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Abstract

In this paper we propose a jump-diffusion Libor model with jumps in a
high-dimensional space (Rm) and test a stable non-parametric calibration
algorithm which takes into account a given local covariance structure.
The algorithm returns smooth and simply structured Lévy densities, and
penalizes the deviation from the Libor market model. In practice, the
procedure is FFT based, thus fast, easy to implement, and yields good
results, particularly in view of the severe ill-posedness of the underlying
inverse problem.

1 Introduction

The calibration of financial models has become an important topic in financial
engineering because of the need to price increasingly complex options consistent
with prices of standard instruments liquidly traded in the market. The choice
of an underlying model is crucial with respect to its statistical relevance on the
one hand, and the possibility of calibrating it with ease on the other. In order
to cover stylized facts in financial data such as implied volatility smiles, more
complex models, i.e. models beyond Black-Scholes, are called for.

During the last decade Lévy-based models have drawn much attention, as
these models are capable to describe complex but realistic behavior of financial
time series. In particular, these models may cover jumps, heavy tails, and
are principally able to match implied volatility surfaces observed in stock and
interest rate markets. For modelling stock prices, pure jump Lévy processes
were already proposed in Eberlein, Keller and Prause (1998). In Cont & Tankov
(2003) regularized approaches for calibrating jump-diffusion stock price models
were considered.

In the interest rate world the Libor market model developed by Brace,
Gatarek, Musiela (1997), Jamshidian (1997), and Miltersen, Sandmann, Son-
dermann (1997), has become one of the most popular and advanced tools for
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modelling interest rates and interest rate derivatives. This in spite of a main
drawback; the Libor market model cannot explain implied volatility surfaces
typically observed in the cap markets. In order to handel this issue different
extensions of the Libor market model using processes with jumps have been
proposed. Glasserman and Kou (2003) developed a jump diffusion Libor model
and gave some useful explicit specifications. The most general framework for
Libor models driven by jump measures is provided in Jamshidian (2001).

The central theme in this paper is a well structured jump-diffusion Libor
model which allows for robust and efficient calibration. Our starting point will
be a given Libor market model with known deterministic volatility structure.
For instance, this market model might be obtained from a calibration proce-
dure involving at the money (ATM) caps, ATM swaptions, and/or a historically
identified forward rate correlation structure. Meanwhile, calibration procedures
for Libor market models are well studied in the literature (e.g. Schoenmakers
(2005), or Brigo & Mercurio (2001)). Yet, our main goal is the development of
a specific jump-diffusion Libor model which can be calibrated to the cap-strike
matrix in a robust way and which is, in a sense, as near as possible to the given
market model. In particular, this model will be furnished in such a way that
the (local) covariance structure of the jump-diffusion model coincides with the
(local) covariance structure of the market model. We have three main reasons
for doing so: (1) The price of a cap in a Libor market model does not depend
on the (local) correlation structure of the forward Libors. However, this corre-
lation structure may contain important information such as, for instance, prices
of ATM swaptions. We therefore do not want to destroy this correlation struc-
ture as given by the input market model when calibrating the extended model
to the cap(let)-strike volatility matrix. (2) The lack of smile behavior of the
input market model, which is regarded as a rough intermediate approximation
of a smile explaining jump-diffusion model, is considered to be a consequence of
Gaussianity of the driving random forces (Wiener processes). So, loosely speak-
ing, we want to perturb these forces to non-Gaussian ones by using jumps, while
maintaining the (local) covariance structure of the given market model, hence
the correlation structure implicitly. (3) Last but not least, by preserving the
covariance structure we obtain a very robust calibration procedure.

The literature on calibration methods for asset models based on Lévy pro-
cesses has mainly focused on certain parametrization of the underlying Lévy
process. Since the characteristic triplet of a Lévy process is a priori an infinite-
dimensional object, the parametric approach is always exposed to the problem
of misspecification, in particular when there is no inherent economic foundation
of the parameters and they are only used to generate different shapes of pos-
sible jump distributions. Therefore, we employ a nonparametric approach of
Belomestny & Reiss (2004) which utilizes explicit inversion of a Fourier based
pricing formula and a regularization in the spectral domain.

The outline of the paper is as follows. We recall in Section 2 the general
arbitrage-free Libor framework developed in Jamshidian (2001). It will serve as
the baseplate of this article. The covariance preserving jump-diffusion extension
of the Libor market model is constructed in Section 3. In Section 4 we recap
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Fourier-based representations for Caplet prices in the spirit of Car & Madan
(1999), see also Glasserman & Merener (2003), Eberlein & Özkan (2005). The
algorithm for calibrating to a full cap-strike matrix is developed in Section 5,
and a real life calibration is carried out in Section 6. Technical details and
derivations are given in the Appendix-section.

2 General framework for Libor models with jumps

Consider a fixed sequence of tenor dates 0 =: T0 < T1 < T2 < . . . Tn, called
a tenor structure, together with a sequence of so called day-count fractions
δi := Ti+1−Ti, i = 1, . . . , n−1. With respect to this tenor structure we consider
zero bond processes Bi, i = 1, . . . , n, where each Bi lives on the interval [0, Ti]
and ends up with its face value Bi(Ti) = 1. With respect to this bond system
we deduce a system of forward rates, called Libor rates, which are defined by

Li(t) :=
1

δi

(
Bi(t)

Bi+1(t)
− 1

)
, 0 ≤ Ti, 1 ≤ i ≤ n− 1.

Note that Li is the annualized effective forward rate to be contracted for at the
date t, for a loan over a forward period [Ti, Ti+1]. Based on this rate one has to
pay at Ti+1 an interest amount of $δiLi(Ti) on a $1 notional.

2.1 Arbitrage free dynamics

On a filtered measurable space (Ω,F ,Ft) we consider a Libor model under the
terminal measure Pn within the following framework (Jamshidian (2001)),

dLi

Li−
= −

n−1∑

j=i+1

δjLj−

1 + δjLj−
η⊤i ηjdt+ η⊤i dW

(n)

−
∫

E

ν(n)(dt, du)ψi(t, u)




n−1∏

j=i+1

(
1 +

δjLj−ψj(t, u)

1 + δjLj−

)
− 1




+

∫

E

ψi(t, u)(µ− ν(n))(dt, du), i = 1, ..., n− 1, (1)

with ω → µ(dt, du, ω), being a random point measures on R+×E, where E is an
abstract Lusin space, and ν(n)(dt, du, ω) is the (Pn,F)-compensator on R+ ×E
of µ. In (1), W (n) is a d-dimensional standard Brownian motion under Pn, and
the filtration (Ft)t≥0 is assumed to contain the natural filtrations generated by
W (n) and µ, respectively. Further, (ω, t) → ψi(t, ·, ω) are predictable processes
of functions on E and ηi are d-dimensional predictable column vector processes.
The random measure µ is assumed to be of the form

