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Abstract

GARCH models are widely used in financial econometrics. How-
ever, we show by mean of a simple simulation example that the
GARCH approach may lead to a serious model misspecification if
the assumption of stationarity is violated. In particular, the well
known integrated GARCH effect can be explained by nonstation-
arity of the time series.
We then introduce a more general class of GARCH models with
time varying coefficients and present an adaptive procedure which
can estimate the GARCH coefficients as a function of time. We
also discuss a simpler semiparametric model in which the β -
parameter is fixed.
Finally we compare the performance of the parametric, time vary-
ing nonparametric and semiparametric GARCH(1,1) models and
the locally constant model from Polzehl and Spokoiny (2002) by
means of simulated and real data sets using different forecast-
ing criteria. Our results indicate that the simple locally constant
model outperforms the other models in almost all cases. The
GARCH(1,1) model also demonstrates a relatively good forecast-
ing performance as far as the short term forecasting horizon is con-
sidered. However, its application to long term forecasting seems
questionable because of possible misspecification of the model pa-
rameters.
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2 garch versus local constant modeling

1 Introduction

Autoregressive conditionally heteroscedastic (ARCH) and generalized autoregres-

sive conditionally heteroscedastic (GARCH) models gained a lot of attention and

are widely used in financial engineering since they were introduced by Engle (1982)

and Bollerslev (1986). The simple GARCH(1,1) model is particularly popular. It

models the observed log-returns Rt of the asset price process by the following two

equations:

Rt = σtεt ,

σ2
t = ω + αR2

t−1 + βσ2
t−1.

Here ω, α, β are coefficients and σ2
t is the time varying volatility that is usually

the target of analysis. The innovations εt are assumed zero mean and variance

one conditioned on the σ -field Ft−1 generated by the past observations. The

GARCH(1,1) suggests a very natural and tractable model with only three parame-

ters to be estimated. Moreover, this model allows to mimic many important stylized

facts of financial time series like volatility clustering (alternating periods of small

and large volatility) and persistent autocorrelation (slow decay of the autocovari-

ance function of the absolute or squared returns). We cite from Engle (1995): “The

GARCH(1,1) is the leading generic model for almost all asset classes of returns.

. . . it is quite robust and does most of the work in almost all cases.”.

A simple parametric structure allows to directly apply the well developed para-

metric statistical methodology for estimation of the parameters and calibration of

the model for real life applications and for studying the asymptotic properties of

the estimates. The GARCH models are successfully applied to short term ahead

forecasting of the volatility and particularly to Value-at-Risk problems, see McNeil

and Frey (2000), Eberlein and Prause (2002).

However, a thorough analysis of the results delivered by the GARCH modeling

raises some questions and indicates some problems.

For estimating the GARCH coefficients one usually applies a quasi likelihood ap-

proach. This means that the innovations εt are assumed i.i.d. standard normal and

then the coefficients are obtained by maximizing the corresponding log-likelihood

function. The resulting estimate is root-n consistent and asymptotically normal,

see e.g., Berkes, Horvath and Kokoszka (2003) or Straumann and Mikosch (2003).



polzehl, j. and spokoiny, v. 3

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

time

ω

Median estimate
.05/.95 quantiles
.25/.75 quantiles
true parameter

Estimates of ω

500 1000 1500 2000

0.
0

0.
1

0.
2

0.
3

time

α

Estimates of α

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

β

Estimates of β

Figure 1: The true parameters (red) and the pointwise quantiles of the MLE’s

ω̂t, α̂t, β̂t obtained from the last 500 historical observations Rs for s < t .

However, for practical applications, the convergence is quite slow and one needs

about 500 to 1000 data points to get a reasonable quality of estimation, especially

for the coefficient β , see Mikosch and Stărică (2002, 2004). Giraitis and Robinson

(2001) and Mikosch and Stărică (2004) discussed an alternative approach based on

the Whittle estimator, for GARCH parameters, while Peng and Yao (2003) con-

sidered the LAD approach. However its performance is similar. Particularly, for

250 observations (corresponds to one year for daily data) the variability in the

estimated β -parameter is quite high.

We also face a small identifiability problem. If α = 0 , then the parameters ω

and β are not identifiable. Some additional boundary conditions on the process σt

are necessary in this case. However, under the usual ergodicity condition, memory

of boundary values is lost with the exponential speed. This yields some numerical

problems for estimation of the parameters in the cases when α is near zero.

One more critical point is that GARCH modeling hardly extends to multiple

time series, because of the overparametrization problem, see e.g. the BEKK model

in Baba et al (1990) or Engle and Sheppard (2004).

However, it appears that the most crucial problem in the whole GARCH ap-

proach is that the GARCH models are not robust w.r.t. violation from the station-

arity assumption. We illustrate this problem by a numerical experiment for an arti-

ficial change point model, see Figure 1. The observed data Rt for t = 1, . . . , 2000
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follow for t < tcp = 1000 one GARCH(1,1) model with parameters ω1 = 0.25 ,

α1 = 0.2 and β1 = 0.1 and after t = tcp only the parameter ω jumps to ω2 = 1 .

We apply a scrolling window estimation procedure, that is, for every point t we

estimate the parameters of the GARCH(1,1) model from the last 500 historical

data Rs for s ∈ [t−500, t−1] . Therefore, for t ≤ tcp we observe the performance

of the GARCH estimator when the data generating process is indeed paramet-

ric GARCH(1,1). The resulting estimator is rather variable, however, it basically

mimics the true model. For t ∈ [tcp + 1, tcp + 500] , the GARCH parameters are

estimated from the subsample Rt−499, . . . , Rt which contains a jump in the ω -

parameter at tcp . We observe for such t that, even if most observations are from

one model and only few of them come from the other model, the estimates are

completely misspecified and in particular, the parameter β jumps to a value close

to 1. Mikosch and Stărică (2004) and Stărică (2004) provide an explanation of this

behavior: a GARCH(1,1) model, especially with a large value of the sum α + β ,

is effectively very close to an exponential smoothing filter with memory parameter

β . In other words, if the stationarity assumption is violated, GARCH modeling

is essentially reduced to exponential smoothing of the latest observed squared re-

turns. Mikosch and Stărică (2000, 2004) also argued that the other stylized facts of

the financial time series like long range dependence, persistent autocorrelation and

integration GARCH effect can be well explained by nonstationarity in the observed

data.

