lie on the trajectories which have different starting positions
(ti, k(m,n)Xi). For any point Xi+1 = Xti, mXi

ti+1
one can define the stopping τ̃ = τ̃(Xi+1) ≥

ti+1 analogously to τ̂k(m,n), i.e., first, you find the nearest point to Xi+1 among kXi+1, k =
1, ...M, say ekXi+1, and second, for the position (ti+1, ekXi+1) you know the estimate τ̂ek
of the optimal stopping time τ ti+1, ekXi+1 which you take as τ̃ : τ̃ = τ̃(Xi+1) = τ̂ek. Clearly,
for the points m,nXi+1 this stopping time τ̃ = τ̃(m,nXi+1) := τ̃m,n coincides with τ̂k(m,n).

Introduce

C̃i(x) = BiE

(
feτ (X

ti+1,Xi+1

eτ )
Beτ

|Xi = x

)
.

From (3.7) and (3.8) it follows

Ci(x) = C̃i(x) + ri(x), (3.13)

where ri(x) ≥ 0, i.e. C̃i(x) is a low continuation value at the position (ti, x). Analogously
to (3.12) we have

C̃i(mXi) =
Bi

N + 1

N∑

n=0

feτm,n
(Xti+1, m,nXi+1

eτm,n
)

Beτm,n

+ αi(mXi) (3.14)

=
Bi

N + 1

N∑

n=0

fbτk(m,n)
(Xti+1, m,nXi+1

bτk(m,n)
)

Bbτk(m,n)

+ αi(mXi),

where αi(mXi) is the Monte Carlo error which becomes small with increasing N. Let us
pay attention that in general the points X

ti+1, m,nXi+1

eτm,n
do not belong to the considered

sample of M independent trajectories all starting from the initial point (t0, X0). That is
why the sum in (3.14) cannot be taken as an estimate for the continuation value Ci(mXi).

For the continuation value, it is natural to introduce the estimate

Ĉi(mXi) =
Bi

N + 1

N∑

n=0

fbτk(m,n)
(X

ti+1, k(m,n)Xi+1

bτk(m,n)
)

Bbτk(m,n)

. (3.15)

Let us note that in (3.15) and in (3.14) we consider the trajectories X
ti+1, k(m,n)Xi+1
s and

X
ti+1, m,nXi+1
s starting from different positions (ti+1, k(m,n)Xi+1) and (ti+1, m,nXi+1) but

with the same sources of randomness. If M is large, the points m,nXi+1 and k(m,n)Xi+1
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are at a short distance and we get

Ĉi(mXi) =
Bi

N + 1

N∑

n=0

fbτk(m,n)
(Xti+1, m,nXi+1

bτk(m,n)
)

Bbτk(m,n)

− βi(mXi) (3.16)

= C̃i(mXi)− αi(mXi)− βi(mXi),

where the approximation error βi is small.
From (3.13) we obtain

Ĉi(mXi) = Ci(mXi) + ρi(mXi)− ri(mXi), (3.17)

where ρi = −αi − βi.

We can claim that the estimate Ĉi(mXi) is a low continuation value at the position
(ti, mXi) within the accuracy depending on N and M , because ρi becomes small with
increasing M and N and ri ≥ 0. It should be noted that ri essentially depends on a
procedure of subsequent estimating optimal stopping times and can be comparatively
large (i.e. ri À 0) if the procedure is unsuccessful. Thus the following theorem is
justified.

Theorem 3.1. The estimate Ĉi(mXi) is a low continuation value within the accuracy
depending on N (the accuracy determined by the Monte Carlo error) and M (the accuracy
determined by the approximation error).

Corollary 3.2. Consider the consumption

γ̂i(mXi) = [fi(mXi)− Ĉi(mXi)]+. (3.18)

Because γ̂i(mXi) = [fi(mXi)− Ci(mXi) + ri(mXi)− ρi(mXi)]+, we have

γi(mXi) ≤ γ̂i(mXi), if ri ≥ ρi, (3.19)

[γi(mXi)− ρi(mXi) + ri(mXi)]+ ≤ γ̂i(mXi) ≤ γi(mXi), if ρi > ri.