µ =
∑

n≥1

1Tn(ω)=tδ(t,βt(ω))(dt, du), (2)
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where β is in general an optional process and Tn, n = 1, 2, .. is a sequence of
stopping times with disjoint graphs, i.e. Tn(ω) 6= Tm(ω) for n 6= m.
The framework (1) may be casted into a somewhat different form. Let us

consider a partition E :=
m⋃

k=1

Ek, where E1, ..., Em are Lusin spaces with

Ek ∩ El = ∅ for k 6= l, and define µk := µ|Ek
, ψik := ψi|Ek

, ν
(n)
k := ν(n)|Ek

, for
k = 1, ...,m. Then (1) becomes

dLi

Li−
= −

n−1∑

j=i+1

δjLj−

1 + δjLj−
η⊤i ηjdt+ η⊤i dW

(n)

−
m∑

k=1

∫

Ek

ν
(n)
k (dt, duk)ψik(t, uk)




n−1∏

j=i+1

(
1 +

δjLj−ψjk(t, uk)

1 + δjLj−

)
− 1




+
m∑

k=1

∫

Ek

ψik(t, uk)(µk − ν
(n)
k )(dt, duk), i = 1, ..., n− 1. (3)

In particular, it easily follows that ν
(n)
k is the Pn-compensator of µk with respect

to F . Note that in general EF
(k)
t ν

(n)
k (ω, dt, du) is the compensator of µk with

respect to the restricted filtration F (k)
t := Ft ∩ σ{µ([0, s] × C) : s ≤ t, C ∈

B(Ek)}, t ≥ 0 (thus not ν
(n)
k ). As shown in Appendix 7.1, the representation

(3) is in fact equivalent to (1), but somewhat more natural as it suggest the use
of a system of m point processes with phase space R+ × R as in the papers of
Glasserman & Kou (2001) and Glasserman & Merener (2003).

Henceforth we consider in (1) only random point measures with finite activ-
ity, i.e., µ is of the form (2) and for each t > 0, µ([0, t] × E) < ∞. In order to
guarantee that the Libor processes Li are nonnegative we further require that
ψi > −1 in (1), and then set ϕi := ln(ψi + 1). Let (sl, ul), l = 1, ..., Nt, denote
the jumps of µ up to time t for an ω ∈ Ω. Using the fact that at a jump time
sl, ∆Li(sl, ω) = Li(sl−, ω)ψi(sl, ul, ω) = Li(sl−, ω)(eϕi(sl,ul,ω) − 1), and hence
Li(sl, ω) = Li(sl−, ω)eϕi(sl,ul,ω), we obtain by the Ito-substitution rule for jump
processes (with ω suppressed),

d lnLi =
1

Li−
dLi −

1

2
|ηi|2dt+ d

Nt∑

l=1

(ϕi(sl, ul) − ψi(sl, ul))

= −1

2
|ηi|2dt−

n−1∑

j=i+1

δjLj−

1 + δjLj−
η⊤i ηjdt+ η⊤i dW

(n)

−
∫

E

ν(n)(dt, du)(eϕi(s,u) − 1)

n−1∏

j=i+1

1 + δjLj−e
ϕj(s,u)

1 + δjLj−
+ d

Nt∑

l=1

ϕi(sl, ul).

(4)
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The logarithmic analogue of (3) directly follows from (4),

d lnLi = −1

2
|ηi|2dt−

n−1∑

j=i+1

δjLj−

1 + δjLj−
η⊤i ηjdt+ η⊤i dW

(n) (5)

−
m∑

k=1

∫

Ek

ν
(n)
k (dt, duk)(eϕik(s,uk) − 1)

n−1∏

j=i+1

1 + δjLj−e
ϕjk(s,uk)

1 + δjLj−

+ d

m∑

k=1

N
(k)
t∑

l=1

ϕik(s
(k)
l , u

(k)
l ),

with ϕik := ln(ψik + 1) and (s
(k)
l , u

(k)
l ), l = 1, ..., N

(k)
t , denoting the jumps of

µk up to time t. The logarithmic representation (4) (or equivalently (5)) will be
the basic framework for our purposes.

3 Jump diffusion extension of a Libor market
model

We first specialize to a jump-diffusion Libor model which is driven by a Poisson
random measure with marks in some multi-dimensional space.

3.1 Poisson driven multi-dimensional jumps

Consider the Lusin product space E := E1 × · · · × Em, with Ek Lusin for
k = 1, ...,m (e.g. Ek = R). Suppose that on a common probability space,
equipped with some probability measure Pn, we are given random measures µk

on R+ × Ek. We then consider the product Lusin space E := E1 × . . . × Em

(e.g. E = R
m), and on R+ × E the random measure µ(dt, du, ω) such that

for any t ≥ 0, µ({t}, ·, ω) := µ1({t}, ·, ω) ⊗ . . . ⊗ µm({t}, ·, ω). We assume that
the random measures µk are such that almost surely for each t ≥ 0 either
µk({t}, Ek, ω) = 1 for all k, or µk({t}, Ek, ω) = 0 for all k. Thus, all random
measures µk throw a point in Ek at the same time. Then each µk({t}, ·, ω)
can be seen as the image of µ({t}, ·, ω) under the projection of E onto Ek. In
addition, we assume that given µk({t}, Ek, ω) = 1 for all k, the Dirac measures
µk =: δ(t,uk) are mutually independent for k = 1, ...,m, independent of t, and uk

is distributed on Ek with probability pk(duk). The (simultaneous) jump-times,
i.e. times t at which µk({t}, Ek, ω) = 1 for all k, are assumed to be Poisson
distributed with locally finite intensity measure λ(t)dt. We then consider (4)
(or (1)) for the thus constructed jump measure µ with respect to the filtration
(Ft)t≥0 which is generated by µ and W (n), where the Pn standard Brownian
motion W (n) is independent of µ. Under these assumptions it follows that the
(Pn,F)-compensator of µ is deterministic and is given by

ν(n)(dt, du1, ..., dum) := λ(t)p1(du1) · · · pm(dum)dt =: λ(t)p(du)dt.
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3.2 Extending the Libor market model

Within the particular framework constructed above we now introduce a jump-
diffusion Libor model which in a sense can be seen as an extension or perturba-
tion of a (given) Libor market model. Let γi(t) ∈ R

d be the (given) deterministic
volatility structure of the market model, resulting for instance from some stan-
dard calibration procedure to ATM caps and ATM swaptions or historical data.
To exclude local redundancies we assume that the matrix (γi,l(t))1≤i<n,1≤l≤d

has full rank d for all t. Let E := R
m for some integer m and consider deter-

ministic vector functions βi(t) ∈ R
m, i = 1, ..., n − 1. We then take a sequence

of constants ri with −1 < ri < 1, and set

ηi :=
√

1 − r2i γi, ϕi(t, u) := ri u
⊤βi(t) (6)

in (4) to yield,

d lnLi = −1

2
(1 − r2i )|γi|2dt−

n−1∑

j=i+1

δjLj−

1 + δjLj−

√
(1 − r2i )(1 − r2j )γ⊤i γjdt

+
√

1 − r2i γ
⊤
i dW

(n) + rid

Nt∑

l=1

u⊤l βi(sl) (7)

−λ(t)dt

∫

Rm

(
exp(ri u

⊤βi) − 1
)
p(du)

n−1∏

j=i+1

1 + δjLj− exp(rj u
⊤βj)

1 + δjLj−
.