In this paper we make an attempt to overcome this problem by considering

the so called varying coefficients GARCH models. This means that the coefficients

ω, α, β may vary with time and allows to model structural changes and external

shocks in the considered time series. Varying coefficient models have been applied

to model some financial time series in Fan, Jiang, Zhang and Zhou (2003) under the

assumptions that the model parameters smoothly vary with time. We apply a more

general approach that allows to include the case when the parameters spontaneously

change. The estimation problem for such models is much more complicated than

in the parametric case because we have to estimate three parameters which are

possibly discontinuous functions of time. We also have to account that, even in a

parametric case, a careful estimation of the GARCH-parameters from a small or

moderate sample size is a hard task. To reduce the complexity of the model, apart
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from the fully nonparametric model in which all three parameters are functions

of time we consider a semiparametric model in which the parameter β is kept

fixed and the two other parameters may vary with time. Additionally we consider

the local constant volatility model where the coefficients α and β are zero and

only the coefficient ω is a function of time. The latter model was considered

in Polzehl and Spokoiny (2002) and Mercurio and Spokoiny (2004a, 2004b), see

also Stărică and Granger (2004). Finally we compare these three models with the

classical parametric GARCH(1,1) model.

For a comparison we use a number of simulated examples and look at different

criteria like the prediction error, excess probability in Value-at-Risk (VaR) forecast

and mean predictive VaR values.

We also apply the considered methods to real data including the DAX time

series and the USD/GBP exchange rate series. For a comparison we look at the

empirical counterparts of the criteria used in the simulations.

The results indicate that for both simulated and real data examples, the simple

local constant model outperforms the other models including the more complicated

non- and semiparametric models and delivers, in all cases, very reasonable results.

At the same time, we observe that the fully nonparametric model has problems in

identifying all the parameters as functions of time. A less variable semiparametric

modeling delivers more stable results which also help to judge about statistical

significance of the integrated GARCH effect.

The paper is organized as follows. Section 2 discusses the parameter estimation

problem for the GARCH(1,1) model and indicates the related problems. Section 3

presents a varying coefficient GARCH model. The estimation problem for this

model is discussed in Section 4. A modified procedure for the semiparametric

GARCH model is briefly discussed in Section 4.4. Section 4.5 explains how the

results of estimation can be used for out-of-sample forecasting of the volatility.

Sections 5 and 6 illustrate the numerical performance of the methods by means of

some simulated examples and applications to real data.
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2 GARCH modeling and parameter estimation

Let the observed returns Rt obey the conditional heteroskedastic equation

Rt = σtεt t ≥ t0 ,

where εt are “innovations” and σt is the volatility process. It is usually assumed

that σt is measurable w.r.t. the σ -field Ft−1 generated by the past observations

Rs for s < t and that the conditional distribution of the innovations given Ft−1

fulfills E (εt|Ft−1) = 0 and E (ε2
t |Ft−1) = 1 .

The GARCH(1,1) model specifies the volatility process σ2
t by the equation

σ2
t = ω + αR2

t−1 + βσ2
t−1.

We denote Xs = σ2
s and Ys = R2

s so that the process Xt obeys the linear autore-

gressive equation

Xs = ω + αYs−1 + βXs−1 . (2.1)

Usually all the coefficients are assumed nonnegative, that is, α ≥ 0 , ω ≥ 0 , β ≥ 0 .

The condition α + β < 1 ensures ergodicity of the process Yt .

We denote by θ = (ω, α, β)> the vector of parameters. Note that equation

(2.1) does not uniquely determine the process {Xs} . Apart the vector θ , one has

to specify the boundary (initial) value η = Xt0 for some point t0 . However, the

dependence on this parameter in the ergodic case is rather small, and we simply

set Xt0 = Yt0 = R2
t0

. We therefore use the notation Xs = Xs(θ) to indicate the

dependence of the volatility process on θ .

The structural linear equation can now be written as

Xs(θ) = Ψs(θ)θ = ω + αYs−1 + βXs−1(θ), (2.2)

with Ψs(θ) =
(
1, Ys−1, Xs−1(θ)

)
. Using this linear equation we can recursively

compute the values Xs(θ) , s > t0 , starting from the initial value Xt0 = η .

Similarly we obtain the derivatives ∇Xs(θ) = dXs(θ)/dθ and ∇2Xs(θ) =

d2Xs(θ)/dθ2 . Namely it holds

∇Xs(θ) = Ψ>
s (θ) + β∇Xs−1(θ), (2.3)
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with the initial condition ∇Xt(θ) = 0 for t = t0 . A similar recurrent formula

applies for the matrix of second derivatives:

∇2Xs(θ) = ∇Ψs(θ) +∇>Ψs(θ) + β∇2Xs−1(θ), (2.4)

where ∇Ψs(θ) = (0, 0,∇Xs−1(θ)) and ∇2Xs(θ) = 0 for s ≤ t0 .

For estimating the parameter θ , one usually applies the quasi maximum likeli-

hood approach assuming independent standard normal innovations {εs}s≥t0 . The

log-likelihood for model (2.1) up to a constant term can be represented in the form

L(θ) =
1

2

∑
s≥t0

`(Rs, Xs(θ))

where `(r, σ2) = −(log σ2 + r2/σ2)/2 . We define the (quasi) maximum likelihood

estimate (MLE) θ̂ of the parameter θ by maximizing L(θ) :

θ̂ = argsup
θ

L(θ) = argsup
θ

∑
s≥t0

`(Rs, Xs(θ))). (2.5)

The MLE θ̂ fulfills the estimating equation dL(θ)/dθ = 0 leading to

∑
s≥t0

(
Ys −Xs(θ)

)|Xs(θ)|−2∇Xs(θ) = 0. (2.6)

For solving this equation, one can apply an iterative Newton-Raphson proce-

dure. Let some initial value θ(0) be fixed and let θ(k−1) be the estimated param-

eter vector after step k − 1 for k ≥ 1 . One can compute the latent volatility

process X
(k)
s = Xs(θ

(k−1)) by (2.2) and the derivatives ∇X
(k)
s = dXs(θ

(k−1))/dθ

and ∇2X
(k)
s = d2Xs(θ

(k−1))/dθ2 by (2.3) and (2.4) and define the update θ(k) as

θ(k) = θ(k−1) + (B(k))−1S(k) with

S(k) =
∑
s≥t0

∣∣X(k)
s

∣∣−2
(
Us −X(k)

s

)
∇X(k)

s ,

B(k) =
∑
s≥t0

∣∣X(k)
s

∣∣−2∇X(k)
s

(∇X(k)
s

)>

+
∑
s≥t0

∣∣X(k)
s

∣∣−2
(
Us −X(k)

s

) (
2

X
(k)
s

∇X(k)
s

(∇X(k)
s

)> −∇2X(k)
s

)
. (2.7)

The update θ(k) can be interpreted as gradient decent in direction of the es-

timated gradient of the log-likelihood. It is recommended to check that the this
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update really improves the likelihood, that is, L(θ(k)) < L(θ(k−1)) . If this in-

equality does not hold, the step in the gradient direction should be taken smaller,

θ(k) = θ(k−1) + ρ(B(k))−1S(k) for some ρ < 1 , e.g. ρ = 1/2 and checked again.