We see that γ̂i(mXi) is an upper consumption in the most typical case ri ≥ ρi, otherwise it
can be not an upper bound however in such a case γ̂i(mXi) is insignificantly distinguished
from γi(mXi), i.e., γ̂i(mXi) is an upper consumption within the accuracy depending on
M and N .

3.4 Algorithms with the local Monte Carlo approach, continuation

For the estimate (3.15) we use one nearest point k(m,n)Xi+1 among mXi+1, m = 1, ...,M,

to every point m,nXi+1. Now let us for every point m,nXi+1 =n Xti, mXi
ti+1

find a few (say
Km,n) nearest ones among mXi+1, m = 1, ...M. Let us denote them by k[m,n]Xi+1, k =
1, ..., Km,n (in contrast to k(m, n), the function k[m,n] is a multifunction). The estimates
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τ̂k[m,n] of the optimal stopping times τk[m,n] := τ ti+1, k[m,n]Xi+1 are known. Then the
following expression

vi+1(nXti, mXi
ti+1

) =
Bi+1

Km,n

Km,n∑

k=1

f(X
ti+1, k[m,n]Xi+1

bτk[m,n]
)

Bbτk[m,n]

(3.20)

is a low bound for ui+1(x) at the position (ti+1, nXti, mXi
ti+1

) (of course, within the accuracy
of approximation).

Clearly,

Ĉi(mXi) =
Bi

Bi+1
· 1
N + 1

N∑

n=0

vi+1(nXti, mXi
ti+1

) =
Bi

N + 1

N∑

n=0

1
Km,n

Km,n∑

k=1

f(X
ti+1, k[m,n]Xi+1

bτk[m,n]
)

Bbτk[m,n]

(3.21)
is a low continuation value at (ti, mXi) (of course, within the accuracy depending on M

and N).
The estimate (3.15) is the particular case of (3.21) when Km,n = 1.

Remark 3.3. For estimate (3.21), analogs of Theorem 3.1 and Corollary 3.2 are
true as well.

3.5 Algorithms with k-NN estimates

In the previous algorithms we construct Ni,m additional trajectories for every point mXi,

m = 1, ...M. Let us consider N = Ni,m nearest points m,1Xi, ...,m,N Xi to the point

mXi instead of constructing the additional trajectories. All the points m,1Xi, ...,m,N Xi

belong to the set { mXi, m = 1, ...M}. We have m,nX
(ti, m,nXi)
i+1 =m,n Xi+1, n =

0, 1, ..., N, m,0Xi =m Xi, m,0Xi+1 =m Xi+1, with known τ̂m,n = τ̂ ti+1, m,nXi+1 and
f(X(ti+1, m,nXi+1)

bτ ti+1, m,nXi+1
) (let us note that we use another notation in this subsection and, in

particular, we emphasize that the points m,nXi+1 belong to the set { mXi+1, m =
1, ...M}). Then analogously to (3.15), we evaluate:

Ĉi(mXi) =
Bi

N + 1

N∑

n=0

fbτm,n(Xti+1, m,nXi+1

bτm,n
)

Bbτm,n

. (3.22)

This estimate is an analog of (3.15). To get an analog of (3.21) let us find for every
point m,nXi+1 =m,n X

(ti, m,nXi)
i+1 a few (say Km,n) nearest ones among mXi+1, m =

1, ...M. Denote them by m,n,kXi+1, k = 1, ..., Km,n. Then

Ĉi(mXi) = Bi · 1
N + 1

N∑

n=0

1
Km,n

Km,n∑

k=1

f(Xti+1, m,n,kXi+1

bτm,n,k
)

Bbτm,n.k

, (3.23)

where τ̂m,n,k are known estimates of the optimal stopping times τm,n,k := τ ti+1, m,n,kXi+1 .
We note that m,n,kXi+1 in (3.23) are distinguished from m,n,kXi+1 in (3.21).

Remark 3.4. For estimate (3.23) analogs of Theorem 3.1 and Corollary 3.2 are true
as well.
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Remark 3.5. k-NN estimates belong to the class of local averaging estimates (see
[15]). One can use other estimates of this class, for example, kernel estimates and local
polynomial kernel estimates. Note, that the latter type of estimates can be helpful for
estimating deltas.