Note that in (7) the market model is retrieved by taking ri ≡ 0, and so, for
small ri, (7) may be seen as a jump diffusion perturbation of the Libor market
model.

3.3 The jump drift of ln Li under Pn

Let us consider the third term in (7), i.e. the “log jump drift” of lnLi under the
terminal measure Pn. The computation of this term is of particular importance,
for example, in a Monte Carlo simulation of the model. For a fixed time t > 0
we consider the expression

(∗) :=

∫

Rm

p(du)
(
exp(riu

⊤βi(t) − 1
) n−1∏

j=i+1

[
1 + δjLj−(t) exp(rju

⊤βj(t))
]
. (8)

Using the abbreviation xj := δjLj−(t) exp(rju
⊤βj(t)), the product in (8) my be

expanded as

n−1∏

j=i+1

(1 + xj) = 1 +
∑

i<j<n

xj +
∑

i<j1<j2<n

xj1xj2

+
∑

i<j1<j2<j3<n

xj1xj2xj3 + ...+ xi+1 · · · xn−1.

6



Let us take a generic term of degree 1 ≤ d < n− i (with t suppressed),

xj1 · · · xjd
= δj1Lj1− · · · δjd

Ljd− exp(rj1u
⊤βj1) · · · exp(rjd

u⊤βjd
),

for i < j1 < j2 < · · · < jd < n, and observe that

∫

Rm

p(du)eriu
⊤βi exp(rj1u

⊤βj1) · · · exp(rjd
u⊤βjd

)

=

∫

Rm

p(du) exp
[
u⊤(riβi + rj1βj1 + · · · + rjd

βjd
)
]

=

m∏

l=1

∫

R

pl(dul) exp [ul(riβil + rj1βj1l + · · · + rjd
βjdl)]

=
m∏

l=1

φpl
(−iriβil − irj1βj1l · · · −irjd

βjdl),

with φpl
being the characteristic function of pl. Note that the existence of φpl

(z)
in some ball {z ∈ C : |z| < A} has to be assumed. By analogue computations
and collecting terms we thus obtain

(∗) = −1 +

m∏

l=1

φpl
(−iriβil)+

n−1−i∑

d=1

∑

i<j1<j2<···<jd<n

δj1Lj1− · · · δjd
Ljd−×

×
[

m∏

l=1

φpl
(−iriβil − irj1βj1l · · · −irjd

βjdl) −
m∏

l=1

φpl
(−irj1βj1l · · · − irjd

βjdl)

]

=: ̺p,r,β
i +

n−1−i∑

d=1

∑

i<j1<j2<···<jd<n

δj1Lj1− · · · δjd
Ljd−̺

p,r,β
i;j1,...,jd

.

Once the model inputs ri, jump loadings t → βi(t) for 1 ≤ i < n, and jump
component measures pl with characteristic functions φpl

for 1 ≤ l ≤ m, are cal-

ibrated or simply given, the real valued functions t→ ̺p,r,β
i (t), t→ ̺p,r,β

i;j1,...,jd
(t),

1 ≤ i < n, i < j1 < j2 < · · · < jd < n, can be computed in closed form and, in
principle, even be stored outside the Monte Carlo simulator. Thus considering
these functions as given, the simulation of lnLi in the terminal measure may be

7



carried out straightforwardly via the formula

d lnLi = −1

2
(1 − r2i )|γi|2dt−

n−1∑

j=i+1

δjLj−

1 + δjLj−

√
(1 − r2i )(1 − r2j )γ⊤i γjdt

+
√

1 − r2i γ
⊤
i dW

(n) + rid

Nt∑

l=1

u⊤l βi(sl) (9)

−
n−1∏

j=i+1

(1 + δjLj−)
−1
λ(t)dt

[
̺p,r,β

i (t)+

+

n−1−i∑

d=1

∑

i<j1<j2<···<jd<n

δj1Lj1− · · · δjd
Ljd−̺

p,r,β
i;j1,...,jd

(t)


 .

We underline that the structure of the dynamics (9), hence the feasibility of stan-
dard Monte Carlo simulation of every forward Libor in the terminal measure,
is a consequence of our model design in Sections 3.1 and 3.2. In particular it is
due to the special product structure of the principally high dimensional jump
measure p and the linear structure of the log-Libor factor loadings (6).

Remark 1 Based on (9) we may consider different Libor model approxima-
tions. For example we may freeze Lj− at zero (see Glasserman & Merener
(2003)), hence replace Lj− with Lj(0) in (9). As an alternative, if the ri are
small enough and the magnitudes of δjLj are small enough as well, one could
drop in (9) the terms of order (δjLj)

2 and higher. Of course, any such attempt
needs careful investigation which is considered beyond the scope of this article.
For related approximations in the context of the standard Libor market model,
see for instance Kurbanmuradov, Sabelfeld and Schoenmakers (2002).

3.4 Dynamics of Li under Pi+1

We now consider for i = 1, ..., n − 1 the dynamics of Li under Pi+1. From (7)
we see that the logarithm of the last Libor rate Ln−1 has the following simple
dynamics in the Pn measure,

d lnLn−1 = −1

2
(1 − r2n−1)|γn−1|2dt+

√
1 − r2n−1γ

⊤
n−1dW

(n)+

rn−1d

Nt∑

l=1

u⊤l βn−1(sl) − λ(t)dt

∫

Rm

(
exp(rn−1 u

⊤βn−1) − 1
)
p(du) (10)

and thus belongs to the class of additive models, i.e., the process Xn−1(t) :=
lnLn−1(t) − lnLn−1(0) has independent increments. By using Lemma 2 be-
low for instance, we can derive straightforwardly the characteristic function of
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Xn−1(t),

Φn(z; t) :=EPn
exp[izXn−1(t)] = exp [ψn(z; t)] with (11)

ψn(z; t) := −z
2

2
(1 − r2n−1)

∫ t

0

|γn−1(s)|2ds− iz

∫ t

0

[1
2
(1 − r2n−1)|γn−1(s)|2ds+

λ(s)ds

∫

Rm

(
exp(rn−1 u

⊤βn−1(s)) − 1
)
p(du)

]

+

∫ t

0

λ(s)ds

∫

Rm

(eiz rn−1u⊤βn−1(s) − 1)p(du). (12)

For 1 ≤ i < n− 1 the dynamics of Li under Pi+1 is more complicated. By the
fact that Li is a martingale under Pi+1 we observe from the general framework
(1) that

dLi

Li−
=: η⊤i dW

(i+1) +

∫

E

ψi(t, u)
(
µ− ν(i+1)

)
(dt, du), (13)

where

dW (i+1) = −
n−1∑

j=i+1

δjLj−

1 + δjLj−
ηjdt+ dW (n)

is a standard Brownian motion under Pi+1, and

ν(i+1)(dt, du) = ν(n)(dt, du)

n−1∏

j=i+1

(
1 +

δjLj−ψj(t, u)

1 + δjLj−

)
(14)

is the compensator process of µ under the measure Pi+1. For the more specialized
setup introduced in this section, which is based on (6), (14) reads

ν(i+1)(dt, du) = λ(t)p(du)dt
n−1∏

j=i+1

1 + δjLj− exp(rj u
⊤βj)

1 + δjLj−
, (15)

and (13) reads

dLi

Li−
=
√

1 − r2i γ
⊤
i dW

(i+1) +

∫

Rm

(
eri u⊤βi(t) − 1

)(
µ− ν(i+1)

)
(dt, du), (16)

i = 1, ..., n− 1. The logarithmic version of (16) is seen from (7) to be

d lnLi = −1

2
(1 − r2i )|γi|2dt+

√
1 − r2i γ

⊤
i dW

(i+1) (17)

+rid

Nt∑

l=1

u⊤l βi(sl) −
∫

Rm

(
exp(ri u

⊤βi) − 1
)
ν(i+1)(dt, du).