The constrains α ≥ 0 , ω ≥ 0 , β ≥ 0 and α + β < 1 can be naturally

incorporated in the Newton-Raphson procedure using a barrier function. We omit

the details.

3 Varying coefficient GARCH

Having the problems mentioned in the introduction in mind, we aim to extend the

GARCH approach by including a possibility for structural changes. This can be

done using the notion of a varying coefficient model. Namely, we assume that the

GARCH parameters may depend on time t . We denote them as ϑt = (ωt, αt, βt)
> .

Two special cases are usually considered in the literature. For change point mod-

els, the parameters change spontaneously at some time points and remain constant

between them, see e.g. Chu (1995) and Mikosch and Stărică (2002). Smooth tran-

sition models assume that the parameters vary slowly and smoothly in time, cf.

Fan, Jiang, Zhang and Zhou (2003). We do not assume any special dependence of

the GARCH-parameters on time, in particular, our modeling approach applies to

both change point and smooth transition models. Moreover, our approach applies

even if ϑt is a predictable random process. The varying coefficient GARCH(1,1)

reads as follows:

Rt ∼ φ(·, Xt), Xt = ωt + αtR
2
t−1 + βtXt−1 = Ψt ϑt (3.1)

where Ψt = (1, R2
t−1, Xt−1) and ϑt is now the vector composed by the elements

ωt, αt and βt . Each of them may vary with time t .

The target of the analysis is the parameter process Θ = (ϑt)t≥t0 . This process

uniquely defines the process X = X(Θ) due to (3.1), and hence, the distribution

of the process (Rt)t≥t0 . Similarly to the parametric case, we define the (quasi)

maximum likelihood estimate of the process Θ by maximizing the corresponding

log-likelihood expression

L(Θ) =
∑
s≥t0

`(Rs, Xs(Θ)). (3.2)
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The maximization is done over the class of all “admissible” processes Θ . Two ex-

amples of such classes have been already mentioned: change point models assume

that the process Θ is piecewise constant while smooth transition models are effec-

tively based on the smoothness assumption of this process. Our approach is more

general and it includes these two examples as special cases. The only assumption

we make about the process Θ is local time homogeneity. This means that for every

time point t the parameter vector ϑs is nearly constant within some neighborhood

of the point t . To state this assumption in a more formal way, we need to explain

how a local neighborhood of a point t can be described. Similarly to Polzehl and

Spokoiny (2000, 2002, 2003) we apply localization by weights. Let, for a fixed t , a

nonnegative weight wt,s ∈ [0, 1] be assigned to the observation Ys . The collection

of weights Wt = (wt,s)s≥t0 describes a local model corresponding to the point t .

We mention two examples of choosing the weights wt,s . Localization by a

bandwidth is defined by weights of the form wt,s = Kloc(lt,s) with lt,s = |(t−s)/h|2
where h is a bandwidth and Kloc is a location kernel. This method is applied e.g.

in Fan, Jiang, Zhang and Zhou (2003). Localization by a window simply means

that the parametric structure is assumed to hold within some subset (window) Ut

containing t . In this case the weights are defined as wt,s = 1(s ∈ Ut) . This

approach suits well to change point models where the parameter ϑ is a piecewise

constant function of t .

Following to the adaptive weights idea from Polzehl and Spokoiny (2000), we

do not assume any special structure for the weights wt,s . The weights will be

computed from the data in a data driven way.

We apply a local perturbation approach to maximize the log likelihood L(Θ)

from (3.2). This means that we change the process Θ locally near every point

t and obtain the local estimation equation by maximizing L(Θ) for such local

perturbations. Before we discuss this method in detail, it is important to note

that, even if the parameter process Θ is changed only locally around some point

t , the corresponding process Xs(Θ) changes for all s > t . This requires to consider

the global log-likelihood even if the parameters are only locally perturbed.

Suppose that a process Θ◦ = (ϑ◦t ) is fixed. This process can be viewed as

starting value or preliminary estimate of the true process Θ = (ϑt) . Let now Wt

be a collection of weights (wt,s)s≥t0 describing a local model at a point t . We
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define for every value θ a locally perturbed process Θ̃ = (ϑ̃s) as

ϑ̃s = wt,sθ + (1− wt,s)ϑ
◦
s, ∀s ≥ t0.

The corresponding latent process denoted by Xt,s(θ) = Xt,s(Wt,θ; Θ◦) , s ≥ t0 ,

fulfills the equation

Xt,s(θ) = Ψt,s(θ) (wt,sθ + (1− wt,s)ϑ
◦
s)

= (wt,sω + (1− wt,s)ω
◦
s) + (wt,sα + (1− wt,s)α

◦
s) Ys−1

+ (wt,sβ + (1− wt,s)β
◦
s ) Xt,s−1(ϑ) (3.3)

where Ψt,s(θ) = (1, Ys−1, Xt,s−1(θ)) .

The updated value ϑ̂t of the process Θ at t is defined by maximizing the

(quasi) likelihood expression corresponding to the process Xt,s(θ) :

ϑ̂t = argsup
θ

L(Wt, θ, Θ◦) = argsup
θ

∑
s≥t0

`
(
Ys, Xt,s(θ)

)
. (3.4)

As in the parametric case, the corresponding estimate ϑ̂t solves the equation

∑
s≥t0

∇Xt,s(θ)
(
Ys −Xt,s(θ)

)|Xt,s(θ)|−2 = 0.

A numerical solution of this equation can be obtained by the Newton-Raphson

procedure as described in Section 2. The definition of the process Xt,s(θ) in (3.3)

leads to the following expression for the derivatives ∇Xt,s(θ) :

∇Xt,s(θ) = wt,sΨ
>
t,s(θ) + (wt,sθ + (1− wt,s)ϑs)∇Ψt,s(θ)

= wt,sΨ
>
t,s(θ) + (wt,sβ + (1− wt,s)β

◦
s )∇Xt,s−1(θ), (3.5)

with the starting conditions ∇Xt,s(θ) = 0 for s ≤ t0 . A similar recurrence formula

applies for the matrix of second derivatives:

∇2Xt,s(θ) = wt,s∇Ψs(θ) + wt,s∇>Ψt,s(θ) +
(
wt,sβ + (1− wt,s)β

◦
s

)∇2Xt,s−1(θ). (3.6)

We can proceed exactly as in the parametric case described in Section 2.

