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Abstract

This paper shows how to identify the structural shocks of a Vector Autore-
gression (VAR) while at the same time estimating a dynamic stochastic general
equilibrium (DSGE) model that is not assumed to replicate the data generating
process. It proposes a framework to estimate the parameters of the VAR model
and the DSGE model jointly: the VAR model is identified by sign restrictions
derived from the DSGE model; the DSGE model is estimated by matching the
corresponding impulse response functions.
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1 Introduction

How can the dynamic effects of sudden changes in one economic variable on other
variables be estimated? In modern macroeconomics, these effects are estimated via
a Vector Autoregression (VAR) model. However, in order to apply a VAR model,
additional assumptions have to be made. This chapter suggests to derive these ad-
ditional assumptions from a dynamic stochastic general equilibrium (DSGE) model.
To take the dependence of the identifying restrictions on the structural parameters
of the DSGE model into account, it is estimated by matching the impulse response
functions of the DSGE model and the VAR model. Since the VAR model is identi-
fied by restrictions derived from the DSGE model, whose parametrization in turn is
estimated using the identified VAR model, it is necessary to describe the joint distri-
bution of both. This paper develops a methodology to do so.

The methodology is in the spirit of Altig, Christiano, Eichenbaum, and Linde (2002),
DelNegro and Schorfheide (2004) and Sims (2006b) who also propose to derive the
identifying restrictions directly from a DSGE model. It differs from them in the fol-
lowing aspects: First of all the VAR model is identified by sign restrictions derived
from the DSGE model. Furthermore, similar to DelNegro and Schorfheide (2004)
and Sims (2006b), I take a Bayesian perspective and estimate the joint posterior dis-
tribution, where, in contrast to those authors and comparable to Altig, Christiano,
Eichenbaum, and Linde (2002), the structural parameters of the DSGE model are
estimated by matching the corresponding impulse response functions.

The suggested methodology has the considerable advantage to the existing litera-
ture that the structural parameters of the DSGE model can be estimated while it
is not assumed to be a proper representation of the data generating process. One
challenge in DSGE model estimation is that the DSGE model has to be fully stochas-
tically specified, i.e. the number of shocks has to correspond to the number of ob-
servable variables. Deriving sign restrictions from the impulse response functions
of the DSGE model to identify the shocks of interest in the VAR has the advantage,
as mentioned in Uhlig (2005a), that it is not necessary for the complete number of
structural shocks of the VAR model to be identified. Therefore, the number of struc-
tural shocks of the DSGE model need not correspond to the number of observable
variables (variables in the VAR model) either, as it is required for Bayesian model es-
timation or the DSGE-VAR methodology by DelNegro and Schorfheide (2004). The
researcher can solely concentrate on the shock of interest. The DSGE model serving
as an identifying prior for the VAR model has the advantage that different assump-
tions the investigator wants to discriminate between can be build into the DSGE
model. A further advantage of this approach is that it allows for nonlinear restric-
tions, for example combined zero restrictions in the initial periods and restrictions
on the sign of the response afterwards.

Since the identification of the VAR model relies on the solution of the DSGE model,
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which in turn depends on its structural parameters, it becomes crucial to take the
uncertainty about the structural parameters of the DSGE model into account. This is
done by estimating the parameters using an approach similar to Christiano, Eichen-
baum, and Evans (2005) and to the simulation based model estimation in Mertens
and Ravn (2008). The posterior distribution of the parameters of the DSGE model
is derived by matching the impulse responses of the DSGE model with those of the
VAR model. This procedure allows to abandon the assumption of the DSGE model
to be a proper representation of the true data generating process. Furthermore, fea-
tures and lags only included to fit the data can be dropped.

This paper is organized in the following way: The next section shortly reviews the
corresponding literature. The third section sets up the framework in general and the
fourth section describes the probability distributions and the suggested algorithm
in detail. The methodology is illustrated by a Monte Carlo Experiment in the fifth
section. I simulate data from a fiscal theory of the price level (FTPL) model and
reestimate the parameters of the FTPL model and the impulse response functions
of the VAR model. The experiment shows that the true impulse response is indeed
found. The last section concludes.

2 Related Literature

Solutions and suggestions to resolve the identification problem in a VAR model are
manifold. Excellent surveys were written by Christiano, Eichenbaum, and Evans
(1999) and Rubio-Ramirez, Waggoner, and Zha (2005). The most closely related
approaches to the methodology presented here are to identify the VAR model by
sign restrictions (Uhlig, 2005a; Faust, 1998) or by probabilistic restrictions (Kociecki,
2005). Identification employing sign restrictions attempts to restrict the sign of the
impulse response functions of some variables, while the variable of interest is unre-
stricted. In Kociecki (2005), a prior distribution for the impulse response functions is
formulated and transformed into a prior distribution for the coefficients of the struc-
tural VAR model. Both approaches depend on the availability of a priori knowledge
on the behavior of some impulse response functions.

With regard to explicitly basing the identifying assumptions on DSGE models, two
strands of literature have emerged recently. One derives the identifying assumptions
from a DSGE model (Altig, Christiano, Eichenbaum, and Linde (2002), DelNegro
and Schorfheide (2004) and Sims (2006b)) the other suggests, once the DSGE model
is large enough, to estimate the DSGE model and to thereby directly infer on the
impulse responses (as in Smets and Wouters (2003)).

The estimation of DSGE models has lately become very popular despite its problem-
atic issues: First, not all parameters of the DSGE model can be identified (see Canova
and Sala (undated) and Beyer and Farmer (2006)). Second, the DSGE model already
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puts a lot of structure on the impulse responses a priori, i.e. it often does not allow
to investigate the sign of a response and might therefore not be appropriate as a re-
search tool. Finally, not all economists might feel comfortable with the assumption
that the DSGE model is a proper representation of the data generating process. In-
stead, as mentioned in Christiano, Eichenbaum, and Evans (2005), the DSGE model
is suited best to replicate the implied dynamics in the data, i.e. the impulse response
functions.