In particular, for i < n − 1 the compensator (15) is non-deterministic in the
present setup and, as a consequence, lnLi is generally not additive under Pi+1

for i < n − 1. However, by freezing in (15) the Libor terms, i.e. replacing Li−

by Li−(0), we may get a deterministic approximative compensator and so an
additive approximation of lnLi under Pi+1.
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3.5 Preserving the local covariance structure

We recall the following standard lemma which is proved in Appendix 7.2.

Lemma 2 If J(t) =
∑Nt

l=1 ϕ(sl, ul) is a compound Poisson process in R
q with

jump intensity λ(t)dt, independent jumps in a measurable space E with prob-
ability measure p(du), and ϕ : R+ × E → R

q is deterministic, then (i) the
characteristic function of J(t) is given by

Eeiz⊤J(t) = exp

[∫ t

0

λ(s)ds

∫

E

(eiz⊤ϕ(s,u) − 1)p(du)

]
, z ∈ R

q.

and (ii) for the expectation and covariance structure of J(t) we have

EJl(t) =

∫ t

0

λ(s)ds

∫

E

ϕl(s, u)p(du),

Cov(Jl(t), Jl′(t)) =

∫ t

0

λ(s)ds

∫

E

ϕl(s, u)ϕl′(s, u)p(du), 1 ≤ l, l′ ≤ q.

Let us now write the integrated random term in (7) as

ξi(t) :=
√

1 − r2i

∫ t

0

γ⊤i dW
(n) + ri

Nt∑

l=1

u⊤l βi(sl)

=:
√

1 − r2i ξ
D
i (t) + riξ

J
i (t). (18)

By Lemma 2 the characteristic function of the jump process ξJ is then given by

Eeiz⊤ξJ (t) = exp



∫ t

0

λ(s)ds


φp




n−1∑

j=1

zjβj(s)


− 1




 ,

with φp(y) :=
∫
p(du) exp

[
iu⊤y

]
, y ∈ R

m being the characteristic function of
p. For the covariance matrix Lemma 2 yields

Cov(ξJ
i (t), ξJ

j (t)) =

∫ t

0

λ(s)ds

∫

Rm

β⊤
i (s)uu⊤βj(s)p(du)

=:

∫ t

0

λ(s)dsβ⊤
i (s)Σβj(s)

with Σkl :=
∫
ukulp(du) being the cross moments of jump components uk and

ul. Since the Brownian motion and the jumps are assumed to be independent,
we have for the local covariance of the random term in (7),

Cov(dξi(t), dξj(t))/dt =
√

(1 − r2i )(1 − r2j )γ⊤i (t)γj(t) + rirjλ(t)β⊤
i (t)Σβj(t).

(19)
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Our main idea is to consider jump diffusion extensions of a (given) pure
Libor market model which preserve the (given) local covariance structure of the
market model. To this aim we consider in (7) the case where r :≡ ri for all i.
Then (19) yields

Cov(dξi, dξj)/dt = (1 − r2)γ⊤i γj + r2λβ⊤
i Σβj .

We then assume βj = Aγj for some m× d matrix A which gives

Cov(dξi, dξj)/dt = γ⊤i (I − r2I + r2λA⊤ΣA)γj .

Now the requirement that the local covariances (19) coincide with the local
covariances of the market model leads to the condition

λA⊤ΣA = Id,

and in particular m ≥ d. Since Σ is (time independent) positive definite there is
a unique positive symmetric m×m matrix C such that Σ = C2. Then for any
column-orthogonal m× d matrix Q we have a solution

A = λ−1/2C−1Q.

Note that in general Q and λ may depend on t. Without loss of generality
(i.e. without affecting the input Libor market model) we may assume that the
(n− 1) × d matrix (γj,r) is an upper triangular matrix in the sense

γn−j,l = 0 for 1 ≤ l < d− j + 1, j = 1, ..., d.

We assume (for technical reasons in fact) that the (n− 1) ×m matrix (βj,r) is
also an upper triangular matrix,

βn−j,l =

d∑

r=1

Al,rγn−j,r = 0, for 1 ≤ l < m− j + 1, j = 1, ...,m. (20)

In particular this entails that the jumps of Ln−1 are driven by a single jump
measure. We will achieve (20) by the additional requirement m = d (dimension
of the jump space equal to the number of Brownian motions) and by taking the
orthogonal matrix Q such that C−1Q, hence A, is a lower triangular (square)
matrix with positive diagonal elements. Thus, A is uniquely determined by

AA⊤ = λ−1Σ−1, A is lower triangular with positive diagonal. (21)

As a further specialization we take λ to be time independent. Note that u⊤βi =
(Du)⊤D−1βi for any regular diagonal matrix D. So, multiplication of all jump
random variables with an arbitrary factor and respective components of βi with
this factors inverse yields the same model. We thus need to standardize the
jump components in a suitable way. Without any restriction we may fix the
jump variances αk defined as

αk :=

∫
u2

kpk(duk) − κ2
k where

κk :=

∫
ukpk(duk)

11



is the mean of the kth jump component, as we like. As a convenient choice we
take them all equal, i.e. we set αk ≡: α, k = 1, . . . ,m. We will choose α such

that ||A||F :=
√∑m

k,l=1 |Akl|2 =
√
m = ||Im||F , which is equivalent to

||C−1||2F =
m∑

k=1

1

λΣ
k

= λm, (22)

where λΣ
k , k = 1, ...,m, denote the eigenvalues of Σ. Then by the result of

Appendix 7.3 it follows that (22) is equivalent to

αλ =

α+ m−1
m

m∑

p=1

κ2
p

α+

m∑

p=1

κ2
p

.

It is easy to show that this quadratic equation in α has one positive and one
negative solution, and that for large m the positive solution α+ ≈ 1/λ. We
therefore set

α :=
1

λ
≡ αk, k = 1, . . . ,m.

For all k, l = 1, ...,m, c⊤k cl = e⊤k C
2el = Σkl = αkδkl + κkκl. We so have in

particular βn−1,l(s) ≡ 0 for 1 ≤ l < m, and

βn−1,m(s) = Am,mγn−1,m(s) = λ−1/2(e⊤mC
2em)−1γn−1,m(s)

=
γn−1,m(s)√
λ(α+ κ2

m)
=

γn−1,m(s)√
1 + λκ2

m

. (23)

Hence the dynamics of lnLn−1 is driven by a single jump variable um under a
jump distribution with density pm with mean κm and variance λ−1.