The AWS procedure presented in the next section combines this method of

estimating the process Θ with an approach for defining the weights wt,s .
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4 Adaptive weights smoothing

This section presents an estimation method for a varying coefficient GARCH given

by (3.1). The underlying idea is to maximize the log likelihood L(Θ) from (3.2)

in an iterative way. At every step we first describe in a data driven way a neigh-

borhood of every point t in which the varying coefficient model (3.1) can be well

approximated by a model with constant parameter values. We then apply the local

perturbation approach to update the estimate of the process Θ as described in the

previous section.

More precisely, we start defining at every point t a local model W
(0)
t using the

classical kernel weights with a very small bandwidth h(0) . We then successively

repeat two basis steps: for all t ≥ t0 , we estimate the parameter ϑt for the local

model W
(k)
t = (w

(k)
t,s )s≥t0 , and then, again for all t ≥ t0 , we generate new larger

local models W
(k+1)
t using the obtained estimates ϑ̂

(k)

t , k = 0, 1, 2 . . . .

4.1 Defining weights

The method for assigning weights w
(k)
t,s which define the local model W

(k)
t is the

central point of the AWS procedure. As suggested in Polzehl and Spokoiny (2002,

2003), for every pair (t, s) , the weight w
(k)
t,s is defined using two different values:

a location penalty l
(k)
t,s and a statistical penalty s

(k)
t,s .

The location penalty l
(k)
t,s = (|t − s|/h(k))2 is deterministic and depends only

on the distance between t and s and on the bandwidth h(k) applied at step k .

At the beginning of the iteration process, the bandwidth h(0) is taken very small

leading to a strong localization. During iteration the bandwidth h(k) grows which

relaxes the location penalty and allows to increase every local model. However, this

increase is done in an adaptive (data-driven) way by use of the statistical penalty

s
(k)
t,s which measures the difference in the parameter values for the local models

W
(k−1)
t and W

(k−1)
s . Following Polzehl and Spokoiny (2002, 2003), this penalty

can be defined by the expressions

s
(k)
t,s = T

(k)
t,s /λ

T
(k)
t,s = L(W

(k−1)
t , ϑ̂

(k−1)

t , Θ̂(k−1))− L(W
(k−1)
t , ϑ̂

(k−1)

s , Θ̂(k−1))

where Θ̂(k−1) = (ϑ̂
(k−1)

s ) is the estimate of the process Θ = (ϑs) obtained at the

step k − 1 . The value T
(k)
t,s can be interpreted as the test statistic for testing the
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two sample hypothesis ϑt = ϑs : indeed, L(W
(k)
t , ϑ̂

(k−1)

t , Θ̂(k−1)) is the maximum

of the log-likelihood L(W
(k)
t ,θ, Θ̂(k−1))) for the local model W

(k−1)
t over all pos-

sible θ and T
(k)
t,s is defined as the discrepancy between this maximum and the

particular value L(W
(k)
t ,θ, Θ̂(k−1)) with θ = ϑ̂

(k−1)

s coming from another local

model W
(k−1)
s . The value λ can be treated as a critical value for this test. If

the statistical penalty s
(k)
ij is large, then one can say that there is an empirical

evidence that the GARCH parameters ϑ are different at points s and t .

To reduce the computational effort of the procedure, one may also use the

quadratic approximation of the log-likelihood:

T̃
(k)
t,s =

(
ϑ̂

(k−1)

t − ϑ̂
(k−1)

s

)>
B

(k−1)
t

(
ϑ̂

(k−1)

t − ϑ̂
(k−1)

s

)
/2, (4.1)

where B
(k−1)
t is defined similarly to (2.7) using the weights w

(k−1)
t,s .

Suppose that for the pair (t, s) , the penalties l
(k)
t,s and s

(k)
t,s have been computed.

Polzehl and Spokoiny (2002) suggested to define the new weight w
(k)
t,s such that the

value w
(k)
t,s is small if any of the penalties is large and that the different penalties

act independently. This leads to a definition in form of a product:

w
(k)
t,s = Kloc

(
l
(k)
t,s

)
Kst

(
s

(k)
t,s

)
,

where Kloc and Kst are two kernel functions on the positive semiaxis.

The choice of the initial estimates ϑ
(0)
t is important. At the beginning we set

the parameter β
(0)
t to zero which reduces the GARCH(1,1)-model to ARCH(1). In

such a case, the structural equation (3.1) reads Xt = ωt + αtR
2
t−1 and the value

Xt is independent of the values ωs, αs for s 6= t . Therefore, one can define the

starting values γ
(0)
t = (ω

(0)
t , α

(0)
t ) by optimization of the local log-likelihood

L(W
(0)
t ,γ) =

∑
s≥t0

`(Rs, ω + αR2
s−1)w

(0)
t,s (4.2)

w.r.t. γ = (ω, α) where w
(0)
t,s = Kloc(|s− t|2/h2

0) .

4.2 The procedure

We now present a formal description of the method. Important ingredients of the

procedure are:

- the kernels Kloc and Kst ;
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- the parameter λ ;

- the initial bandwidth h(0) , a factor a > 1 and the maximal bandwidth hmax .

The choice of the parameters is discussed in Section 4.3. The procedure reads

as follows:

1. Initialization: For every t ≥ t0 , define the local model W
(0)
t with weights

w
(0)
t,s = Kl(l

(0)
t,s ) where l

(0)
t,s =

(|t− s|/h(0)
)2

for all s . Next, set β̂
(0)
t = 0 and

(ω̂
(0)
t , α̂

(0)
t ) = argmaxγ=(ω,α) L(W

(0)
t , γ) , see (4.2). Set k = 1 .

2. Iteration: for every t = t0, . . . , T

• Calculate the adaptive weights: For every point s ≥ t0 compute the

penalties

l
(k)
t,s =

(|t− s|/h(k)
)2

,

s
(k)
t,s = λ−1

{
L(W

(k−1)
t , ϑ̂

(k−1)

t , Θ̂(k−1))− L(W
(k−1)
t , ϑ̂

(k−1)

s , Θ̂(k−1))
}

.
(4.3)

where L(W, θ; Θ) is given by (3.2) and (3.3). Define

w
(k)
t,s = Kloc

(
l
(k)
t,s

)
Kst

(
s

(k)
t,s

)

and W
(k)
t =

(
w

(k)
t,s

)
s≥t0

.