The methodology presented in this paper is in the spirit of the former strand of the
literature, i.e. it bases the identification of the VAR model on restrictions derived
from the DSGE model. It differs from the existing literature in the following aspects.
Altig, Christiano, Eichenbaum, and Linde (2002) and DelNegro and Schorfheide
(2004) employ the rotation matrix of the DSGE model to identify the VAR model. To
do so, the DSGE model has to be fully stochastically specified. In the case of DelNe-
gro and Schorfheide (2004), additional dummy observations derived from the model
are used to augment the VAR model as suggested originally by Ingram and White-
man (1994). While one can control for the prior weight of the dummy observations,
one cannot, in either approach, control for the prior weight of the implied dynamics
of the DSGE. The methodology proposed here differs from them by not employing
the implied rotation matrix of the DSGE model to identify the VAR model and there-
fore not requiring the DSGE model to be fully stochastically specified.

Sims (2006b) extends the idea to augment the VAR model with dummy observations
in a more general framework. In his framework, the tightness of the prior can be
varied across frequencies and the number of structural shocks does not need to equal
the number of observations. The main difference to Sims (2006b) is that I suggest to
employ the implied sign and shape restrictions (as described in Uhlig (2005a)).

As such the methodology laid out in this paper complements the existing literature:
The pure sign restriction approach as in Uhlig (2005a), the probabilistic restrictions
as in Kociecki (2005) and the DSGE-VAR of DelNegro and Schorfheide (2004) arise
as special cases of the presented framework.

3 Framework

In this section I first set up the VAR model and the DSGE model. I continue by
presenting the central idea of the methodology and relate it to existing and nested
approaches.

4



3.1 The VAR model

The structural VAR model containing m variables is given by:

A−1Yt = A1Yt−1 + A2Yt−2 + . . . AlYt−l + εt, t = 1, . . . , T (1)

Yt is a m× 1 vector at date t = 1 + l, . . . , T, A and Ai are coefficient matrices of size
m×m and ε an i.i.d. one-step ahead forecast error, distributed: ε ∼ N (0, Im×m). The
reduced form of the VAR is then defined as:

Yt = B1Yt−1 + B2Yt−2 + . . . BlYt−l + ut, t + 1, . . . , T (2)

with Bi = AAi, ut = Aεt and u ∼ N (0, Σ).

The factorization Σ = A′A does not have a unique solution, which leads to an iden-
tification problem of A, since only the reduced form can be estimated. Impulse re-
sponse functions of the VAR model are computed from the companion form of the
reduced form:

Y = XB + U (3)

where
Y =

[
Y1 . . . YT

]′
T×m

Xt =
[

Y
′
t−1 Y

′
t−2 . . . Y

′
t−l

]′
(m∗l)×1

X =
[

X1 X2 . . . XT
]′

T×(m∗l)

B =
[

B1 B2 . . . Bl
]′

(m∗l)×m

U =
[

u1 . . . uT
]′

T×m

Given additional restrictions to yield a unique factorization of Σ, an impulse vector
a is a vector contained in the impulse matrix A. The impulse response function of a
VAR model to an impulse vector ai at horizon k ϕV

ik is defined as:

ϕV
ik = Γk ăi, k = 0, 1, ...K (4)

with

Γ =
[

B′

Im(l−1) 0m(l−1),m

]
and

ăi =
[

ă′i 01,m(l−1)
]′ .
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3.2 The DSGE model

The fundamental solution of the DSGE model is given by1:

x̂t = T(θ̃)x̂t−1 + R(θ̃)zt (5)

where z is a vector collecting the structural shocks of the DSGE model, while T(θ̃)
and R(θ̃) are matrices one obtains after solving a DSGE model with standard solu-
tion techniques.

The impulse response functions of the variables in x to a structural shock i at horizon
k ϕD

ik are given by:

ϕD
i,0 = R(θ̃)zi, k = 0 (6)

ϕD
i,k = T(θ̃)ϕD

k−1,i, k = 1, 2, ...K (7)

The vector of structural parameters of the DSGE model defined in the way above
does not contain any variances or covariances of a measurement error or any er-
ror term emerging from confronting the DSGE model with the data, only the vari-
ances of the structural shocks. When the DSGE model is estimated by matching
the corresponding impulse response functions, there is an additional error term.
Its variance covariance matrix is denoted by Ω and is also be estimated. The vec-
tor comprising the vector of deep parameters θ̃ and the vectorized Ω is defined as
θ = [ θ̃ vec(Ω) ]′.

3.3 The idea in a nutshell

In order to identify the VAR model impulse response functions of the DSGE model
are employed. Impulse response functions of the DSGE model ϕD can be restrict the
distribution of VAR model parameters either as probabilistic restrictions or as sign
and shape restrictions2. The parameter distribution of the VAR model is therefore
conditional on the impulse response function of the DSGE model, i.e. its parameter
vector (p(A, B|θ)).

On the other hand the DSGE model is estimated by matching the impulse response
functions of the VAR model ϕV and of the DSGE model ϕD, This is a conditional
distribution of the structural parameters of the DSGE θ model given the impulse
response function of the VAR model (p(θ|ϕV)).

1 x̂t denotes the percentage deviation of the generic variable xt from a deterministic steady state x
chosen as approximation point.

2Sign and shape restrictions put zero probability weight on the parameter space of the VAR model
for which the restrictions are not satisfied.
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Since the aim of the exercise is to evaluate the joint posterior distribution of the pa-
rameters of the VAR model and the DSGE model, given a matrix with time series
observations Y, it is necessary to connect both conditional distributions above. The
joint distribution p(θ, ϕV |Y) can be decomposed in different ways, depending on
whether the DSGE model is employed to identify the VAR model or whether it is
not. In the latter case the joint posterior is given by:

p(ϕV , θ|Y) ∝ p(ϕV |Y)p(θ|ϕV) (8)

This formula can be justified twofold: In case the DSGE model is estimated by match-
ing the corresponding impulse response functions and not time series observations,
the distribution of θ conditional on ϕV and Y is equal to the distribution of θ con-
ditional on ϕV only3. The second justification is shown by Smith (1993) and DelNe-
gro and Schorfheide (2004) and discussed below, when setting the framework in a
broader context.

