
 
 
 
 
 
 

 
 
 
 
 
 

SFB 649 Discussion Paper 2005-022 
 

DSFM fitting of Implied 
Volatility Surfaces 

 
Szymon Borak* 

Matthias R. Fengler* 
Wolfgang Härdle* 

 

* CASE – Center for Applied Statistics and Economics, 
Humboldt-Universität zu Berlin, Germany 

 

This research was supported by the Deutsche 
Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 
http://sfb649.wiwi.hu-berlin.de 

ISSN 1860-5664 
 

SFB 649, Humboldt-Universität zu Berlin 
Spandauer Straße 1, D-10178 Berlin 

S
FB

  
  
  
6

 4
 9

  
  
  
  

  
  
  
E

 C
 O

 N
 O

 M
 I 

C
  

  
 R

 I 
S

 K
  
  
  
  
  
  

  
  
 B

 E
 R

 L
 I 

N
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6978537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DSFM fitting of Implied Volatility Surfaces

Szymon Borak, Matthias Fengler and Wolfgang Härdle
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Abstract

Implied volatility is one of the key issues in modern quan-
titative finance, since plain vanilla option prices contain vi-
tal information for pricing and hedging of exotic and illiq-
uid options. European plain vanilla options are nowadays
widely traded, which results in a great amount of high-
dimensional data especially on an intra day level. The data
reveal a degenerated string structure. Dynamic Semipara-
metric Factor Models (DSFM) are tailored to handle com-
plex, degenerated data and yield low dimensional represen-
tations of the implied volatility surface (IVS). We discuss
estimation issues of the model and apply it to DAX option
prices.

JEL classification codes: C14

1. Introduction

The Black-Scholes formula (BS) for calculating the price
of a European plain vanilla option is one of the most rec-
ognized results in modern quantitative finance. The price is
given as a function of the price of the underlying, a strike
price, the interest rate, time to maturity and an unobserved
volatility. By plugging the observed option price into the BS
formula it is straightforward to calculate the implied volatil-
ity (IV). The surface (on dayt) given by the mapping from
moneynessκ (a measure of strikes) and from time to ma-
turity τ (κ, τ) → σ̂t(κ, τ) is called implied volatility sur-
face (IVS). The observed IVS, Figure 1, reveals a non-flat
profile across moneyness (called “smile” or “smirk”) and
across time to maturity.
Despite the deficiencies of the BS model it is popular among
practitioners to quote option prices in terms of IV due to
its intuitive simplicity. However there were many efforts
to model a non constant IVS. One possible approach is to
change the dynamics of the process of the underlying as-
set by increasing its degree of freedom. This leads to para-

metric models with jumps like in [14], stochastic volatil-
ity like in [13] and [12] or models based on Lévy processes
like the generalized hyperbolic in [4] among many others.
The models reproduce the smile phenomenon and their pa-
rameters are calibrated from the option prices by minimiz-
ing cost functional. One may also consider local volatility
(LV) models like in [3] where the volatility is assumed to be
a function of time and the price of the underlying. There ex-
ist an analytical formula which allows to calibrate this sur-
face (LVS) straightforward from the IVS.

A drawback even of the most sophisticated models is the
failure to correctly describe the dynamics of the IVS. This
can be inferred from frequent recalibration of the model and
has been best understood in the context of LV-models [10].
Consequently, studying the IVS as an additional market fac-
tor has become a vital stand of research. The main focus is
on a low dimensional approximation of the IVS based on
principal components analysis (PCA). The PCA is applied
both to the term structure of the IVS ([16] or [7]) and strike
dimension (eg. [15]). The common PCA for several matu-
rity groups is studied in [8] and the functional PCA was dis-
cussed in [1] and [2].

Our approach is to represent the IVS as the sum of factors
treated as two dimensional functions depending on money-
ness and maturity. In [2] the factors are obtained using the
functional PCA for the IVS fitted on a grid for each partic-
ular day. However this fit may be biased due to the degener-
ated data design. In [9] the IVS is obtained as a projection
on parametric factors which has to be initially specified. In
DSFM the factors are estimated from the data, which al-
lows flexible modelling. Contrary to [2] the IVS is obtained
as a fit to the factors smoothed in time, which reflects the
dynamics of the whole system.

The paper is organized as follows: in the next section we de-
scribe the DSFM and present the estimation procedure. In
Section 3 we discuss the estimation issues and proposed im-
provements of the algorithm. Section 4 presents the empir-
ical results on DAX options and discusses briefly possible
applications.



2. DSFM
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Figure 1. Left panel: implied volatilities ob-
served on 2nd May, 2000. Right panel: data
design on 2nd May, 2000.