4 Pricing caplets

A caplet for the period [Tj , Tj+1] with strikeK is an option which pays (Lj(Tj)−
K)+δj at time Tj+1, where 1 ≤ j < n. It is well-known that under the Tj+1 - for-
ward measure the caplet price has the following simple representation. Writing
Ej+1 for the expectation under this measure, we have

Cj(K) = Bj+1(0)Ej+1[(Lj(Tj) −K)+δj ]

for price of the j-th caplet at time zero. Thus the j-th caplet price is determined
by the dynamics of Lj under Pj+1 only. We now recall the FFT pricing method
of Carr & Madan, which basically goes as follows. It turns out natural to
transform for a fixed j the strike variable into a log-forward moneyness variable
defined by

v := ln
K

Lj(0)
.

12



In terms of log-forward moneyness the j-th caplet price is then given by

Cj(v) := δjBj+1(0)Lj(0)Ej+1[(e
Xj(Tj) − ev)+],

where Xj(t) := lnLj(t) − lnLj(0). We further introduce an auxiliary function

Oj(v) := δ−1
j B−1

j+1(0)L−1
j (0)Cj(v) − (1 − ev)+

= Ej+1(e
Xj(Tj) − ev)+ − (1 − ev)+

= 1v≥0Ej+1(e
Xj(Tj) − ev)+ + 1v≤0Ej+1(e

v − eXj(Tj))+,

where the third expression is basically due to the put-call parity and follows
from the identity (a − b)+ = a − b + (b − a)+ and the fact Ej+1e

Xj(Tj) = 1.
In Appendix we derive further characteristic properties of the function Oj . In
particular, it holds (for a proof see Appendix 7.4)

F{Oj}(z) =

∫ ∞

−∞

Oj(v)e
ivzdv =

1 − Φj+1(z − i;Tj)

z(z − i)
. (24)

Most importantly, if the characteristic function of Xj(Tj) is explicitly given,
for example by (11), and (12) in the case j = n − 1, we obtain an analytical
caplet pricing formula via Fourier inversion,

Cj(K) = δjBj+1(0)(Lj(0) −K)+ +

δjBj+1(0)Lj(0)

2π

∫ ∞

−∞

1 − Φj+1(z − i;Tj)

z(z − i)
e
−iz ln K

Lj(0) dz. (25)

For a fixed j, j < n− 1, let now lnLj be given by (17). As noted at the end

of Section 3, we may then obtain an additive approximation X̃j(Tj) of Xj(Tj)
via (17) by replacing ν(j+1) with the approximative compensator

ν̃(j+1)(dt, du) := λ(t)dt p(du)
n−1∏

l=j+1

1 + δlLl(0) exp(rl u
⊤βl)

1 + δlLl(0)
. (26)

Hence, approximative caplet prices C̃j(K) are obtained from (25), using an ap-

proximation Φ̃j+1 of the characteristic function Φj+1, which in turn is obtained
by replacing in (11)-(12), n − 1, n, and ν(n)(dt, du) = λ(dt)p(du), respectively
with j, j + 1, and ν̃(j+1)(dt, du) from (26).

5 Calibration

Let us first consider the calibration to a panel of caplets corresponding to matu-
rity Tn−1 and different strikesK−N < · · · <K−1 <K0 := Ln−1(0)<K1 < · · · <
KN . So, suppose that caplet prices Cn−1,j corresponding to Kj , −N ≤ j ≤ N ,
are available. We first transform the observations Cn−1,j and strikes Kj to

On−1,j := δ−1
n−1,B

−1
n (0)L−1

n−1(0)Cn−1,j − (1 − evj )+, (27)

vj := ln
Kj

Lj(0)
, −N ≤ j ≤ N. (28)

13



Our calibration procedure relies essentially upon the next formula which follows
from (11), (12), (24), and taking the assumptions of Section 3.5 into account.

ψn(z;Tn−1) = Ln(Φn(z;Tn−1)) = Ln
(
1 − z(z + i)F{On−1}(z + i)

)

= −θ
2
n−1z

2

2
− iκn−1z − ζn−1 + ζn−1F{µn−1}(z), (29)

with abbreviations

θ2n−1 := (1 − r2n−1)

∫ Tn−1

0

|γn−1(s)|2ds,

κn−1 := λTn−1

∫

R

(
exp(rn−1 uβn−1,m(s)) − 1

)
pm(u) du (30)

+
1

2

∫ Tn−1

0

(1 − r2n−1)|γn−1(s)|2ds

ζn−1 := λTn−1, (31)

µn−1(·) := T−1
n−1

∫ Tn−1

0

r−1
n−1β

−1
n−1,m(s) pm(r−1

n−1β
−1
n−1,m(s) ·) ds, (32)

with Ln(w) := ln |w| + iArgw, −π < Argw ≤ π denoting the main branch of
the logarithm, and pm being the density of pm which we now assume to exist.

In principle, the constants θ2n−1, κn−1, ζn−1, and the mixed density µn−1

can be recovered via (29) from complete knowledge of function On−1, hence
a complete system of model consistent caplet prices Cn−1(K), 0 < K < ∞.
Indeed, since F{µn−1}(z) tends to zero as |z| → ∞ due to the Riemann-Lebesgue
lemma, we have

θ2n−1 = −2 lim
z→+∞

z−2ψn(z;Tn−1)

κn−1 = − lim
z→+∞

z−1 Imψn(z;Tn−1), and next,

ζn−1 = lim
z→+∞

(
−ψn(z;Tn−1) −

θ2n−1z
2

2
− iκn−1z

)
,

and then the function F{µn−1}(z) can be found from (29). In practice this ap-
proach breaks down due to incomplete knowledge of On−1 and lack of numerical
stability however.

In Belomestny and Reiss (2004) a more stable procedure is developed which
estimates all spot characteristics θ2n−1,κn−1, ζn−1, and µn−1(·), for a given set
of noisy observations (27) due to a discrete set of strikes (28). This procedure
consists basically of four steps: (i) first, a continuous piece-wise linear approxi-

mation Õn−1 of On−1 is built from the data; (ii) from Õn−1 an approximation

ψ̃n of ψn is obtained; (iii) next the coefficients of the quadratic polynomial on

the right-hand side in (29) are estimated from ψ̃n, under the presence of the

14



nonparametric nuisance part F{µn−1} (which vanishes at infinity) using appro-
priate weighting schemes; (iv) finally an estimator for µn−1 is obtained via FFT
inversion of the remainder. The steps (i)–(iv) are spelled out in detail below.

(i) In view of Appendix 7.5, we construct a continuous piece-wise linear func-

tion v → Õn−1(v) on a grid vj , −N − 1 ≤ j ≤ N + 1, with v−N−1 ≪
v−N < · · · < v−1 < v0 := 0 < v1 < · · · < vN ≪ vN+1, , such that

Õn−1(v) fits the data at vj , j 6= 0, Õn−1(v−N−1) := Õn−1(vN+1) := 0,

and Õ′
n−1(0−) − Õ′

n−1(0+) = 1. The boundary strikes v−N−1, vN+1 are
included to reflect the fact that limv→±∞ On−1(v) = 0.