In case the likelihood of the VAR model impulse response functions depends on
restrictions from the DSGE model, p(θ, ϕV |Y) is given as:

p(ϕV , θ|Y) ∝ p(ϕV |θ, Y)p(θ|Y) (9)

The framework presented in this paper is based on the argument that both distribu-
tions are at least proportionally equal:

p(ϕV |Y)p(θ|ϕV) ∝ p(ϕV |θ, Y)p(θ|Y) (10)

and can be approximated sufficiently well by Monte Carlo Markov Chain Methods.
Since the impulse response function of the VAR model is a function of A and B, the
middle term has to be replaced by:

p(ϕV |θ, Y) = p(A, B|θ, Y)J(ϕV → A, B) (11)

where J denotes the Jacobian.

Note that the conditional distributions of interest are on different sides of the propor-
tionally sign in (10). It is therefore possible to employ a Gibbs sampling algorithm,
i.e. to draw from two conditional distributions in order to evaluate the joint dis-
tribution. But it is not possible to draw from p(θ|ϕV) directly. Instead, I suggest
a Metropolis step between, i.e. drawing θ from a proposal density, in combination
with the Gibbs sampling algorithm to approximate p(θ|ϕV).

3It then holds:
p(θ|ϕV , Y)p(ϕV |Y) = p(ϕV |Y)p(θ|ϕV)
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3.4 Nested approaches

Taking a broader perspective, several closely related methodologies evolve as spe-
cial cases of this approach: The pure sign restriction approach of Uhlig (2005a), the
DSGE-VAR methodology of DelNegro and Schorfheide (2004) and the case of prob-
abilistic restrictions of Kociecki (2005).

The latter arises in case the restrictions derived from the DSGE model are constant
across the parameter space. Then, it is possible to generate a prior distribution for
the impulse response functions of the VAR model from the DSGE model and use it
as a prior for the parameters of the VAR model. Since, as pointed out by Kociecki
(2005), the sign restriction approach is a special case of the probabilistic approach,
this methodology is also nested. The sign restriction approach arises if the prior dis-
tribution for some impulse response function exhibits a very small variance, i.e. de-
termines the sign of this impulse. It is equivalent to using an indicator function plac-
ing zero probability weight on VAR model parameter regions whenever the a priori
sign restrictions are not satisfied. Therefore, in case the DSGE model determines
constant sign restrictions across the parameter space it is not necessary to draw from
the conditional distribution of θ one only needs to draw from p(A, B|θ, Y).

The DSGE-VAR methodology arises once the framework is written completely in
terms of the parameters instead of the impulse response functions of the VAR model
and in case the DSGE model is fully stochastically specified.

p(A, B|Y)p(θ|A, B) ∝ p(A, B|θ, Y)p(θ|Y) (12)

The right hand side is the formula used to evaluate the joint posterior distribution
of p(A, B, θ|Y): Since the DSGE model is fully stochastically specified it is possible
to derive an analytical solution of the marginal posterior of θ. The decomposition
on the left hand side legitimates again the decomposition used in (8): The posterior
distribution of the parameters of the VAR does not depend on the vector of structural
parameters of the DSGE model. As argued in DelNegro and Schorfheide (2004) and
Smith (1993), A and B can then be used to learn about the parameters θ.

4 The joint posterior distribution

The joint posterior distribution is evaluated by drawing from two conditional dis-
tributions the distribution of the VAR model parameters conditional on restrictions
derived from the DSGE model and the distribution of the DSGE model parameters
conditional on the impulse response functions of the VAR model. This section de-
scribes these distributions in detail. Afterwards the algorithm to approximate the
joint posterior distribution is set up.
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4.1 The conditional distribution of the VAR model parameters

The methodology laid out in section 3.3 was written in terms of impulse response
functions (ϕ). The transformation in equation 11 is not straightforward. It involves
a highly nonlinear mapping between the impulse response functions and the struc-
tural coefficients of the VAR model. Kociecki (2005) shows how a prior distribution
of impulse response functions can be used as a prior for the parameters of the VAR
model. Those restrictions are called probabilistic restrictions. A summary of his re-
sults is given in appendix A.3. One advantage of probabilistic restrictions is that it is
not necessary to specify prior distributions for all shocks. This is achieved by choos-
ing very large prior variances for the impulse response functions. On the other side,
by choosing very small variances, the probabilistic restrictions are equivalent to the
sign restriction approach. Since, to the best of my knowledge, (it is not possible to
draw the impulse matrix A of the VAR model for a reasonable large set of variables),
I use Kociecki’s framework, but in the sense of the sign restriction approach. For each
realization of the impulse response function of the DSGE model the corresponding
sign restrictions are put on the impulse response function of the VAR model. The dis-
tribution of the VAR model parameters is then conditional on the impulse response
functions of the DSGE model, similar to Uhlig (2005a), where the posterior distribu-
tion of the VAR parameters is multiplied with an indicator function that puts zero
probability in parameter regions whenever the restrictions derived from the DSGE
model are not satisfied.

The sign restriction approach is applied in the following way: The impulse matrix
Ă is defined as a sub matrix of A of size m × n where n is the number of struc-
tural shocks under consideration, i.e. the structural shock of interest as well as other
shocks necessary to distinguish this shock. These shocks have to be included into the
DSGE model as well. In order to indicate that the restrictions put on A rely on the
model and therefore its parameter vector θ, I write Ă(θ). Given a number of rowvec-
tors qj forming an orthonormal matrix Q and the lower Cholesky decomposition of
Σ, Ã, Ă(θ) is defined as: Ă(θ) = ÃQ(θ).