• Estimate the parameter ϑt : Define the local MLE ϑ̂
(k)

t as

ϑ̂
(k)

t = argsup
θ∈Θ

L(W
(k)
t ,θ, Θ̂(k−1)). (4.4)

3. Stopping: Increase k by 1, set h(k) = ah(k−1) . If h(k) ≤ hmax continue with

step 2. Otherwise terminate.

We denote the total number of iterations by k∗ . The final estimates are ob-

tained as ϑ̂t = ϑ̂
(k∗)
t . The value X

(k∗)
t,t can be naturally viewed as the estimate of

the parameter σ2
t for the varying coefficient model (3.1).

4.3 Choice of parameters

The parameters of the procedure are selected similarly to Polzehl and Spokoiny

(2002). We briefly discuss each of the parameters.

Kernels Kst and Kloc : The kernels Kst and Kloc must fulfill Kst(0) =

Kloc(0) = 1 , with Kst decreasing and Kloc non-increasing on the positive semi-

axis. We recommend to take Kst(z) = e−zI{z≤6} . We also recommend to apply a
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compactly supported localization kernel Kloc to reduce the computational effort of

the method. Similarly to Polzehl and Spokoiny (2002) we apply the triangle kernel

Kloc(z) = (1− z)+ .

Initial bandwidth h(0) , parameter a and maximal bandwidth hmax :

The starting bandwidth h(0) should be small. In general we select h(0) such that

every initial local neighborhood [t−h(0), t+h(0)] contains sufficiently many design

points to obtain an estimate of the parameter ϑt .

The parameter a controls the growth of the local neighborhoods. Our de-

fault choice is a = 1.25 . The maximal bandwidth hmax may be very large, e.g.

hmax = T . However, this parameter can be used to bound the numerical complex-

ity of the procedure. The exponential growth of the bandwidth h(k) ensures that

the number of iterations k∗ is at most logarithmic in the sample size.

Parameter λ : The most important parameter of the procedure is λ which

scales the statistical penalty st,s . Small values of λ lead to overpenalization which

may result in unstable performance of the method in a homogeneous situation.

Large values of λ result in a loss of adaptivity, i.e. less sensitivity to structural

changes. A reasonable way to define the parameter λ for a specific application

is based on the condition of free extension, which we also call “propagation con-

dition”. This means that in a homogeneous situation, i.e. when the process Θ

is constant, the impact of the statistical penalty on the computed weights wt,s is

negligible. This would result in a free extension of every local model. If the value

hmax is sufficiently large, all the weights wt,s will be close to one at the end of it-

eration process and every local model will essentially coincide with the global one.

Therefore, one can adjust the parameter λ using Monte-Carlo simulations. Simply

select the minimal value of λ that still provides a prescribed probability to obtain

the global model at the end of iteration process for the homogeneous (parametric)

model ϑt = θ . The theoretical justification for such a choice is given in Polzehl

and Spokoiny (2002).

Our default choice, obtained by this method, is λ = qδ(χ
2
3) , that is, the δ -

quantile of the χ2 distribution with 3 degree of freedom, where δ = 0.99 .
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4.4 Semiparametric modeling

In many situations a reasonable estimate of the parameter β requires a large

sample size. This makes a local analysis relatively inefficient. A natural way

to solve this problem is a semiparametric approach assuming that the parameter

β is constant while the other parameters ω, α may vary with time. The AWS

procedure can be easily adjusted to such models. Namely, at every iteration we

locally estimate the varying coefficients γ = (ω, α)> while the value β = β(k−1)

is kept fixed. Afterwards we update the parameter β . The basic AWS procedure

reads exactly as described in Section 4.2. The only difference is that the parameter

ϑ should be replaced by γ and in the definition of the process Θ(k−1) one should

apply β(k−1) in place of β
(k−1)
t . For updating the parameter β , at the end of the

iteration k , define for every vector β the process X
(k)
s (β) = X

(k)
s (β, Γ (k)) with

Γ (k) = (γ
(k)
s = (ω

(k)
s , α

(k)
s )>, s ≥ 1) using the recurrence equation

X(k)
s (β) = ω(k)

s + α(k)
s Ys−1 + βX

(k)
s−1(β).

The new estimate β(k) maximizes the log-likelihood L(β) =
∑

s≥t0
`
(
Ys, X

(k)
s (β)

)

w.r.t. β . Again, the Newton-Raphson algorithm with the quadratic approximation

(2.7) can be used.

4.5 Application to forecasting

The forecasting problem for the model (3.1) can be formulated as follows. Given

the observations R1, . . . , RT estimate the value of the latent process Xt for some

future point t = T +j for j ≥ 1 , and predict the distribution of future observations

Rt . A natural way of solving this problem (at least if the forecast horizon j is

not too large) is to model the processes Rt and Xt for t > T from the latest

estimated model corresponding to t = T .

Let ϑ̂ = (ω̂, α̂, β̂) be ϑ̂
(k∗)
T and X̂s = X

(k∗)
T,s = Xs(θ̂T ) for s = t0, . . . , T . We

then define XT+1 as

X̂T+1|T = Ψ̂T+1ϑ̂ = ω̂ + α̂R2
T + β̂X̂T ,

where Ψ̂T+1 = (1, R2
T , X̂T ) . Using the estimate X̂T+1|T of XT+1 we can generate

RT+1 from a GAussian distribution with variance X̂T+1|T . These two steps, com-

pute XT+j and generate RT+j , can be repeated for t = T + 2, T + 3 . In general
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Ex 1: parametric GARCH(1,1)
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Ex 2: local const. volatility
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Ex 3: SP − GARCH(1,1)
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Ex 4: NP − GARCH(1,1)
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Ex 5: NP − GARCH(1,1)
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Ex 6: SP − GARCH(1,1)

Figure 2: Parameters of simulated examples as functions of time.

there is no closed form expression for the distribution of the forecasted value RT+j ,

but it can be numerically evaluated by Monte-Carlo simulations.

5 Simulated examples

The aim of this section is to illustrate the performance of the proposed models and

compare them with the classical GARCH(1,1) model and the local constant AWS

procedure for volatility estimation from Polzehl and Spokoiny (2002). The latter is

a very particular and much simpler special case of the varying coefficient GARCH

model with α = β = 0 and only ω varying with time.