(ii) By straightforward FFT we compute F{Õn−1}(z + i) and so obtain

ψ̃n(z) := Ln
(
1 − z(z + i)F{Õn−1}(z + i)

)
, z ∈ R. (33)

(iii) With an estimate ψ̃n of ψn at hand, we obtain estimators for the paramet-
ric part (θ2n−1,κn−1, ζn−1) by an averaging procedure using the polynomial
structure in (29) and the decay property of F{µn−1}. For suitable weight
functions wθ, wκ , and wζ constructed in Section 5.1, which have bounded
support U := [−U,U ] with U > 0, and satisfy

∫
wθdu = 0,

∫
u2wθ(u)du = −2,

∫
uwκ(u)du = 1, (34)

∫
u2wζ(u)du = 0,

∫
wζ(u)du = −1,

we compute the estimates

θ̃2n−1 :=

∫
Re(ψ̃n(u))wθ(u)du, (35)

κ̃n−1 :=

∫
Im(ψ̃n(u))wκ(u)du,

ζ̃n−1 :=

∫
Re(ψ̃n(u))wζ(u)du,

for the parameters θ2n−1,κn−1, and ζn−1, respectively.

(iv) The estimate for µn−1 is obtained via the inverse Fourier transform,

µ̃n−1 := ζ̃−1
n−1F

−1

{(
ψ̃n(·) +

θ̃2n−1

2
(·)2 − iκ̃n−1(·) + ζ̃n−1

)
1U

}
, (36)

where u ∈ R and 1U is the indicator function of the set U .

The computational complexity of this estimation procedure is very low. The
only time consuming steps are the three integrations in step (iii) and the inverse
Fourier transform (inverse FFT) in step (iv).
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5.1 Determination of the weights wθ, wκ, and wζ

Let us assume that for some natural number p and C > 0,

max
0≤q≤p

‖µ(q)
n−1‖L2(R) ≤ C (37)

and consider for some U > 0 the following weight functions,

wU,p
θ (u) :=

p+ 3(
1 − 2−2/(p+1)

)
Up+3

|u|p(1|u/U |≤1 − 2 · 12−1/(p+1)≤|u/U |≤1), (38)

wU,p
κ

(u) :=
p+ 2

2Up+2
|u|psign(u)1|u/U |≤1,

wU,p
ζ (u) :=

p+ 1

2
(
22/(p+3) − 1

)
Up+1

|u|p(2 · 12−1/(p+3)≤|u/U |≤1 − 1|u/U |≤1),

which satisfy the conditions (34) by straightforwardly checking.
Following Belomestny and Reiss (2005), we can estimate

|θ̃2n−1 − θ2n−1| ≤
∣∣∣∣
∫

Re(ψ̃n(u) − ψn(u))wU,p
θ (u)du

∣∣∣∣+
∣∣∣∣
∫

Re(F{µn−1}(u))wU,p
θ (u)du

∣∣∣∣
= (1) + (2). (39)

The second term can be estimated using the identity (iu)pF{µn−1}(u) = F{µ(p)
n−1}(u),

two times Parseval’s isometry, and (38),

(2) ≤
∣∣∣∣
∫

F{µn−1}(u)wU,p
θ (u)du

∣∣∣∣ =

∣∣∣∣∣∣

∫
(iu)pF{µn−1}(u)

(
wU,p

θ (u)

(iu)p

)
du

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫
F{µ(p)

n−1}(u)
(
wU,p

θ (u)

(iu)p

)
du

∣∣∣∣∣∣
=

1

2π

∣∣∣∣∣∣

∫
µ

(p)
n−1(s)F

−1

{
wU,p

θ (·)
(i·)p

}
(s)ds

∣∣∣∣∣∣

≤ C√
2π

∥∥∥∥∥
wU,p

θ (·)
(·)p

∥∥∥∥∥
L2(R)

=
C(p+ 3)√

π
(
1 − 2−2/(p+1)

)
Up+5/2

≤ C1
(p+ 1)(p+ 3)

Up+5/2
,

for some C1 > 0, which explains the construction of wU,p
θ : for fixed p and U

large, (2) falls with O(U−(p+5/2)). The first term (1) is due to the noise and
lack of data. It can be estimated by

(1) ≤ ||ψ̃n − ψn||L∞(U)||wU,p
θ ||L1(U) = ||ψ̃n − ψn||L∞(U)

2(p+ 3)

(p+ 1)
(
1 − 2−2/(p+1)

)
U2

≤ C2||ψ̃n − ψn||L∞(U)
p+ 3

U2
,

for some C2 > 0. So we have,

|θ̃2n−1 − θ2n−1| ≤ C2||ψ̃n − ψn||L∞(U)
p+ 3

U2
+ C1

(p+ 1)(p+ 3)

Up+5/2
. (40)
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In a similar way we obtain for κn−1, and ζn−1,

|κ̃n−1 − κn−1| ≤ C3||ψ̃n − ψn||L∞(U)
p+ 2

U(p+ 1)
+ C4

(p+ 2)

Up+3/2
, (41)

|ζ̃n−1 − ζn−1| ≤ C5||ψ̃n − ψn||L∞(U)(p+ 3) + C6
(p+ 1)(p+ 3)

Up+1/2
, (42)

for some C3, C4, C5, C6 > 0. Note that even when ‖µ(q)
n−1‖L2(R) is finite for very

large q it is not wise in view of (42) to take p too large. In practice one needs to

accomplish that ||ψ̃n − ψn||L∞(U) is small for a large enough U and then p = 1
or 2 turns out to be a proper choice.

Correction of µ̃n−1

Due to numerical as well as statistical errors the estimated µ̃n−1 may not be a
probability density and thus needs to be corrected. Besides that we also want
the variance of Xn−1 to be equal to the Black variance Tn−1(γ

B
n−1)

2, where

γB
n−1 :=

√
1

Tn−1

∫ Tn−1

0

|γn−1|2(s)ds.

In order to accomplish all these requirements we construct a new estimate µ̃+
n−1

as a solution of the following optimization problem,

‖µ̃+
n−1 − µ̃n−1‖2

L2(R) → min, inf
x∈R

µ̃+
n−1(x) ≥ 0 (43)

subjected to

∫
µ̃+

n−1(v)dv = 1,

∫
v2µ̃+

n−1(v)dv =
Tn−1

(
γB

n−1

)2 − θ̃2n−1

ζ̃n−1

. (44)

The solution has a rather simple form and is given by

µ̃+
n−1(x; ξ, η) := max{0, µ̃n−1(x) − ξ − ηx2}, x ∈ R,

where ξ and η need to be determined such that (44) is satisfied. Note that by
representing µ̃+ as a mixture of given densities, (43)-(44) boils down to a finite
dimensional quadratic optimization problem.