As shown by Uhlig (1997), the prior distribution for B and Σ can be specified choos-
ing appropriate B0, N0, S0, v0 as:

vec(B)|Σ ∼ N (vec(B0), Σ⊗ N−1
0 ) (13)

Σ ∼ IW(v0S0, v0) (14)

Denote the maximum likelihood estimates of Σ and B as Σ̃ = 1
T (Y − XB̂)′(Y − XB̂)
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and B̂ = (X′X)−1X′Y. The posterior is then given as4:

vec(B)|Σ ∼ N (vec(BT), Σ⊗ N−1
T ) (15)

Σ ∼ IW(vTST, vT) (16)

where

NT = N0 + X′X (17)
BT = N−1

T (N0B0 + X′XB̂) (18)

ST =
v0

vT
S0 +

T
vT

Σ̃− 1
vT

(B0 − B̂)′N0N−1
T X′X(B0 − B̂) (19)

vT = v0 + T (20)

Drawing from a joint posterior of B, Σ and Ă(θ) is conducted in the following steps:

1. The impulse responses of the DSGE determine the restrictions put on Ă(θ).

2. Draw B and Σ from the posterior (15) and (16).

3. Calculate Ã and draw Q(θ) from a uniform distribution such that Ă(θ) =
ÃQ(θ) fulfills the sign restriction.

4.2 The conditional distribution of the DSGE model parameters

Since the DSGE model is not assumed to be a proper representation of the data gen-
erating process, the structural parameters are not estimated by matching the data Y.
Instead, the DSGE model is assumed to replicate the implied dynamics of the data,
i.e. the impulse response functions of the VAR model. This induces to match a given
realization of the impulse response function of the VAR model to the i-th shock at
horizon k, ϕV

i,k:
ϕV

i,k = ϕD
i,k(θ̃) + ωi,k. (21)

Stacking the impulse response functions over 1, .., K periods together yields:

ϕV
i = ϕD

i (θ̃) + ωi (22)

with all vectors of dimension m ∗ k× 1. The error term ωi has the property E[ωiω
′
i ] =

Ωωi , which was part of the vector θ.

Since the structural shocks are assumed to be independent, the probability of p(θ|ϕV)
can be written as:

p(θ|ϕV) = p(θ|ϕV
1 , ϕV

2 , · · · ϕV
i ) = p(θ|ϕV

1 )p(θ|ϕV
2 ) · · · p(θ|ϕV

i ) (23)

4A formal derivation is given in appendix A.2
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For each shock i the likelihood li
(
θ̃, Ωωi |ϕV

i
)
is given by:

li
(

θ̃, Ωωi |ϕ
V
i ,
)

= −Km
2

ln(2π)− 1
2

ln(|Ωωi |)−
1
2
(ωi)′ (Ωωi)

−1 (ωi) (24)

Combining this likelihood with a prior distribution for θ yields a posterior distribu-
tion. For the vector of deep model parameters θ̃ the prior distribution picked include
normal-, beta- or gamma distribution. A candidate prior distribution for Ωωi is the
Inverted-Wishart distribution.

Besides the choice of the prior distribution there is an additional issue to be taken
into account. Estimation of the whole matrix easily leads to a large amount of pa-
rameters. I therefore adopt an auxiliary prior assumption concerning ω:

E[ωiω
′
i ] = Ω̃ωi ⊗ IK (25)

This necessitates that variances and covariances are constant over the impulse re-
sponse horizon and that error terms of different impulse response horizons are un-
correlated. Since the impulse response functions of the VAR model are likely to
be correlated, that assumption is a problematic one. But there are also good rea-
sons for it: First, it reduces the parameter space of the variance covariance matrix
substantially and circumvents the likely case that the number of parameters to be
estimated is larger than the parameters of the VAR which parameterize the impulse
response functions. Second, the formulation of the kernel of the likelihood in 24
is similar to indirect inference criterions used in the literature (Christiano, Eichen-
baum, and Evans (2005)), where equivalent assumptions concerning the error terms
are made. Third, those assumptions are analogue to interpreting the estimation as a
seemingly unrelated equation estimator, which is an efficient estimator for a multi-
variate equation system. In case the errors are not normal, the estimator is referred
to as Quasi-Maximum-Likelihood estimator(see White (1982) and Gourieroux, Mon-
fort, and Trognon (1984)), which is not an efficient, but consistent estimator. Equation
24 can then be rewritten as:

li
(

θ̃, Ω̃ωi |ϕ
V
i ,
)

= −Km
2

ln(2π)− 1
2

ln(|Ω̃ωi ⊗ IK|)−
1
2
(ωi)′

(
Ω̃ωi ⊗ IK

)−1 (ωi)(26)

and the corresponding estimator for Ω̃ωi is given by:

Ω̃ωi =
Si(θ)

T

with

Si(θ) =

 ω′1,iω1,i . . . ω′1,iωm,i
... . . . ...

ω′m,iω1,i . . . ω′m,iωm,i

 .

Due to this additional auxiliary assumption I do not specify any further prior distri-
bution for Ω.
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4.3 Sampling algorithm

In order to evaluate the joint posterior distribution of the parameters of the DSGE
model and the VAR model I propose a Gibbs sampling algorithm, i.e. drawing from
from the conditional distributions laid out in detail in sections 4.1 and 4.2. Since it
is not possible to draw directly from p(θ|ϕV), it is necessary to combine the Gibbs
sampling algorithm with a Metropolis algorithm.

Since different θ imply different sign restrictions, the Gibbs sampler is build into the
Metropolis algorithm, i.e. the probability of the parameters of the DSGE model is
evaluated conditional on the impulse response function of the VAR model satisfying
the restrictions derived from the DSGE model for this parameter vector. Otherwise
there would always be a tendency in favor of the latter draw of the parameters of
the DSGE model in the accept-reject-step, since it determined the restrictions of the
VAR model before.

To initialize the algorithm I suggest to draw first from the prior distribution p(θ̃), to
derive for each draw the corresponding restrictions and to draw a ϕV satisfying the
restrictions. This yields a wide range of possible restrictions from the DSGE model
for the impulse response functions of the VAR model and therefore a wide range
of possible impulse response functions of the VAR model. In order to compute the
proposal density for the Markov chain I find the vector of deep parameters of the
DSGE model that fits best the mean of the impulse response functions of the VAR
model and compute the corresponding Hessian Ψ̃−1 at this point. This initialization
procedure accomplishes to get a complete picture of possible restrictions of the VAR
model and its corresponding impulse response functions and to center the proposal
density for the parameters of the DSGE model around the vector with the highest
conditional probability given the mean of the impulse response functions of the VAR
model.