Institutional conventions of the option market entail a spe-
cific degenerated IV data design. Each day one observes
only a small number of maturities which form typi-
cal ‘strings’. The usual data pattern is visible in the right
panel of Figure 1. Options belonging to the same string
have a common time to maturity but different money-
ness. In the left panel of the Figure 1 IV smiles are pre-
sented. One can easily see different curvatures for a each
time to maturity. As time passes not only do the strings
move through the space towards expiry but they also
change their shape and level randomly.
In order to capture this complex dynamic structure
of the IVS a DSFM was proposed in [6]. It offers a
low-dimensional representation of the IVS, which is ap-
proximated by basis functions in a finite dimensional func-
tion space. The basis functions are unknown and have to
be estimated from the data. The IVS dynamics are ex-
plained by loading coefficients, which form a multidimen-
sional time series.
Let Yi,j be the log-implied volatility observed on a partic-
ular day. The indexi is the number of the day, while the
total number of days is denoted byI (i = 1, ..., I). The in-
dex j represents an intra-day trade on dayi and the num-
ber of trades on that day isJi (j = 1, ...Ji). Let Xi,j be
a two-dimensional variable containing moneynessκi,j and
maturity τi,j . Among many moneyness settings we define
it asκi,j = Ki,j

Fti
, whereKi,j is a strike andFti

the under-
lying futures price at timeti. The DSFM regressesYi,j on
Xi,j by:

Yi,j = m0(Xi,j) +
L∑

l=1

βi,lml(Xi,j), (1)

wherem0 is an invariant basis function,ml (l = 1, ...L) are

the ‘dynamic’ basis functions andβi,l are the factor weights
depending on timei.

2.1. Estimation

The estimateŝβi,l andm̂l are obtained by minimizing the
following least squares criterion (βi,0 = 1):

I∑
i=1

Ji∑
j=1

∫ {
Yi,j −

L∑
l=0

β̂i,lm̂l(u)

}2

Kh(u−Xi,j) du,

(2)
where Kh denotes a two-dimension kernel func-
tion. The possible choice for two-dimensional
kernels is a product of one dimensional kernels
Kh(u) = kh1(u1) × kh2(u2), where h = (h1, h2)>

are bandwidths andkh(v) = k(h−1v)/h is a one dimen-
sional kernel function.
The minimization procedure searches through all functions
m̂l : R2 −→ R (l = 0, ..., L) and time serieŝβi,l ∈ R (i =
1, ..., I; l = 1, ..., L).
To calculate the estimates an iterative procedure is applied.
First we introduce the following notation for1 ≤ i ≤ I:

p̂i(u) =
1
Ji

Ji∑
j=1

Kh(u−Xi,j), (3)

q̂i(u) =
1
Ji

Ji∑
j=1

Kh(u−Xi,j)Yi,j . (4)

We denote bŷm(r) = (m̂(r)
0 , ..., m̂

(r)
L )> the estimate of the

basis functions and̂β(r)
i = (β̂(r)

i,l , ..., β̂
(r)
i,L)> the factor load-

ings on the dayi afterr iterations. By replacing each func-
tion m̂l in (2) bym̂l + δg with arbitrary functiong and tak-
ing derivatives with respect toδ one obtains:

I∑
i=1

Ji∑
j=1

{
Yi,j −

L∑
l=0

β̂i,lm̂l(Xi,j)

}
β̂i,l′Kh(u−Xi,j) = 0.

(5)
Rearranging terms in (5) and plugging in (3)-(4) yields:

I∑
i=1

Jiβ̂i,l′ q̂i(u) =
I∑

i=1

Ji

L∑
l=0

β̂i,l′ β̂i,lp̂i(u)m̂l(u), (6)

for 0 ≤ l′ ≤ L. In fact (6) is a set ofL+1 equations. Define
the matrixB(r)(u) and vectorQ(r)(u) by their elements:

(
B(r)(u)

)
l,l′

=
I∑

i=1

Jiβ̂
(r−1)
i,l′ β̂

(r−1)
i,l p̂i(u), (7)



(
Q(r)(u)

)
l

=
I∑

i=1

Jiβ̂
(r−1)
i,l q̂i(u). (8)

Thus (6) is equivalent to:

B(r)(u)m̂(r)(u) = Q(r)(u) (9)

which yields the estimate of̂m(r)(u) in ther-th iteration.