5.2 Procedure for calibration against terminal caplets

For U > 0 we denote the estimates (35) obtained using the weight functions
(38) by θn−1(U), κn−1(U), ζn−1(U), and the corrected Lévy density is denoted
by µ+

n−1(·;U). From (30) and (31) we can directly infer estimates rn−1(U)
and λ(U), respectively. We further have to identify a jump density pm from
µ+

n−1(·;U) via (32), while taking into account (23). Since the function β is usu-
ally not constant this might be not easy in general. We therefore go the following
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pragmatic way. Let us define in the spirit of (23) βB
n−1 := γB

n−1/
√

1 + λκ2
m. We

then consider as candidate jump density

p̂m(u;U) := rn−1(U)βB
n−1µ

+
n−1

(
rn−1(U)βB

n−1u;U
)

=
rn−1(U)γB

n−1√
1 + λ(U)κ2

m

µ+
n−1

(
rn−1(U)γB

n−1√
1 + λ(U)κ2

m

u;U

)
. (45)

Due to the very construction

−F{µ+
n−1(·, U)}′′(0) =

∫
v2µ+

n−1(v;U)dv =
r2n−1(U)

(
γB

n−1

)2

λ(U)
, (46)

and so by (45) it holds
∫
u2p̂m(u;U) du = λ−1(U) +κ2

m. By next requiring that
the first moment of the r.h.s. in (45) is equal to κm, we simply obtain

κm(U) :=
κµ+√
λ(U)αµ+

, (47)

with κµ+ and αµ+ denoting the expectation and the variance, respectively, of a
random variable with density µ+

n−1(·;U). Substituting (47) in (45) then yields

p̂m(u;U) =
rn−1(U)γB

n−1√
1 + κ2

µ+/αµ+

µ+
n−1


 rn−1(U)γB

n−1√
1 + κ2

µ+/αµ+

u;U


 . (48)

Finally we consider in view of (32)

µ̂+
n−1(·;U) :=

1

Tn−1

∫ Tn−1

0

√
1 + κ2

µ+/αµ+

rn−1(U)γn−1,m(s)
×

× p̂m




√
1 + κ2

µ+/αµ+

rn−1(U)γn−1,m(s)
·;U


 ds. (49)

Note that the second moments of µ̂+
n−1 and µ+

n−1 coincide and are given by the
r.h.s. of (46) (the first moments coincide approximately).

Choice of U

We find U∗ as a solution of the following minimization problem

U∗ = arginfU

N∑

i=−N

|Ĉn−1(Ki;U) − Cn−1,i|2, (50)

where Ĉn−1(·;U) are prices computed from the model due to θn−1(U), κn−1(U),
ζn−1(U), and µ̂+

n−1(·;U).
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5.3 Calibration to other caplets

With U∗ is determined via (50) and pm := pm(U∗), we introduce the shifted
densities

pj(u) := pm(u− κj + κm),

hence

κj =

∫

R

u p̂j(u)du, j = 1, . . . ,m. (51)

Because we want to preserve the input local covariance structure we set rj =
rm(U∗), j = 1, . . . ,m − 1. Let U be the upper triangular m ×m matrix with
positive diagonal elements such that Σ = UU⊤. This decomposition exists be-
cause Σ is invertible. From (21) we then have A = λ−1/2U−⊤. Let us define

Σ
(k)
rr′ , k ≤ r, r′ ≤ m, k = 1, ...,m. Since U is an upper triangular we have

Σ(k) = U (k)(U (k))⊤ and A(k) = λ−1/2(U (k))−⊤ with A(k) and U (k) defined anal-
ogously to Σ(k). Thus, for knowing A(k) it is sufficient to know Σ(k).

Now let us suppose that m = n − 1. We determine κj , j = 1, . . . , n − 1,
recursively in the following way. For j = n − 1, κn−1 is determined from (47),

then βn−1,n−1 from (23), and Σ
(n−1)
n−1,n−1 = α+κ2

n−1. Suppose βl,k is determined
for l = j, ..., n− 1, k = l, ..., n− 1, where j > 1. For j = m = n− 1 we are in the
situation of Section 5.2. We then consider the matrix

Σ(j−1)(κj−1) :=

[
α+ κ2

j−1 κj−1a
⊤

κj−1a Σ(j)

]
, (52)

with a := [κj , · · ·, κn−1]
⊤, and where the (n−j)×(n−j) matrix Σ

(j)
rr′ is assumed

to be already determined. Note that α = λ−1(U∗) is the common jump variance.
In fact the only unknown parameter to be determined in (52) is κj−1. Further,
it easily follows that,

U (j−1)(κj−1) =

[ (
α+ κ2

j−1

(
1 − a⊤(Σ(j))−1a

))1/2
κj−1a

⊤(U (j))−⊤

U (j)

]

and so

F (j−1)(κj−1) :=
(
U (j−1)

)−⊤

(κj−1) =
[ (

α+ κ2
j−1

(
1 − a⊤(Σ(j))−1a

))−1/2

−
(
α+ κ2

j−1

(
1 − a⊤(Σ(j))−1a

))−1/2
κj−1a

(
U (j)

)−⊤

]

Next, set according to (20)

βj−1,k(κj−1) = λ−1/2
k∑

r=j−1

F
(j−1)
k,r (κj−1)γj−1,r, k = j − 1, ..., n− 1,

βj−1,k(κj−1) = 0, 1 ≤ k < j − 1.
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By a simple trial and error search we then determine κj−1 such that the least
squares fit error of the Tj−1 caplet panel is as small as possible. For each guess
of κj−1 the model caplet prices may be computed by Monte Carlo simulation
of the model, or as an alternative by approximating caplet prices as proposed
at the end of Section 4.

6 Calibration to real data

In this section we calibrate the model (7) to market data given on 11.01.2004.
The caplet-strike volatility matrix is partially shown in Table 1. The corre-

K/T 0.150 0.200 0.225 0.250 0.300 0.400 0.500 0.600

0.50 0.2604 0.1735 0.1819 0.1969 0.2453 0.2708 0.3197 0.3407

0.75 0.2678 0.2036 0.2052 0.2136 0.2401 0.2598 0.3052 0.3258

1.75 0.2832 0.2587 0.2475 0.2365 0.2227 0.2246 0.2539 0.2733

2.50 0.2850 0.2651 0.2513 0.2334 0.2125 0.2051 0.2234 0.2412

3.50 0.2804 0.2581 0.2432 0.2233 0.2016 0.1856 0.1924 0.2071

4.50 0.2720 0.2474 0.2319 0.2142 0.1934 0.1720 0.1711 0.1821

5.50 0.2625 0.2381 0.2219 0.2079 0.1872 0.1625 0.1566 0.1640

6.50 0.2531 0.2314 0.2144 0.2039 0.1824 0.1557 0.1470 0.1510

7.50 0.2447 0.2270 0.2092 0.2016 0.1788 0.1510 0.1407 0.1418

8.50 0.2375 0.2241 0.2058 0.2002 0.1761 0.1477 0.1367 0.1355

9.50 0.2315 0.2224 0.2036 0.1995 0.1740 0.1454 0.1342 0.1311

11.50 0.2212 0.2206 0.2011 0.1988 0.1707 0.1424 0.1312 0.1253

14.50 0.2149 0.2201 0.2003 0.1987 0.1689 0.1410 0.1302 0.1228

19.50 0.2111 0.2200 0.2001 0.1987 0.1678 0.1404 0.1300 0.1219

Table 1: Caplet volatilities σK
T for different strikes and different tenor dates (in

years).

sponding implied volatility surface is shown in Figure 1.
Pronounced smiles are clearly observable. Due to the structure of the given

data we are going to calibrate the jump diffusion model based on semi-annual
tenors, i.e. δj ≡ 0.5, with n = 41, and where the initial calibration date 01.11.04
is identified with T0 = 0.