Specifically, the sampling algorithm is implemented in the following way:

1. Draw θ̃j from the proposal density p(θ̃j−1, Ψ̃)

2. Given a realization of the vector of deep parameters of the DSGE model, com-
pute ϕD

j (θ̃j) - The signs of ϕD
j are used as sign restrictions on the VAR model.

3. Draw Σj from (16) and Bj from (15). Compute the lower Cholesky decom-
position and find an Ăj = ÃJQj fulfilling the sign restrictions from ϕD

j (θ̃j).
Compute ϕV

j .

4. Given ϕV
J compute p(θj|ϕV

j ) by combining 24 with a prior distribution of θ.

5. Compute D = p(θj|ϕV(j))
p(θj−1|ϕV(j−1)) . Accept θj and ϕV(j) with probability min[D, 1].

12



6. Start again at point 1.

To check whether the chain converged it is useful to employ a convergence check
as described in Gelman, Carlin, Stern, and Rubin (2004). The idea is to derive a
scale reduction measure, i.e. a factor expressing by which scale the precision of the
estimate can be improved, if the number of iterations is increased.

5 Example

In order to illustrate the methodology suggested above I use a simple fiscal theory of
the price level (FTPL) model as described in Leeper (1991) to identify the response of
inflation to a monetary policy shock, i.e. an unexpected increase in the interest rate.
The FTPL model is chosen since it can be reduced to two equations in real debt and
inflation. It is the most simple DSGE model exhibiting different signs of the impulse
response functions depending on two parameters only. Furthermore, the solution
and properties of the FTPL model are well known across economists, which makes
the example a very transparent.

I simulate data from the FTPL model and show using the methodology outlined
above that the ’true’ signs of the impulse response functions and the corresponding
distribution of the parameters of the FTPL model are found, even if the chain is
initialized with a wrong guess.

5.1 The FTPL model

The representative household maximizes its utility in consumption c and real money
balances m:

Ut = log(ct) + log(mt) (27)

subject to the budget constraint:

ct + mt + bt + τt = y +
1
πt

mt−1 +
Rt−1

πt
bt (28)

where b denotes bond holdings, τ lump sum taxes, y income, R nominal interest rates
and π inflation. Small letters denote real variables, capital letters nominal variables.

The government has to finance government expenditures g by issuing bonds, col-
lecting taxes and seignorage. The budget constraint is therefore given by:

bt + mt + τt = g +
Mt−1

Pt
+ Rt−1

Bt−1

Pt
(29)
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The monetary authority sets the nominal interste rate R following the interest rate
rule:

Rt = α0 + απt + zt (30)

where α0 and α are policy coefficients. z denotes a monetary policy shock, specified
as

zt = ρ1zt−1 + ε1t (31)
ε1t ∼ N(0, σ1) (32)

The fiscal authority sets taxes according to:

τt = γ0 + γbt−1 + ψt (33)

where again γ0 and γ denote policy coefficients. The innovation in fiscal policy has
the following characteristics:

ψt = ρ2ψt−1 + ε2t (34)
ε2t ∼ N(0, σ2) (35)

The model can be linearized and summarized by two equations5:

π̃t+1 = βαπ̃t + βzt (36)

b̃t + ϕ1π̃t + ϕ3zt + ψt = (β−1 − γ)b̃t−1 − ϕ4zt−1 − ϕ2π̃t−1 (37)

5.2 Dynamics of the FTPL model

The dynamics of the system depend on whether fiscal and monetary policy are active
or passive, i.e. they depend on the policy parameters α and γ only. Different policy
regimes emerge for:

• |αβ| > 1 and |β−1 − γ| < 1 for active monetary (AM) and passive fiscal policy
(PF). This will be referred to as regime I.

• |αβ| < 1 and |β−1 − γ| > 1 for active fiscal (AF) and passive monetary policy
(PM). This will be referred to as regime II.

• AM/AF and PF/PM. These cases are not considered here.

Both policy regimes imply different signs of the impulse response function for infla-
tion and real debt. In regime I a monetary policy shock (an unanticipated increase
in the nominal interest rate) will lead to a negative response of inflation and a posi-
tive response of real debt. A fiscal policy shock (an unanticipated increase in taxes)

5See appendix A.1 for a derivation.
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will have no effect on inflation and decrease the real debt. In regime II, a monetary
policy shock leads to an increase in inflation and an initial decrease in real debt. A
fiscal policy shock has a negative effect on both variables. Impulse response func-
tions for each shock, regime and variable are plotted in appendix A.4 together with
the corresponding distributions of α and γ .

5.3 Specification and Identification of the VAR

I simulate data from the model over 200 periods with α = γ = 0, i.e. the case of
active fiscal and passive monetary policy. The VAR model consists of two variables,
inflation π and real debt b, with no constant or time trend: yt = [πtbt]′. The VAR
model with one lag is given by:

yt = Byt−1 + ut

E[utu′t] = Σ

Ordering the fiscal policy shock first and the monetary policy shock second, based
on the model the following characteristics of the impulse matrix A have to hold:

• If regime I holds:

– Fiscal policy shock: A11 = 0 A21 < 0.

– Monetary policy shock: A21 < 0 and A22 > 0.

• If regime II holds:

– Fiscal policy shock: A11 < 0 A21 < 0.

– Monetary policy shock: A21 > 0 and A22 < 0.

Since the sign of the reaction of real debt to a monetary policy shock does not identify
the shock in case of regime II, the monetary policy shock is ordered second, implying
that both variables have to fulfill the sign restriction for a fiscal policy shock first.
Then the sign of the response of real debt is restricted, while the response of inflation
is left open.