3.6 Linear regression

Regression-based methods approximate the continuation value using a basis function
expansion:

Ci(x) ≈
K∑

r=1

βirψr(x), i = 0, 1, . . . , I − 1,

where {ψr(x)}K
r=1 is a set of basis functions each mapping X to R. In the notations

Ci(x) ≈ β>i ψ(x)

with
β>i = (βi1, . . . , βiK), ψ(x) = (ψ1(x), . . . , ψK(x))>.

Vector βi can be estimated using the sample

(mXi,
Bi

Bbτm

fbτm
(mX

ti+1, mXi+1

bτm
)), τ̂m = τ̂ ti+1, mXi+1 , m = 1, . . . , M,

as
β̂i = Â−1

ψ α̂ψV .

Here Âψ is the K ×K matrix with qr entry

1
M

M∑

m=1

ψq(mXi)ψr(mXi)

and α̂ψV is the K-vector with rth entry

1
M

M∑

m=1

ψr(mXi)
Bifbτm

(Xti+1, mXi+1

bτm
)

Bbτm

.

The estimate β̂i then defines an estimate

Ĉi(x) = β̂>i ψ(x)

of the continuation value at an arbitrary point x in the state space X. Now, if fi(mXi) ≥
Ĉi(mXi) then τ̂ ti, mXi = ti, otherwise τ̂ ti, mXi = τ̂ ti+1, mXi+1 (see (3.1)). As a result we
obtain at the step ti−1 the sample :

(mXi−1,
Bi−1

Bbτm

fbτm
(mXti, mXi

bτm
)) = (mXi−1,

Bi−1

Bbτm

fbτm
(mX

ti−1, mXi−1

bτm
)),

τ̂m = τ̂ ti, mXi , m = 1, ..., M.
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Theorem 3.6. The estimate

Ĉi(mXi) = β̂>i ψ(mXi) (3.24)

is a low continuation value within the accuracy depending on K and M.

Proof. Having Ĉj(x), x ∈ X, j = 0, ..., I − 1, one can define a stopping time τ̃ for
every trajectory Xti, x

tj
, j = i, ..., I, in the following way. If Ĉi(x) ≤ fi(x), then we put

τ̂ ti, x = ti. If Ĉi(x) > fi(x), then we put τ̂ ti, x > ti. Further, if Ĉi+1(X
ti, x
ti+1

) ≤ fi+1(X
ti, x
ti+1

),
then we put τ̂ ti, x = ti+1, and so on. If Ĉj(X

ti, x
tj

) > fj(X
ti, x
tj

) for all j = i, ..., I − 1,

then we put τ̂ ti, x = I. Clearly, τ̃ ti, mXi = τ̂ ti, mXi , m = 1, ..., M, i.e., τ̃ is an extension
of τ̂ . Let us introduce the value

C̃i(x) = BiE

(
feτ (X

ti+1,Xi+1

eτ )
Beτ

|Xi = x

)
, τ̃ = τ̃ ti+1, Xi+1 . (3.25)

Due to (3.7) and (3.8), C̃i(x) is a low continuation value, i.e.,

C̃i(x) = Ci(x)− ri(x), (3.26)

where ri(x) ≥ 0. But for the conditional expectation (3.25), Ĉi(x) can be considered as
an estimate by the linear regression method. Therefore

C̃i(x) = Ĉi(x) + αi(x), (3.27)

where αi(x) is the regression error which depends on K and M. From (3.26) and (3.27)
we obtain

Ĉi(mXi) = Ci(mXi)− αi(mXi)− ri(mXi). (3.28)

Theorem 3.6 is proved.

Remark 3.7. Formally, the theorem is true even if the error αi(x) is large. But
its significance manifests itself when αi(x) is rather small (this can be reached due to
successful choice of ψ1(x), . . . , ψK(x) and sufficiently large M). Then Ĉi(mXi) is really
(not only within the accuracy depending on K and M) a low continuation value.