We especially focus on the “integrated GARCH” effect (value β close to one)

and demonstrate that it can be artificially produced if the stationarity assumption

is violated.

We use a set of six artificial examples to illustrate the predictive performance

of parametric, non- and semiparametric GARCH(1,1) models. The sample size is

set to n = 1000 . Example 1 is a parametric GARCH(1,1) model with ω = 0.2 ,

α = 0.1 and β = 0.8 . Example 2 describes a local constant volatility model

( α = β = 0 ). Example 3 and 6 are generated as semiparametric GARCH(1,1)

models with small and large values of β , respectively, while examples 4 and 5
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Table 1: Simulation results for artificial examples 1-6. Simulation size 50. Mean
estimated values of β , mean predictive likelihood, probability of exceeding the
VaR and mean VaR obtained for the scrolling GARCH(1,1) estimate (from the
last 250 observations), sequential AWS for nonparametric and semiparametric
GARCH(1,1), and the sequential local constant volatility AWS procedure.

Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6
Mean β 0.8 0.0 0.2 0.181 0.65 0.8
Mean β̂ GARCH 0.609 0.781 0.802 0.821 0.802 0.804
Mean β̂ NP-GARCH 0.558 0.551 0.491 0.520 0.566 0.622
Mean β̂ SP-GARCH 0.365 0.258 0.220 0.241 0.325 0.398
PL(10) GARCH -1.732 1.450 1.313 1.395 0.073 -0.903
PL(10) NP-GARCH -1.745 1.474 1.397 1.470 0.145 -0.816
PL(10) SP-GARCH -1.735 1.481 1.449 1.517 0.213 -0.737
PL(10) Local Const -1.724 1.511 1.493 1.558 0.252 -0.710
100P̂EVaR(0.01, 10) GARCH 1.45 1.86 2.70 2.62 2.84 3.00
100P̂EVaR(0.01, 10) NP-GARCH 1.54 1.81 2.30 2.27 2.62 2.70
100P̂EVaR(0.01, 10) SP-GARCH 1.31 1.59 1.97 2.00 2.18 2.29
100P̂EVaR(0.01, 10) Local Const 1.38 1.48 1.82 1.82 2.11 2.25
MVaR(0.01, 10) GARCH 7.21 2.07 2.12 2.02 3.75 6.04
MVaR(0.01, 10) NP-GARCH 7.20 2.10 2.18 2.08 3.82 6.17
MVaR(0.01, 10) SP-GARCH 7.33 2.12 2.22 2.11 3.88 6.32
MVaR(0.01, 10) Local Const 7.28 2.11 2.19 2.09 3.85 6.24

are entirely nonparametric GARCH(1,1) again with small and large values of β .

Parameters are local constant and may change every 125 observations. Figure 2

illustrates the parameters used. The AWS estimates are computed sequentially

based on all the observations from the past. For the parametric GARCH(1,1)

model, a scrolling estimate from the last 250 observations is used.

We use the following criteria to compare the behavior of the estimates:

• Mean estimated value of β

1

750

∑
t>250

β̂t

• A predictive likelihood risk PL(k) with horizon k = 10

PL(k) = − 1

(n− k − 250)k

n−k∑
t=251

k∑
s=1

(
log X̂t+s|t +

Xt+s

X̂t+s|t

)

where X̂t+s|t denotes the predicted volatility at time t + s based on the

estimated process using observations up to time t .
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• Let the Value at Risk (VaR) at level δ and time horizon k be defined as

VaRt(δ, k) = −qδ

k∑
s=1

X̂t+s|t (5.1)

with qδ denoting the δ -quantile of the standard Gaussian distribution. We

report an estimate of the mean probability PEVaR(δ, k) of exceeding VaR at

level δ and time horizon k

PEVaR(δ, k) =
1

n− k − 250

n−k∑
t=251

P

(
t+k∑

s=t+1

Rs < −VaRt(δ, k)

)
(5.2)

obtained from the simulations. This value should be possibly close to the

nominal level δ .

• Finally we provide a mean VaR at level δ and time horizon k as

MVaR(δ, k) =
1

n− k − 250

n−k∑
t=251

VaRt(δ, k) (5.3)

again obtained from our simulations, cf. Fan and Gu (2003). This value

characterizes the cost required to secure the asset.

Results of the simulations are summarized in Table 1. The results lead to the

following conclusions:

• The GARCH model applied to data following a change point GARCH model

leads to a misspecification with a large value of the estimated parameter β̂ .

• The fully nonparametric GARCH model did not succeed to get a reasonable

estimate of the varying parameter β . Again, the estimated β̂t is in mean

much larger than the true value in Examples 2 to 4, while the semiparametric

GARCH model seems to be much more successful in handling the change

point models considered in our examples.

• The local constant model provides the best prediction quality for the 10 days

forecasting horizon for all examples. The GARCH model leads to the worst

results in almost all examples, while the semiparametric model is typically at

the second place.
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• The excess probability for the predicted VaR-quantiles is again optimized

by the local constant estimate while for examples 5 and 6 the semiparamet-

ric model shows slightly better results. However, all the models provide a

reasonable fit of the 1%-quantile.

• The averaged value of the VaR-quantile is in most cases minimized by the

GARCH-model. In combination with the excess probability results one can

judge that the GARCH-model tends to underestimate the VaR. This probably

explains why GARCH models are so popular in risk management.

6 Applications to financial time series

We now apply our methodology to two time series, the German DAX index (August

1991 to July 2003) and the USD/GBP exchange rate (January 1990 to December

2000). Similarly to the simulation study, we compare four methods: the parametric

GARCH(1,1), the non- and semiparametric GARCH(1,1) models and the local

constant volatility model from Polzehl and Spokoiny (2003). We show up to which

extend the four methods can explain phenomena observed for financial time series

like heavy tails and long range dependence.

We investigate the predictive performance of the methods by estimating the

predictive empirical likelihood risk PEL(k) at different time horizons k ranging

from 2 weeks to half a year:

PEL(k) = − 1

(n− k − 500)k

n−k∑
t=501

k∑
s=1

(
log X̂t+s|t +

R2
t+s

X̂t+s|t

)
(6.1)

where X̂t+s|t denotes the predicted volatility at time t+ s based on the estimated

process using observations up to time t . We also provide estimates for the excess

probability (5.2) of VaR and the mean VaR (5.3).