5.4 A Monte Carlo Experiment

I choose the prior distribution of α and γ based on estimates of Davig and Leeper
(2005):

The prior distribution is plotted in figure 1. The model fulfills the requirements to
investigate the question how inflation reacts after a monetary policy shock: depend-
ing on the parameterization it allows for qualitatively different reactions of inflation,
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Parameter mean(I) standard deviation(I) mean(II) standard deviation(II)
α 1.308 0.253 0.522 0.175
γ 0.0136 0.012 -0.0094 0.013

Table 1: Prior distribution for parameters of the model

and the DSGE model incorporates all other shocks necessary, here the fiscal policy
shock, to distinguish the shock of interest. The corresponding impulse responses for
each regime are plotted in the appendix A.4: Figures 2 and 3 provide Bayesian
impulse response plots for draws from the prior distribution of regime I and figures
4 and 5 for draws from the prior distribution of regime II.

The plots indicate a break between regime I and II and not a smooth intersection.
This means that determining a mode of the model parameters at the mean or mode of
the impulse resonses of the VAR would be misleading - since those measures might
not be appropriate. Therefore, I only take draws from the prior distribution of both
regimes with equal probability of change. Since the data are simulated from regime
II, the outcome to expect is the distribution of regime II, with the corresponding
impulse responses of inflation and real debt for a fiscal policy shock and real debt
for a monetary policy shock. Furthermore, inflation should rise in response to a
monetary policy shock.

As figure 6 indicates this is indeed the case, even though I initialize the chain with a
wrong guess. The posterior distribution of α and γ stems from regime II only. Figure
7 shows the response to a fiscal policy shock, figure 8 the response to a monetary
policy shock. Inflation is indeed increasing.

6 Conclusion

This paper has shown how to identify the structural shocks of a Vector Autoregres-
sion (VAR) while at the same time estimating a dynamic stochastic general equilib-
rium (DSGE) model that is not assumed to replicate the data generating process. To
this end it has presented a framework to jointly estimate the parameters of a VAR
model and a DSGE model.

The VAR model is identified based on restrictions from the DSGE model, i.e iden-
tification relies on explicit restrictions derived from theory. Restrictions are formu-
lated as sign restrictions. The DSGE model serves as a way to summarize the ideas
economists have about the economy. Ideally it incorporates the assumptions the
researcher wants to discriminate between. In any way it should be as agnostic as
possible about the response of the variables of interest to the shock of interest.

The DSGE model is estimated by matching the impulse response functions of the
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VAR and of the DSGE, i.e. their implied dynamics. Therefore, it need not be a rep-
resentation of the data generating process. While the shock of interest has to be
included, as well as other shocks necessary to distinguish it, the DSGE model need
not be fully stochastically specified.

The methodology has been illustrated by a Monte Carlo experiment. Artificial data
is simulated from a simple fiscal theory of the price level model in which fiscal policy
is active and monetary policy passive. I use the methodology to investigate the sign
of the response of inflation to a monetary policy shock. Depending on the policy
regime, i.e. the reaction coefficients of the policy rules, the response can either be
negative or positive. The prior distributions of the policy parameters are chosen
such as to insure that both regimes and therefore both responses are equally likely.
The estimation algorithm is initialized with a wrong guess. The estimated impulse
response function of the VAR as well as the posterior distribution of the parameter
of the DSGE model indicate that the methodology works correctly: The response
of inflation shows the ’true’ sign and the posterior distribution of the parameter of
the DSGE model consists solely of policy coefficients from active fiscal and passive
monetary policy.
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A Appendix

A.1 Description and solution of the DSGE model

A.1.1 DSGE Model Setup

Ut = log(ct) + log(mt) (A-1)

ct + mt + bt + τt = y +
1
πt

mt−1 +
Rt−1

πt
bt (A-2)

First-order conditions:

1
Rt

= β
1

πt+1
(A-3)

mt = c
Rt

Rt − 1
(A-4)

Government budget constraint:

bt + mt + τt = g +
Mt−1

Pt
+ Rt−1

Bt−1

Pt
(A-5)

Monetary authority:

Rt = α0 + απt + θt (A-6)
θt = ρ1θt−1 + ε1t (A-7)

ε1t ∼ N(0, σ1) (A-8)

Fiscal authority:

τt = γ0 + γbt−1 + ψt (A-9)
ψt = ρ2ψt−1 + ε2t (A-10)
ε2t ∼ N(0, σ2) (A-11)

A.1.2 Linearization

x̄x̂t = x̃t.

First equation:

Rt = α0 + απt + θt

πt+1 = βα0 + βαπt + βθt

π̃t+1 = βαπ̃t + βθt
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Second equation:

R̄R̂t =
π̄

β
π̂t+1

R̃t =
π̃t+1

β

mt = c
Rt

Rt − 1

m̃t = − c
(R̄− 1)2β

π̃t+1

m̃t = − c
(R̄− 1)2β

(βαπ̃t + βθt)

m̃t−1 = − cα

(R̄− 1)2 π̃t−1 −
c

(R̄− 1)2 θt−1

bt + mt + τt = g +
Mt−1

Pt
+ Rt−1

Bt−1

Pt

b̃t + m̃t + τ̃t =
m̃t−1

π̄
− m̄

π̄2 π̃t +
b̄
π̄

R̃t−1 −
R̄b̄
π̄2 π̃t +

R̄
π̄

b̃t−1

b̃t −
cα

(R̄− 1)2 π̃t +
cR̄

(R̄− 1)π̄2 π̃t +
R̄b̄
π̄2 π̃t −

c
(R̄− 1)2 θt + τ̃t =

m̃t−1

π̄
+

b̄
π̄

R̃t−1 +
R̄
π̄

b̃t−1

A.1.3 Simplifying the model

Define:

− cα

(R̄− 1)2 +
cR̄

(R̄− 1)π̄2 +
R̄b̄
π̄2 =

c
(R̄− 1)

(
− α

(R̄− 1)
+

c
βπ̄

)
+

b̄
βπ̄

= ϕ1

− c
(R̄− 1)2 = ϕ3

− 1
π̄

cα

(R̄− 1)2 +
b̄
π̄

α = − α

π̄

[
c

(R̄− 1)2 − b̄
]