A similar idea has to be applied to updateβ̂
(r)
i . Replacing

β̂i,l by β̂i,l + δ in (2) and taking once more the derivative
with respect toδ yields:

Ji∑
j=1

∫ Yi,j −
L∑

l=0

β̂i,lm̂l(Xi,j)

m̂l′(u)Kh(u−Xi,j)du = 0,

(10)
which leads to:

∫
q̂i(u)m̂l′(u) du =

L∑
l=0

β̂i,l

∫
p̂i(u)m̂l′(u)m̂l(u) du,

(11)
for 1 ≤ l′ ≤ L. The formula (11) is now a system ofL equa-
tions. Define the matrixM (r)(i) and the vectorS(r)(i) by
their elements:

(
M (r)(i)

)
l,l′

=
∫

p̂i(u)m̂l′(u)m̂l(u) du, (12)

(
S(r)(i)

)
l
=
∫

q̂i(u)m̂l(u) du−
∫

p̂i(u)m̂0(u)m̂l(u) du.

(13)
An estimate of̂β(r)

i is thus given by solving:

M (r)(i)β̂(r)
i = S(r)(i). (14)

The algorithm stops when only minor changes occur:

I∑
i=1

∫ ( L∑
l=0

β̂
(r)
i,l m̂

(r)
l (u)− β̂

(r−1)
i,l m̂

(r−1)
l (u)

)2

du ≤ ε

(15)
for some smallε. Obviously one needs to set initial values
of β̂

(0)
i in order to start the algorithm.

2.2. Orthogonalization and normalization

The estimatesm̂ = (m̂1, ..., m̂L)> of the basis func-
tions are not uniquely defined. They can be replaced by
functions that span the same affine space. Definep̂(u) =
1
I

∑I
i=1 p̂i(u) and theL× L matrixΓ by its elements

Γl,l′ =
∫

m̂l(u)m̂l′(u)p̂(u)du.

The estimateŝm are replaced by new functionŝmnew =
(m̂new

1 , ..., m̂new
L )>:

m̂new
0 = m̂0 − γ>Γ−1m̂

m̂new = Γ−1/2m̂

such that they are now orthogonal in theL2(p̂) space. The
loading time series estimateŝβi = (β̂i,1, ..., β̂i,L)> need to
be substituted by:

β̂new
i = Γ−1/2(β̂i + Γ−1γ) (16)

whereγ is (L× 1) vector withγl =
∫

m̂0(u)m̂l(u)p̂(u)du.
The next step is to choose an orthogonal basis such that for
eachw = 1, ..., L the explanation achieved by the partial
sum:

m0(u) +
w∑

l=1

βi,lml(u)

is maximal. One proceeds as in PCA. First define a ma-
trix B with Bl,l′ =

∑I
i=1 β̂i,lβ̂i,l′ and Z = (z1, ..., zL)

wherez1,...,zL are the eigenvectors ofB. Then replacêm
by m̂new = Z>m̂ andβ̂i by β̂new

i = Z>β̂i.
The orthonormal basiŝm1, ..., m̂L is chosen such that∑I

i=1 β̂2
i,1 is maximal and given̂βi,1, m̂0, m̂1 the quan-

tity
∑I

i=1 β̂2
i,2 is maximal and so forth.

3. Estimation issues

The estimation procedure encounter several computational
challenges. The basis factor functions can be represented
on the finite grid only, which obviously may not cover the
whole desired estimation space. One also needs to choose
some kernel function, the bandwidths and the initial load-
ing time serieŝβ(0)

i . Due to the degenerated design of the
IV data proper decision of these points is a key issue in suc-
cessful model estimation.

3.1. Implementation

As a numerical result of the estimationL time series (̂βi,l)
andL + 1 functions (̂ml) given on the finite grid are ob-
tained. The choice of the grid needs to be arbitrary and
depends on the density of the data points. The data (Xi,j

and Yi,j) comes into the computation only in̂pi(u) and
q̂i(u), which has to be calculated before the main itera-
tion procedure. The calculation of̂pi(u) and q̂i(u), how-
ever, is the main computation effort in the estimation proce-
dure. Therefore we believe that the DSFM can be used ef-
ficiently in a ’sliding window’ type of analysis. Updating
of p̂i(u) and q̂i(u) requires calculations only for one addi-
tional day, which is not a big computational issue.



3.2. Bandwidths dependence

In derivative market one can observe fairly many different
types of option contracts. Each day one may trade options
with several different time to maturities and many differ-
ent strikes. However the number of possible strikes is much
higher than the number of maturities, which results in the
string structure. Moreover the contracts with smaller ma-
turities are traded more intensively and there tend to exist
more contracts for the smaller time to maturities for which
the difference between two successive expiry days is one
month (1M, 2M, 3M), but for the next maturity range it in-
creases to three months (6M, 9M, 12M).