4 Global low and upper bounds

Aiming to estimate the price of the American option at a fixed position (t0, x0), we
simulate the independent trajectories mXi, i = 1, ..., I, m = 1, ...,M, of the process Xi,
starting at the instant t = t0 from x0 : X0 = x0.

For constructing the global low bound we use formula (3.11). Indeed (3.11) gives the
following estimate

û0(X0) = max

{
f0(X0),

B0

M

M∑

m=1

fbτm
(Xt1, mX1

bτm
)

Bbτm

}
, τ̂m = τ̂ t1, mX1 . (4.1)
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We note that (4.1) always is a low bound for u0(X0) even if τ̂m is not equal to optimal
stopping time τ t1, mX1 .

To construct the global upper bound we use Subsection 2.3. Let vi(x) be a low bound
and (ti, mXi) be the position on the m-th trajectory at the time instant ti. We calculate
the low continuation value

ci,v(mXi) = BiE

(
vi+1(mXi+1)

Bi+1
|Fi

)
(4.2)

at the position (ti, mXi). If
fi(mXi) < ci,v(mXi), (4.3)

then (ti, mXi) ∈ C (see (2.2)) and we move one step ahead along the trajectory to the
next position (ti+1, mXi+1). Otherwise if

fi(mXi) ≥ ci,v(mXi), (4.4)

then we cannot say definitely whether the position (ti, mXi) belongs to C or to E . In
spite of this fact we do one step ahead in this case as well. Let us recall that the true
consumption at (ti, x) is equal to

γi (x) = [fi (x)− Ci (x)]+ (4.5)

(see (2.5) and (2.1)). Thus, it is natural to define the upper consumption γi,v at any
position (ti, mXi) by the formula

γi,v(mXi) = [fi(mXi)− ci,v(mXi)]+. (4.6)

Obviously, ci,v ≤ Ci and hence γi,v ≥ γi. Therefore, the price Vi(x) of the European option
with payoff function fi(x) and upper consumption process γi,v is an upper bound on the
price ui(x) of the original American option. In the case (4.3) γi,v(mXi) = γi(mXi) = 0
and we do not get any error. If (4.4) holds and besides ci,v(mXi) < Ci(mXi), we get an
error. If γi,v(mXi) is large, then it is in general impossible to estimate this error, but if
γi,v(mXi) is small, the error is small as well.

Having found γi,v, we can construct an estimate V̂0(x0) of the upper bound V0(x0)
for u0(x0) by the formula

V̂0(x0) =
1
M

M∑

m=1

fI(mXI)
BI

+
1
M

I−1∑

i=0

M∑

m=1

γi,v(mXi)
Bi

. (4.7)

Note that for the construction of an upper bound V0 one can use different local
low bounds depending on a position. This opens various opportunities for adaptive
procedures (see [4]). For instance, if γi,v(mXi) is large, then it is reasonable to use a
more powerful local instrument at the position (ti, mXi).
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Instead of using a low bound for constructing a global upper one, one can use low
continuation values, in particular, those from Section 3. So, let Ĉi(mXi) be a low con-
tinuation value. Then (compare with (4.6))

γ̂i(mXi) = [fi(mXi)− Ĉi(mXi)]+ (4.8)

is an upper consumption value and the corresponding global upper bound is given by the
formula

V̂0(x0) =
1
M

M∑

m=1

fI(mXI)
BI

+
1
M

I−1∑

i=0

M∑

m=1

γ̂i(mXi)
Bi

. (4.9)

Remark 4.1. In reality (see (3.19)) the global upper bound is equal to V̂0(x0) + ∆,
where ∆ → 0 when M,N → ∞. Therefore we have û0(X0) ≤ u0(X0) ≤ V̂0(x0) + ∆, i.e.
the accuracy is evaluated by the difference V̂0(x0)+∆− û0(X0) (not by V̂0(x0)− û0(X0)).
In practice, it may be happened that V̂0(x0) ≤ û0(X0). Clearly, in such a case the accuracy
is evaluated by ∆.