= −ϕ2

− 1
π̄

c
(R̄− 1)2 +

b̄
π̄

= − 1
π̄

[
c

(R̄− 1)2 − b̄
]

=
−ϕ2

α
= −ϕ4
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This yields:

b̃t + ϕ1π̃t + ϕ3θt − (β−1 − γ)b̃t−1 + ψt + ϕ4θt−1 + ϕ2π̃t−1 = 0 (A-12)

b̃t + ϕ1π̃t + ϕ3θt + ψt = (β−1 − γ)b̃t−1 − ϕ4θt−1 − ϕ2π̃t−1 (A-13)

A.1.4 Calibration

Following Leeper (1991) the model is calibrated by setting:

β = 0.99
c̄ = 0.75
b̄
ȳ

= 0.4

π̄ = 3.43
ρ1 = 0.8
ρ2 = 0
σ1 = 0.2
σ2 = 0.2

A.2 Derivation of the posterior distribution of the BVAR

A.2.1 Prior distribution

vec(B)|Σ ∼ N (vec(B0), Σ⊗ N−1
0 ) (A-14)

Σ ∼ IW(v0S0, v0) (A-15)

Σ is of size m×m, N0 of size k× k, where k = m ∗ l. The probability density function
(p.d.f.) of vec(B) is given by:

p(B|B0, Σ, N0) = (2π)−mk/2|Σ⊗ N−1
0 |
−1/2

exp
[
−1

2
(vec(B)− vec(B0))

′
(

Σ−1 ⊗ N0

)
(vec(B)− vec(B0))

]
= (2π)−mk/2|Σ|−k/2|N0|m/2exp{−1

2
tr
[
Σ−1 (B− B0)

′ N0 (B− B0)
]
}

The p.d.f. of Σ is defined as:

p(Σ|v0S0, v0) = C−1
IW |Σ|

− 1
2 (v0+m+1)exp

[
−1

2
tr
(

Σ−1v0S0

)]
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where:

CIW = 2
1
2 v0mπ

1
4 m(m−1)

m

∏
i=0

Γ
(

v0 + 1− i
2

)
|S0|−

1
2 v0

A.2.2 Likelihood

For

vec(u) ∼ N (0, Σ⊗ I) (A-16)

p(Y|B, Σ) = (2π)−Tm/2|Σ|−T/2exp{−1
2

tr
[
Σ−1(Y− XB)′(Y− XB)

]
}(A-17)

The kernel can be rewritten as:

(Y− XB)′(Y− XB) = (Y− XB− XB̂ + XB̂)′(Y− XB− XB̂ + XB̂) (A-18)
(Y− XB̂)′(Y− XB̂) + (B− B̂)′X′X(B− B̂)

A.2.3 Posterior

p(Σ, B|Y) = C−1
IW |Σ|

− 1
2 (v0+m+1)exp

[
−1

2
tr
(

Σ−1v0S0

)]
(A-19)

×(2π)−mk/2|Σ|−k/2|N0|m/2exp{−1
2

tr
[
Σ−1 (B− B0)

′ N0 (B− B0)
]
}

×(2π)−Tm/2|Σ|−T/2exp{−1
2

tr
[
Σ−1(Y− XB̂)′(Y− XB̂)

]
}

×exp{−1
2

tr
[
Σ−1(B− B̂)′X′X(B− B̂)

]
}

Use the formula as stated in Leamer (1978)6:

(B− B̂)′X′X(B− B̂) (B− B0)
′ N0 (B− B0) = (B− BT)′NT(B− BT) (A-20)

×(B− B0)′(X′X(NT)−1N0)(B− B0)

where:

NT = N0 + X′X
BT = N−1

T (N0B0 + X′XB̂)

6Appendix 1, T10
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leads to:

p(Σ, B|Y) = C−1
IW |Σ|

− 1
2 (v0+m+1)exp

[
−1

2
tr
(

v0Σ−1S0

)]
(A-21)

×(2π)−mk/2|Σ|−k/2|N0|m/2exp{−1
2

tr
[
Σ−1(B− B0)′(X′X(NT)−1N0)(B− B0)

]
}

×(2π)−Tm/2|Σ|−T/2exp{−1
2

tr
[
Σ−1(Y− XB̂)′(Y− XB̂)

]
}

×exp{−1
2

tr
[
Σ−1(B− BT)′NT(B− BT)

]
}

p(Σ, B|Y) = C−1
IW |Σ|

− 1
2 (T+v0+m+1) (A-22)

×exp
[
−1

2
tr
(

Σ−1
(

v0

vT
S0 +

T
vT

Σ̃ +
1

vT
(B− B0)′(X′X(NT)−1N0)(B− B0)

))]
×(2π)−m(T+k)/2|Σ|−(T+k)/2exp{−1

2
tr
[
Σ−1(B− BT)′NT(B− BT)

]
}

A.3 Probabilistic restrictions

The algebra presented here summarizes the results of Kociecki (2005) and follows
mostly his insights. The only innovation is to derive mean and standard deviations
from a DSGE model.

A.3.1 Impulse response functions from the DSGE as a prior

Denote the impulse response functions in period k as in the paper ϕV
k . The matrix is,

if all shocks are included, of size m×m, where the the i, j− th entry corresponds to
the response of the i− th variable to an innovation in the j− th variable. The prior
for the impulse responses has only to be specified for as many periods as lags are
included into the VAR. The vectorized impulse responses are assumed tobe normally
distributed:

vec(ϕ0)
vec(ϕ1)
vec(ϕ2)

...
vec(ϕl)

 ∼ N



vec(ϕ̄0)
vec(ϕ̄1)
vec(ϕ̄2)

...
vec(ϕ̄l)