The top of Figure 3 shows the logarithmic returns of the DAX series, empha-

sizing strong variations in volatility. Additionally global and sequential estimates

of the square root of the volatility obtained by the four methods under considera-

tion are provided. Note that in principle all methods capture the same volatility

structure over time. Similar results are observed for the USD/GBP exchange rate

series.
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Figure 3: DAX: Logarithmic returns (top) and estimated volatility processes.
Given are global estimates (dashed line) and sequential estimates (obtained from
the last 500 observations, solid line) by parametric GARCH(1,1), AWS for nonpara-
metric GARCH(1,1), AWS for semiparametric GARCH(1,1) and the local constant
volatility model (from top to bottom).

Table 2: DAX and USD/GBP: Mean values for the nonlinear parameter.

GARCH NP-GARCH SP-GARCH
DAX 0.862 0.609 0.250

USD/GBP 0.777 0.411 0.227

Cointegration in DAX and USD/GBP: fact or artifact?

In Table 2 we provide the mean estimate of the parameter β obtained using the

parametric GARCH(1,1) model and its non- and semiparametric generalizations.

Exactly as in our simulation study, for both time series, the estimated value of

parameter β for the scrolling parametric GARCH(1,1) is close to one, while the

results for the semiparametric model (given in boldface) indicate that this IGARCH

effect can be artifact of nonstationarity of the time series.
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Figure 4: DAX and USD/GBP: ACF of squared log returns and squared standard-
ized residuals (using sequential estimates) obtained for the four methods for DAX
(top) and USD/GBP (bottom) volatility estimates, respectively.

Table 3: DAX and USD/GBP: Tail index of absolute logarithmic returns and
standardized residuals (using sequential estimates). Critical values for Gaussian
distributions with same sample size: 0.193 (.95), 0.202 (.99).

log residuals residuals residuals residuals
returns GARCH NP-GARCH SP-GARCH Local Const

DAX 0.324 0.225 0.195 0.190 0.188
USD/GBP 0.310 0.232 0.166 0.148 0.171

DAX and USD/GBP: Persistent ACF and Long Range Dependence Phe-
nomenon

The autocorrelation function (ACF) of squared log returns R2
t and of squared

standardized residuals ε̂2
t = R2

t /σ̂
2
t obtained for the four estimates are provided

in Figure 4. The ACF of the log returns clearly indicates persistency, however, all

four models under consideration, despite their quite different structure, allow to

successfully explain the dependence structure. Hence, the long range dependence

phenomenon in financial returns can be easily explained by nonstationarity of the

financial market.

DAX and USD/GBP: Tail index behavior of the returns

To investigate the phenomenon of heavy tails we estimate the tail index of loga-

rithmic returns Rt and standardized residuals ε̂t obtained by the four methods.
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Table 4: DAX and USD/GBP: Mean predictive empirical likelihood risk for differ-
ent forecast horizons. The best result for each time horizon in boldface.

Method two weeks one month three months six months
DAX USD/GBP DAX USD/GBP DAX USD/GBP DAX USD/GBP

GARCH 7.54 9.44 7.42 9.40 7.02 9.31 6.73 9.22
NP-GARCH 7.54 9.31 7.47 9.25 7.28 8.57 7.15 8.47
SP-GARCH 7.53 8.46 7.49 7.65 7.35 7.68 7.26 7.70
Local Const 7.56 9.46 7.52 9.45 7.39 9.40 7.3 9.35

Table 5: DAX and USD/GBP: Probability to exceed the Value at Risk at 10 trading
days. The best result in boldface.

Level GARCH NP-GARCH SP-GARCH Local Const
DAX USD/GBP DAX USD/GBP DAX USD/GBP DAX USD/GBP

0.01 0.0118 0.0173 0.0133 0.0168 0.0129 0.0230 0.0137 0.0149
0.05 0.0556 0.0542 0.0551 0.0561 0.0594 0.0571 0.0480 0.0538

We use the AWS tail index estimate proposed in Polzehl and Spokoiny (2003). Re-

sults are provided in Table 3. Note that the estimated parameter for the standard

normal random sample of the same size should be below 0.193 with probability

0.95 and below 0.202 with probability 0.99.

The logarithmic returns clearly show heavy tails. The estimated tail index for

the standardized residuals is smaller for all methods. Note that the use of the

parametric GARCH(1,1) model only partly explains the heavy tail effect while the

other methods succeeded to eliminate the heavy tails in the standardized returns.

DAX and USD/GBP: Out-of-sample performance

Table 4 provides estimates of the predictive empirical likelihood risk (6.1) for four

different time horizons ranging from two weeks to half a year. We observe, with

respect to this criterion, that the local constant forecast significantly improves on

the other three methods.

DAX and USD/GBP: Value-at-Risk performance

In Table 5 we provide estimates of the probability to exceed the VaR (5.1), defined

at a 1% and 5% level using quantiles of a standard Gaussian distribution. The time

horizon is two weeks. One can see that all the methods succeeded in forecasting

the VaR-quantiles with, in most cases, best results for the local constant model.
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Table 6: DAX and USD/GBP: Value at Risk at 10 trading days. The best result
in boldface.

Level GARCH NP-GARCH SP-GARCH Local Const
DAX USD/GBP DAX USD/GBP DAX USD/GBP DAX USD/GBP

0.01 0.1021 0.0402 0.1057 0.0405 0.1070 0.0401 0.1056 0.0400
0.05 0.0722 0.0284 0.0748 0.0286 0.0757 0.0283 0.0747 0.0283

Table 6 provides the mean (over time) VaR (5.3) assigned by the four methods.

This value characterizes the cost required to secure the asset. Here all four methods

demonstrate a similar performance with a small benefit of using the parametric

GARCH(1,1) model for the DAX series and of the local constant modeling for the

USD/GBP series.

DAX and USD/GBP: Conclusion

Overall we see an advantage in using the local constant volatility model. It seems

preferable with respect to risk management and also provides a better explanation

for heavy tails, long range dependence and many other stylized facts of the financial

time series.

7 Conclusion and Outlooks

The paper shows that the parametric GARCH(1,1) modeling has serious problems

if the assumption of stationarity is violated. In particular, the IGARCH effect in

the GARCH(1,1) model seems to be an artifact of nonstationarity. An integrated

GARCH performs essentially as an exponential smoothing filter. This yields a

very good short term ahead forecasting performance. However, an application of

the estimated model to long term prediction is questionable because of possible

model misspecification. More arguments and a similar conclusion can be found in

Stărică (2004).