5 Simulations

5.1 Bermudan max calls on d assets

This is a benchmark example studied in [9], [16] and [24] among others. Specifically, the
model with d identical assets is considered where each underlying has dividend yield δ.
The risk-neutral dynamic of assets is given by

dXk
t

Xk
t

= (r − δ)dt + σdW k
t , k = 1, ..., d,

where W k
t , k = 1, ..., d, are independent one dimensional Brownian motions and r, δ, σ

are constants. At any time t ∈ {t0, ..., tI} the holder of the option may exercise it and
receive the payoff

f(Xt) = (max(X1
t , ..., Xd

t )−K)+.

We take ti = iT/I, i = 0, ..., I, with T = 3, I = 9 and apply the local Monte Carlo
method described in the section 3.3. The number of outer Monte Carlo simulations
M = 10000 and the number of inner Monte Carlo simulations N = 100. The results are
presented in Table 1 in dependence on x0 with X0 = (X1

0 , . . . , Xd
0 )T , X1

0 = ... = Xd
0 = x0.

Monte-Carlo error is computed using M outer trajectories. The true values are quoted
from [14].

The good quality of low bound û0(X0) comparatively to the upper bound V̂0(X0)
can be attributed to the fact that V̂0(X0) uses local estimates of continuation values in
an additive form while û0(X0) is based on suboptimal stopping family which depends
only on the sign of difference between the payoff and continuation value. Also note, that
values of upper bound lie outside 95% confidence interval around the true value. This
is again due to the local estimation error and can be cured by increasing the number of
inner simulations N .
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Table 1: Bounds (with 95% confidence intervals) for Bermudan max call with parameters
K = 100, r = 0.05, σ = 0.2, δ = 0.1 and different d and x0

d x0 Lower Bound Upper Bound True Value
û0(X0) V̂0(X0)

90 7.965±0.239 8.417±0.082 8.08
2 100 13.644±0.300 14.493±0.113 13.90

110 20.875±0.370 22.014±0.165 21.34

90 16.795±0.315 19.0126±0.153 16.71
5 100 26.265±0.379 29.340±0.183 26.21

110 36.790±0.437 40.630±0.208 36.84

5.2 Bermudan swaptions in the Libor market model

Let us consider the Libor market model with respect to a tenor structure 0 = T0 <

T1 < . . . < TI in the spot Libor measure P ∗. The dynamics of the forward Libor
Li(t), 0 ≤ t ≤ Ti, i = 1, . . . , I − 1, is governed by the SDE

dLi =
i∑

j=η(t)

δjLiLjγ
>
i γj

1 + δjLj
dt + Li γ

>
i dW ∗, Li(0) = L0

i , t ∈ [0, Ti], (5.1)

where δj = Tj+1 − Tj are day count factors, t 7→ γi(t) = (γi,1(t), . . . , γi,d(t)) are deter-
ministic volatility vector functions defined in [0, Ti] (called factor loadings), and η(t) :=
min{m : Tm > t} denotes the next reset date at time t. In (5.1) W ∗(t), 0 ≤ t ≤ TI−1, is
a standard d-dimensional Wiener process under the measure P ∗ with d, 1 ≤ d < I, being
the number of driving factors. The spot Libor measure P ∗ is induced by the numeraire

B∗(t) := Bη(t)(t)
η(t)−1∏

i=0

(1 + δiLi(Ti)), (5.2)

where Bi(t), i = 0, . . . , I, is the value of a zero coupon bond with face value 1 at Ti. At
a tenor date Ti, i = 1, ..., n− 1, we have (see [14])

Bn(Ti) =
n−1∏

j=i

1
1 + δjLj(Ti)

, n = 1, . . . , I. (5.3)

Note, that in (5.2) and (5.3) we set by definition
∏l

k = 1 for k > l and L0(T0) = L0
0 is a

constant. It is also worth mentioning that Bn(t), n = 1, . . . , I − 1, are uniquely defined
by Libors on the tenor grid only (fortunately, we need values of B∗(t) only there as well).