 ,


V̄00 V̄01 V̄02 · · · V̄0l
V̄10 V̄11 V̄12 · · · V̄1l
V̄20 V̄21 V̄22 · · · V̄2l

...
V̄l0 V̄l1 V̄l2 · · · V̄ll



 (A-23)
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The joint distribution can be decomposed into conditional distribution of ϕk given
ϕk−1 · · · ϕ0 and the marginal distribution of ϕ0:

p(vec(ϕ0)) = N (vec(ϕ̄0), ¯̄V00) (A-24)
p(vec(ϕk)|vec(ϕk−1) · · · vec(ϕ0)) = N (θk, ∆kk) (A-25)

where θk and ∆kk abbreviate rather complex expressions:

θk = vec(ϕ̄) +
[

V̄k0 · · · V̄kk−1
]  V̄00 · · · V̄0k−1

... . . . ...
V̄k−1,0 · · · V̄k−1,k−1


−1  vec(ϕ0 − ϕ̄0)

...
vec(ϕk−1 − ϕ̄k−1)


(A-26)

∆kk = V̄kk −
[

V̄k0 · · · V̄kk−1
]  V̄00 · · · V̄0k−1

... . . . ...
V̄k−1,0 · · · V̄k−1,k−1


−1  V̄0k

...
V̄k−1,k

 (A-27)

A.3.2 Prior for structural coefficients

The prior distribution of the impulse response functions map into a prior distribu-
tion of the structural coefficients for the structural VAR defined in (1). The marginal
prior distribution of A is given by:

p(A) ∝ |det(A)|−2mexp{−0.5(vec(A−1)− vec(ϕ̄))′V̄−1
00 (vec(A−1)− vec(ϕ̄))}

(A-28)
The prior distibution of Ak conditional Ak−1 · · · A is defined as:

p(Ak|Ak−1 · · · A) ∝ | ¯̄Vk|exp{−0.5(vec(Ak)− vec( ¯̄ϕk))′ ¯̄Vk(vec(Ak)− vec( ¯̄ϕk))}
(A-29)

with

vec( ¯̄ϕk) = (A′ ⊗ A)(θk − vec( f (A · · · Ak−1))) (A-30)
vec( ¯̄ϕ1) = (A⊗ A)θ1 (A-31)

and
vec( f (A · · · Ak−1)) = vec(B1ϕk−1 + B2ϕk−2 + · · · Bk−1ϕk) (A-32)

A.3.3 The Likelihood

The likelihood is again split into a marginal likelihood of A and conditional likeli-
hoods of all other structural coefficient matrices.
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vec(F) =


vec(A1)
vec(A2)

...
vec(Al)

 (A-33)

with

vec(F) ∼ N(vec(F̂), (X′X⊗ Im) (A-34)
vec(F̂) = (Il ⊗ A0)vec(Π̂) (A-35)

Π̂ = Y′X(X′X)−1 (A-36)

A further definition:

(X′X)−1 ⊗ Im ≡


Ξ11 Ξ12 · · · Ξ1p Ξ1c
Ξ21 Ξ22 · · · Ξ2p Ξ2c

...
... . . . ...

...
Ξp1 Ξp2 · · · Ξpp Ξpc
Ξc1 Ξc2 · · · Ξcp Ξcc

 (A-37)

The marginal distribution of A:

P(A | Y) ∝| det(A) |T exp
{
−1

2
vec(A)’(Q⊗ Im)vec(A)

}
(A-38)

The conditional distributions are then:

p(vec(Ak)|vec(Ak−1 · · · A, Y) = N (µk, Σk) (A-39)

with:

µk = vec(Âk) +
[

Ξk1 · · · Ξk,k−1
]  Ξ11 · · · Ξ1,k−1

... . . . ...
Ξk−1,1 · · · Ξk−1,k−1


−1  vec(A1 − Â1)

...
vec(Ak−1 − Âk−1)

(A-40)

Σk = Ξkk −
[

Ξk1 · · · Ξk,k−1
]  Ξ11 · · · Ξ1,k−1

... . . . ...
Ξk−1,1 · · · Ξk−1,k−1


−1  Ξ1k

...
Ξk−1,k

 (A-41)

A.3.4 Posterior of structural coefficients

Decomposing the posterior in a similar way, the marginal posterior of A is given by:

p(A|Y) ∝ |det(A)|T−2m(ρ+1) × exp{−0.5vec(A)′(Q⊗ Im)vec(A)}
×{−0.5(vec(A−1)− vec(ϕ0))′V̄−1

00 (vec(A−1)− vec(ϕ0))}

×
ρ

∏
i=1
|Σ−1

k + ¯̄V−1
k |
− 1

2 (A-42)
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The conditional posterior distribution for Ak can be written as:

p(Ak|Ak−1 · · · A, Y) ∝ exp{−0.5(vec(Ak)− µ̃k)′Σ̃−1
k (vec(Ak)− µ̃k)} (A-43)

where:

Σ̃k = (Σ−1
k + ¯̄V−1

k )−1 (A-44)

µ̃k = Σ̃k(Σ−1
k µk + ¯̄V−1

k vec( ¯̄ϕk)) (A-45)

µk and Σk represent the mean and variance of the likelihood estimates conditional on
A defined similar to the prior distribution. The resulting impulse response functions
of the VAR can then be employed to compute the conditional distribution p(θ|ϕV).
As pointed out by Kociecki (2005), the probabilistic restrictions can be thought of
as a generalization of the sign restriction approach. Both approaches presented are
therefore not exclusive.

A.4 Figures

Figure 1: Prior distribution
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Figure 2: Bayesian IRF for a fiscal policy shock regimeI
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Figure 3: Bayesian IRF for a monetary policy shock regimeI
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Figure 4: Bayesian IRF for a fiscal policy shock regimeII
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Figure 5: Bayesian IRF for a monetary policy shock regimeII
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Figure 6: Posterior distribution of α and γ
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Figure 7: Posterior distribution (median and 16% and 84% probability bands) of
impulse responses to a fiscal policy shock for the VAR model (black) and the median
of the impulse responses of the DSGE model (red)
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Figure 8: Posterior distribution (median and 16% and 84% probability bands) of
impulse responses to a monetary policy shock for the VAR model (black) and the
median of the impulse responses of the DSGE model (red)
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