Since the strings are moving in the maturity vs. moneyness
plane towards expiry one needs to pool many days in order
to fill the plane with observations. However due to an un-
equal distribution of data points one needs even more days
to fill the range with bigger maturities than with smaller
ones. Otherwise one faces gaps for some particular matu-
rity range.

These gaps may obstruct the estimation procedure. If in any
pointu′ the functionp̂(u′) = 0 in (3) then obviously matrix
B(r)(u′) in (7) contains only0 and is singular. This means
that one may not estimate successfully any value of the IVS
in this point.

This problem may be solved by increasing the bandwidths
but it may lead also to a larger bias. One may also use a ker-
nel function with infinite support like the Gaussian kernel
but instead of analytical zeros numerical zeros creep in. An-
other possibility is to use the k-nearest neighbor estimator.
In the range with many data, however, one takes into consid-
eration only very few observations closest to the grid points.
On the other hand in the range with few points the estima-
tor is based on the observations far from the grid points. In
order to cope with the degenerated data design local band-
widths can be applied. In (3) and (4) the fixed bandwidths
are replaced by bandwidths dependent on time to maturity
and moneyness:

p̂i(u) =
1
Ji

Ji∑
j=1

Kh(u)(u−Xi,j), (17)

q̂i(u) =
1
Ji

Ji∑
j=1

Kh(u)(u−Xi,j)Yi,j . (18)

Due to the described data design we propose to keep the
bandwidths in the moneyness direction constant and lin-
early increasing in the maturity dimension. For the optimal
choice of the bandwidths we refer to [11].

3.3. Initial parameter dependence

The problem of gaps in the data cannot only be handled
with the size of the bandwidths. Of course it is obligatory
that p̂i(u) needs to be non-zero for at least onei. However
this is not a sufficient condition to ensure non singularity of
the matrixB(r)(u′). The initial estimates of̂β(0)

i play also
an important role.
In [6] a piecewise constant initial time series was proposed.
The subintervalsI1, ..., IL are pairwise disjoint subsets of
{1, ..., I} and

⋃L
l=1 Il is a strict subset of{1, ..., I}. The

initial estimates are now defined bŷβ(0)
i,l = 1 if i ∈ Il and

β̂
(0)
i,l = 0 if i /∈ Il. To complete the settinĝβ(0)

i,0 = 1 for
eachi.
However this kind of setting requires even more data to ob-
tain the final estimates. For each subsetIl there needs to ex-
ist at least one dayi such that̂pi(u′) 6= 0, otherwise the row
of zeros in (7) appears. The smaller is the length ofIl in-
tervals the bigger bandwidths need to be taken. This defi-
ciency can be removed by taking a random initial time se-
ries.

4. Results

For our analysis we employ tick statistics on DAX index op-
tions from January 1999 to February 2003. By inverting the
BS formula one easily obtains IV. We regard as outliers ob-
servations with IV bigger that0.8 and smaller than0.04.
We also remove observations with maturity less than10 day
since their behavior in this range is irregular due to expiry
effect.
We apply the algorithm on an equidistant grid covering
moneynessκ ∈ [0.8, 1.2] and time to maturity measured in
yearsτ ∈ [0.05, 1.00]. In each direction our grid consists of
25 points. We set the number of dynamic basis functions to
L = 3 like in [6]. In the moneyness direction we apply con-
stant bandwidthsh1 = 0.03 and in order to get smoother
estimates of the basis functions in the maturity direction
we use linearly increasing bandwidths. On the smallest ma-
turity grid points we set bandwidths on0.02 and increase
them linearly to0.2 for the greatest maturity points. As the
starting values of̂β(0) we take a piecewise constant series
on disjoint time intervals. The initial weights selection is
discussed below.
Figure 2 presents the estimated factors loadingβ̂1,β̂2 and
β̂3 respectively. The magnitude and variance of theβ̂1 are
much higher than for the other two time series, which sug-
gests that the first basis function has the biggest explana-
tory power of the IVS variation. This is actually not surpris-
ing since the basis functions were ordered with respect to
the biggest variance of loading factors.
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Figure 2. Time series of weights β̂1,β̂2 and β̂3.
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Figure 3. Invariant basis function m̂0 and dy-
namic basis functions m̂1, m̂2 and m̂3.