A European swaption with maturity Ti and strike θ gives the right to contract at Ti for
paying a fixed coupon θ and receiving floating Libor at the settlement dates Ti+1, . . . , TI .
The corresponding payoff at maturity Ti is given by

fi(Li(Ti), . . . , LI−1(Ti)) :=



I−1∑

j=i

Bj+1(Ti)δj(Lj(Ti)− θ)




+

.
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Note, that by setting Lj(t) = Lj(Tj), t > Tj , for j = 0, . . . , I − 1, we can define fi as a
function of the whole Libors vector (L0(Ti), . . . , LI−1(Ti)).
A Bermudan swaption issued at t = 0 gives the right to obtain

fi(Li(Ti), . . . , LI−1(Ti))

at an exercise date i ∈ {s1, . . . , sl = I − 1} ⊂ {1, . . . , I − 1}, to be decided by the option
holder. Its risk-neutral price is given by

u0(L0(0), . . . , LI−1(0)) = sup
τ∈TS

E

(
fτ (Lτ (Tτ ), . . . , LI−1(Tτ ))

B∗(Tτ )

∣∣∣∣F0

)
,

where TS is the set of stopping times τ taking values in {s1, ..., sl}.
For our simulation study we use the Libor volatility structure

γi(t) = cig(Ti − t)ei, where g(s) = g∞ + (1− g∞ + as)e−bs, (5.4)

with ei being d-dimensional unit vectors, decomposing an input correlation matrix of rank
d and g∞ ≥ 0, a ≥ 0, b ≥ 0, ci > 0 being the constants (see [25]). For generating Libor
models with different numbers of factors d, we take as a basis a correlation structure of
the form

ρij = exp(−φ|i− j|), i, j = 1, . . . , I − 1,

which has full rank for φ > 0, and then for a particular choice of d we deduce from
ρ a rank-d correlation matrix ρ(d) with decomposition ρ

(d)
ij = e>i ej , 1 ≤ i, j < I, by

principal component analysis. We take as model parameters a flat 10% initial Libor curve
(i.e. L0

i = 0.1 for i = 0, 1, . . . , I − 1) over a 40 period quarterly tenor structure, and the
parameters

I = 41, δi = 0.25, ci ≡ 0.2, a = 1.5, b = 3.5, g∞ = 0.5, φ = 0.0413.

We consider Bermudan swaptions with yearly exercise opportunities, hence (δi are equal
to a quarter year) si = 4i, i = 1, . . . , 10. For a ”practically exact” numerical integration
of the SDE, we used the log-Euler scheme with ∆t = δ/5.
Now, we apply the regression method described in section 3.5, where at each exercise
date Tsi the value of the European swaption

Si(Lsi(Tsi), . . . , Ln−1(Tsi)) = B∗(Tsi)E
(

fsi+1(Lsi+1(Tsi+1), . . . , Ln−1(Tsi+1))
B∗(Tsi+1)

∣∣∣∣Fsi

)

which we can exercise at the next exercise date Tsi+1 is used as a basis function together
with a powers up to second order of the immediate payoff fsi . Although closed form
expressions for European swaptions do not exist in a Libor market model, there do exist
very accurate (typically better than 0.3% relative error) formulas (see [25]) which we use
for the computation of Si.
The resulting low bound û0 and upper bound V̂0 are given in Table 2 for different numbers
of factors d and different coupons θ. True values (computed with less than 1% relative
error) are quoted from [19].
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d θ û0 V̂0 True Value

0.08 1094.8±1.2 1096.1±2.0 1096.1

40 0.10 338.2±1.0 341.2±1.3 339.3

0.12 96.4±0.5 100.0±0.6 97.2

0.08 1096.3±1.3 1096.6±2.0 1096.5

10 0.10 344.3±1.0 346.7±1.3 344.7

0.12 101.7±0.6 104.9±0.7 101.3

0.08 1108.1±1.5 1110.5±2.4 1109.2

1 0.10 381.7±1.2 384.7±1.6 382.1

0.12 121.2±0.7 123.1±0.8 121.3

Table 2: Prices of bermudan swaptions ×104

5.3 Cancellable Snowballs in the Libor market model

Let us consider a snowball swap contract. According to this contract one has to pay,
instead of floating Libor, so called Snowball coupons which follow the following term
sheet. One pays on a semi-annual base a constant rate I over the first year and in the
forthcoming years (Previous Coupon+A-Libor)+, where A increases as specified in the
contract. A cancellable snowball swap is a snowball which may be cancelled (exercised)
after the first year. Here we consider this cancellable snowball product in a Libor market
model (5.1). The snowballs coupons Ki, settled at Ti+1, i = 0, . . . , I −1, are specified by

Ki = I, i = 0, 1,

Ki = (Ki−1 + Ai − Li(Ti))+, i = 2, . . . , I − 1.