Two new procedures are suggested which allow to model the nonstationar-

ity in the observed financial time series via varying coefficient GARCH model-

ing. The method of estimation of time varying GARCH-models suggested in this

paper as an extension of the Adaptive Weights idea from Polzehl and Spokoiny

(2003) is very general in nature and can be easily extended to GARCH (p, q) ,

or to EGARCH (p, q) and TGARCH (p, q) models. The both methods demon-
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strate a reasonable performance, compared to the parametric GARCH(1,1) model.

Especially the semiparametric model can be useful for the analysis of the inte-

grated GARCH effect. However, the simulated results and applications to real

data demonstrated that a more simple local constant model delivers better results

in term of short time forecasting and applications to risk management.

We do not investigate the asymptotic properties and the rate of estimation

delivered by the two proposed procedures. Although some properties can be es-

tablished similarly to Polzehl and Spokoiny (2002), particularly, the important

propagation condition. The main reason is that the obtained numerical results are

mostly discouraging and do not motivate a rigorous theoretical study.

The general approach proposed in this paper and based on the adaptive weights

idea seems to be applicable to many other models like hidden Markov chains, and

can be very powerful in that area. This can be viewed as a topic of further research.
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[23] Stărică , C., and Granger, C. (2004) Non-stationarities in stock returns. Preprint.
http://www.math.chalmers.se/ starica/0903.pdf. To appear in Review of Eco-
nomics and Statistics.

[24] Straumann, D. and Mikosch, T. (2003) Quasi-MLE in heteroscedas-
tic times series: a stochastic recurrence equations approach. Preprint.
http://www.math.ku.dk/ mikosch/preprint.html



 

SFB 649 Discussion Paper Series 2006 

 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

001 "Calibration Risk for Exotic Options" by Kai Detlefsen and Wolfgang K. 
Härdle, January 2006. 

002 "Calibration Design of Implied Volatility Surfaces" by Kai Detlefsen and 
Wolfgang K. Härdle, January 2006. 

003 "On the Appropriateness of Inappropriate VaR Models" by Wolfgang 
Härdle, Zdeněk Hlávka and Gerhard Stahl, January 2006. 

004 "Regional Labor Markets, Network Externalities and Migration: The Case 
of German Reunification" by Harald Uhlig, January/February 2006. 

005 "British Interest Rate Convergence between the US and Europe: A 
Recursive Cointegration Analysis" by Enzo Weber, January 2006. 

006 "A Combined Approach for Segment-Specific Analysis of Market Basket 
Data" by Yasemin Boztuğ and Thomas Reutterer, January 2006. 

007 "Robust utility maximization in a stochastic factor model" by Daniel 
Hernández–Hernández and Alexander Schied, January 2006. 

008 "Economic Growth of Agglomerations and Geographic Concentration of 
Industries - Evidence for Germany" by Kurt Geppert, Martin Gornig and 
Axel Werwatz, January 2006. 

009 "Institutions, Bargaining Power and Labor Shares" by Benjamin Bental 
and Dominique Demougin, January 2006. 

010 "Common Functional Principal Components" by Michal Benko, Wolfgang 
Härdle and Alois Kneip, Jauary 2006. 

011 "VAR Modeling for Dynamic Semiparametric Factors of Volatility Strings" 
by Ralf Brüggemann, Wolfgang Härdle, Julius Mungo and Carsten 
Trenkler, February 2006. 

012 "Bootstrapping Systems Cointegration Tests with a Prior Adjustment for 
Deterministic Terms" by Carsten Trenkler, February 2006. 

013 "Penalties and Optimality in Financial Contracts: Taking Stock" by 
Michel A. Robe, Eva-Maria Steiger and Pierre-Armand Michel, February 
2006. 

014 "Core Labour Standards and FDI: Friends or Foes? The Case of Child 
Labour" by Sebastian Braun, February 2006. 

015 "Graphical Data Representation in Bankruptcy Analysis" by Wolfgang 
Härdle, Rouslan Moro and Dorothea Schäfer, February 2006. 

016 "Fiscal Policy Effects in the European Union" by Andreas Thams, 
February 2006. 

017 "Estimation with the Nested Logit Model: Specifications and Software 
Particularities" by Nadja Silberhorn, Yasemin Boztuğ and Lutz 
Hildebrandt, March 2006. 

018 "The Bologna Process: How student mobility affects multi-cultural skills 
and educational quality" by Lydia Mechtenberg and Roland Strausz, 
March 2006. 

019 "Cheap Talk in the Classroom" by Lydia Mechtenberg, March 2006. 
020 "Time Dependent Relative Risk Aversion" by Enzo Giacomini, Michael 

Handel and Wolfgang Härdle, March 2006. 
021 "Finite Sample Properties of Impulse Response Intervals in SVECMs with 

Long-Run Identifying Restrictions" by Ralf Brüggemann, March 2006. 
022 "Barrier Option Hedging under Constraints: A Viscosity Approach" by 

Imen Bentahar and Bruno Bouchard, March 2006. 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 



 

023 "How Far Are We From The Slippery Slope? The Laffer Curve Revisited" 
by Mathias Trabandt and Harald Uhlig, April 2006. 

024 "e-Learning Statistics – A Selective Review" by Wolfgang Härdle, Sigbert 
Klinke and Uwe Ziegenhagen, April 2006. 

025 "Macroeconomic Regime Switches and Speculative Attacks" by Bartosz 
Maćkowiak, April 2006. 

026 "External Shocks, U.S. Monetary Policy and Macroeconomic Fluctuations 
in Emerging Markets" by Bartosz Maćkowiak, April 2006. 

027 "Institutional Competition, Political Process and Holdup" by Bruno 
Deffains and Dominique Demougin, April 2006. 

028 "Technological Choice under Organizational Diseconomies of Scale" by 
Dominique Demougin and Anja Schöttner, April 2006. 

029 "Tail Conditional Expectation for vector-valued Risks" by Imen Bentahar, 
April 2006. 

030 "Approximate Solutions to Dynamic Models – Linear Methods" by Harald 
Uhlig, April 2006. 

031 "Exploratory Graphics of a Financial Dataset" by Antony Unwin, Martin 
Theus and Wolfgang Härdle, April 2006. 

032 "When did the 2001 recession really start?" by Jörg Polzehl, Vladimir 
Spokoiny and Cătălin Stărică, April 2006. 

033 "Varying coefficient GARCH versus local constant volatility modeling. 
Comparison of the predictive power" by Jörg Polzehl and Vladimir 
Spokoiny, April 2006. 

 
 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 


	Frontpage 033.pdf
	SFB649DP2006-033.pdf
	Endpage 033.pdf