Figure 3 displays the estimated basis functionsm̂0 - m̂3.
We find similar interpretations of the factors as in [6] or [2].
The first dynamic factor̂m1 is relatively flat on almost the
whole range and negative on all grid points. It reflects the up
and down shifts of the entire log-IVS. For the small maturi-
ties a strong curvature can be seen. It corresponds to the em-
pirical fact that near the expiry the ‘smile’ effect becomes
stronger. The second function is positive for the small matu-
rities and negative for the bigger maturities. The positiveβ̂2

increases short term maturities IVs and simultaneously de-

creases the long term ones. The negativeβ̂2 causes the op-
posite effect. This function provides term structure changes
of the IVS. The last function̂m3 reveals a strong slope in
the moneyness direction changing from positive to nega-
tive near at-the-money. It reflects changes of the moneyness
slope and smile curvature.
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Figure 4. IVS estimates on February 25, 2003,
fixed bandwidths h1 = 0.03, h2 = 0.02 (top),
linearly increasing bandwidths (bottom).

In our estimation we used the local bandwidths linearly in-
creasing in maturity. Figure 4 presents the comparison of
the two different IVS estimates on February 25, 2003 ob-
tained with fixed bandwidthsh1 = 0.03, h2 = 0.02 and
with local bandwidths. While in the fixed bandwidths ap-
proach in bigger maturities the estimated IVS is rough, in
the local bandwidths approach it becomes smoother.

Another estimation issue is the choice of the initial times se-
ries β̂(0). We have recalculated the estimates for different
starting values. Denote byPC1, PC2, PC3 as the differ-
ent settings of piecewise constant starting values as de-
scribed in Section 3.3. Denote also byWN1,WN2,WN3

settings where the algorithm starts from a white noise
and BM1, BM2, BM3 from a Brownian Motion. For
each of the9 settings we have obtained different esti-
mates of weights. The correlation between different esti-
mates ofβ̂1, β̂2 andβ̂3 are respectively:





1.0 −1.0 −1.0 −1.0 −1.0 1.0 −0.9 0.9 −0.9
1.0 1.0 1.0 1.0 −1.0 0.9 −0.9 0.9

1.0 1.0 1.0 −1.0 0.9 −0.9 0.9
1.0 1.0 −1.0 0.9 −0.9 0.9

1.0 −1.0 0.9 −0.9 0.9
1.0 −0.9 0.9 0.9

1.0 −1.0 1.0
1.0 −1.0

1.0





1.0 1.0 1.0 −1.0 −1.0 −1.0 0.3 −0.3 −0.3
1.0 1.0 −1.0 −1.0 −1.0 0.3 −0.3 −0.3

1.0 −1.0 −1.0 −1.0 0.3 −0.3 −0.3
1.0 1.0 1.0 −0.3 0.3 0.3

1.0 1.0 0.3 0.3 0.3
1.0 −0.3 0.3 0.3

1.0 −1.0 −1.0
1.0 1.0

1.0





1.0 −1.0 −1.0 −1.0 −1.0 1.0 −0.8 0.8 −0.8
1.0 1.0 1.0 −1.0 1.0 0.8 −0.8 0.8

1.0 1.0 −1.0 1.0 0.8 −0.8 0.8
1.0 −1.0 1.0 0.8 −0.8 0.8

1.0 −1.0 −0.8 0.8 −0.8
1.0 0.8 −0.8 0.8

1.0 −1.0 1.0
1.0 −1.0

1.0



where the sequence of the settings is following:
PC1, PC2, PC3,WN1, BM1, BM2,WN2,WN3, BM3.
The algorithm converges to two different solutions depend-
ing on the starting values since the settings form clearly
two clusters: (PC1, PC2, PC3,WN1, BM1, BM2) and
(WN2,WN3, BM3). Inside the clusters the weights are al-
most perfectly correlated - top left and bottom right corners
of the matrices contain1 or −1. Of course if the correla-
tion of the time series estimates is−1 the same factors are
considered because they are identifiable only up to sign. Be-
tween the clusters the correlation is not so strong. In or-
der to choose one solution other criteria like explained
variance or smoothness of IVS need to be taken into ac-
count.
The DSFM can easily be applied in hedging or risk manage-
ment. Computing sensitivity with respect to factor loadings
changes simplify the vega hedge since the whole dynamics
of the IVS is reduced toL factors. After estimating stochas-
tic model for β̂, like in [5] where VAR(2) was detected, it
can be used for scenario generation in Monte Carlo frame-
work. Therefore it allows to compute the VaR for portfolios
containing options.

5. Conclusion

We discuss estimation issues of the DSFM, which gives a
flexible way of handling IV data and is a convenient mod-
elling tool. We study the dependence on the startingβ̂ and
the bandwidths settings. These are the key issues in effi-
cient application of the model, which is left for future re-
search.
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