We consider the contract where A increases on an annual base in such a way that A2 = S

Ai+1 = Ai + s (i mod 2),

with S and s given in the contract. The value u0 of the cancellable snowball swap at
T0 = 0 is given by

u0(L0(0), . . . , LI−1(0)) = sup
τ∈TS

E




τ∑

j=1

fj(L2(T2), . . . , Lj−1(Tj−1)
B∗(Tj)

∣∣∣∣∣∣
F0


 ,

where TS is the set of stopping times τ taking values in {2, . . . , I} and

fj(L2(T2), . . . , Lj−1(Tj−1)) = δj−1(Lj−1(Tj−1)−Kj−1), j = 1, . . . , I.

Note, that predictable cashflows fj can take negative values. Since we are going to use
linear regression method it is important to find a good basis functions. One possible way
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would be to include still alive Europeans

max
j<p≤I

E




p∑

q=1

fq(L)
B∗(Tq)

∣∣∣∣∣∣
Fj




at Tj but unfortunately there is no analytical representation for them. However, an
approximation can be found (see [6]) using the fact that for any j + 1 ≤ p ≤ I

E




p∑

q=j+1

fq(L)
B∗(Tq)

∣∣∣∣∣∣
Fj


 =

1−Bp(Tj)
B∗(Tj)

−E




p∑

q=j+1

Kq−1δq−1

B∗(Tq)

∣∣∣∣∣∣
Fj




=
1−Bp(Tj)

B∗(Tj)
− Kjδj

B∗(Tj+1)
− E




p∑

q=j+2

Kq−1δq−1

B∗(Tq)

∣∣∣∣∣∣
Fj


 .

Replacing in the last summand Kq−1 by

K̃q−1 = (αKj + Aq−1 − Lq−1(Tq−1))+, j + 2 ≤ q ≤ p,

where 0 < α < 1 is a constant which may depend on p and is to be found using opti-
mization, we get a reasonable approximation quality. The value of

E

(
K̃q−1δq−1

B∗(Tq)

∣∣∣∣∣Fj

)
=

Bq(Tj)
B∗(Tj)

EBq

(
(αKj + Aq−1 − Lq−1(Tq−1))+δq−1

∣∣Fj

)
,

where EBq denotes the expectation in respect to Tq forward measure, can be calculated
using the Black’s formula. Finally, the quadratic polynomials of the spot Libor Lj(Tj)
complete the set of basis function at Tj , j = 2, . . . , I.
As a numerical example let us consider 6yr Snowball with δi = 0.5yr (I = 12) and take
I = 0.079, S = 0.01. Further, the volatility structure (5.4) with a = 0.976, b = 2, g∞ =
1.5 is employed and the correlation matrix is given by

ρij = exp
[ |j − i|
I − 2

log ρ∞

]
, 1 ≤ i, j ≤ I − 1,

with ρ∞ = 0.663. The tenor structure, initial Libor curve and factor loadings ci are
shown in Table 3. The results in dependence on s are presented in Table 4.
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Tenors 0.0 0.5 1 1.5 2 2.5

L0 0.023 0.025 0.027 0.027 0.031 0.031

ci 0.153 0.143 0.14 0.140 0.139

Tenors 3 3.5 4 4.5 5 5.5

L0 0.033 0.034 0.036 0.036 0.038 0.039

ci 0.138 0.137 0.136 0.135 0.134 0.132

Table 3: Tenor structure, initial Libor curve and factor loadings

s û0 V̂0

0.005 64.8±2.4 67.4±2.2

0.004 101.9±2.3 107.3±1.9

0.003 139.8±2.2 143.3±1.7

Table 4: Prices of cancellable snowballs ×104
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