In a pre-calibration a standard market model is calibrated to ATM caps and
ATM swaptions using Schoenmakers (2005). However, we emphasize that the
method by which this input market model is obtained is not essential nor a
discussion point for this paper. For the pre-calibration we have used a volatility
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Figure 1: Smoothed caplet implied volatility surface σK
T .

structure of the form

γi(t) = cig(Ti − t)ei, 0 ≤ t ≤ min(Ti, Tj), 1 ≤ i, j < n,

where g is a simple parametric function and ei are unit vectors. The calibration
routine returned ei ∈ R

40 with

e⊤i ej = ρij = exp[−0.005|i− j|] 1 ≤ i, j < 41,

such that the matrix (ei,k) is upper triangular, and

g(s) = 0.8 + 0.2e−2.0s.

The ci can be readily computed from

(σATM
Ti

)2Ti = c2i

∫ Ti

0

g2(s) ds, i = 1, . . . , n− 1,

using the initial Libor curve, which is obtained by a standard stripping procedure
from the yield curve at 11.01.04, and is given in Table 2.

The further steps are as follows
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Ti Li(0) Ti Li(0) Ti Li(0) Ti Li(0)

0.5 0.0238176 5.5 0.0451931 10.5 0.0509249 15.5 0.0539696

1 0.0264201 6 0.0465074 11 0.0512114 16 0.0540521

1.5 0.0292798 6.5 0.0475881 11.5 0.0515804 16.5 0.0540931

2 0.0320656 7 0.0484201 12 0.0520317 17 0.0540933

2.5 0.0345508 7.5 0.0490942 12.5 0.0524639 17.5 0.054053

3 0.0366693 8 0.0496402 13 0.0528456 18 0.0539728

3.5 0.0385821 8.5 0.0500331 13.5 0.0531757 18.5 0.0538533

4 0.040381 9 0.0502848 14 0.0534529 19 0.053695

4.5 0.0420863 9.5 0.0504889 14.5 0.0536757 19.5 0.0534984

5 0.0437079 10 0.0506932 15 0.0538451 20 0.053268

Table 2: Initial Libor curve.

r λ κm

0.7 0.1 -0.005

Table 3: Parameters calibrated using terminal caplet volas σK
Tn−1

.

1. The model for Ln−1 is calibrated as described in Section 5.2 and the cal-
ibrated parameters are shown in Table 3. The calibrated density pm(x)
is plotted in Figure 2. Note that the variance of the distribution corre-
sponding to pm is equal to 1/λ = 10.0 in order to ensure (22).

2. Remaining parameters κj , j = 1, . . . , 39, are calibrated sequentially as
described in Section 5.3 with approximation formula (26) being used for
pricing caplets. It turned out experimentally that κj can be taken on the
line

κj = κ40 − 0.0751 ∗ (40 − j), j = 40, . . . , 1.

The quality of the calibration can be seen in Figure 3, where calibrated
volatility curves are shown for several caplet maturities together with orig-
inal caplet volas and ATM caplet volas. The overall root-mean-square fit
we have reached shows to be 0.5%-5%, when the number of caplet panels
ranges from 2 to 20. Fitting all the 40 caplet panels with an acceptable ac-
curacy (e.g. ≤5%), would require a more flexible structure for pj , j < m,
however.
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Figure 2: Density pm(x) calibrated using terminal caplet volas σK
Tn−1

7 Appendix

7.1 Equivalence of (1) and (3)

Suppose on (Ω,F ,Ft, Pn) we are given η and W (n) as in (3), and for k = 1, ...,m
we are given a random measure µk on R+ ×Ek, with Ek Lusin, of the form (2)

µk =
∑

n≥1

1
T

(k)
n (ω)=t

δ
(t,β

(k)
t (ω))

(dt, du),

where the stopping times (T
(k)
n )k=1,...,m,n≥1 satisfy T

(k)
n (ω) 6= T

(l)
m (ω) for n 6= m

or k 6= l. Further let for i = 1, ..., n − 1, k = 1, ...,m, the Ek-valued function
processes ψik be predictable. By treating Ek and El for k 6= l as completely
different spaces, i.e.Ek∩El = ∅ (which may be achieved by giving them different
colors if need be), we may construct straightforwardly the Lusin space E :=
m⋃

k=1

Ek and define a random measure µ :=
∑m

k=1 µk on R+ × E. Let now ν
(n)
k

be the (Pn,F)-compensator of µk (which is concentrated on Ek), then it easily

follows that ν(n) :=
∑m

k=1 ν
(n)
k is the (Pn,F)-compensator of µ, and by defining

ψi(t, u, ω) := ψik(t, u, ω) if u ∈ Ek, (3) may be written as (1).
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Figure 3: Caplet volas from the calibrated model (solid lines), original caplets
volas σK

T (points) and ATM caplet volas σATM
T (dashed lines) for different caplet

maturities T .

7.2 Proof of Lemma 2

Proof of (i):

Eeiz⊤J(t) = E E
[
eiz⊤

PNt
l=1 ϕ(sl,ul)|Nt

]
= E

[
Nt∏

l=1

eiz⊤ϕ(sl,ul)|Nt

]

= E

(∫ t

0

λ(s)ds
∫ t

0
λ(τ)dτ

∫

E

eiz⊤ϕ(s,u)p(du)

)Nt

=
∞∑

k=0

(∫ t

0
λ(τ)dτ

)k

k!
e−
R t
0

λ(τ)dτ

(∫ t

0

λ(s)ds
∫ t

0
λ(τ)dτ

∫

E

eiz⊤ϕ(s,u)p(du)

)k

= exp

∫ t

0

λ(s)ds

∫

E

(eiz⊤ϕ(s,u) − 1)p(du).

Proof of (ii): By differentiating the characteristic function with respect to zl

and z′l we obtain

∂

∂zl
Eeiz⊤J(t) = i

∫ t

0

λ(s)ds

∫

E

eiz⊤ϕ(s,u)ϕl(s, u)p(du)·

· exp

∫ t

0

λ(s)ds

∫

E

(eiz⊤ϕ(s,u) − 1)p(du),
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∂2

∂zl∂zl′
Eeiz⊤J(t) = −

∫ t

0

λ(s)ds

∫

E

eiz⊤ϕ(s,u)ϕl′(s, u)p(du)·

·
∫ t

0

λ(s)ds

∫

E

eiz⊤ϕ(s,u)ϕl(s, u)p(du) exp

∫ t

0

λ(s)ds

∫

E

(eiz⊤ϕ(s,u) − 1)p(du)

−
∫ t

0

λ(s)ds

∫

E

eiz⊤ϕ(s,u)ϕl(s, u)ϕl′(s, u)p(du)

· exp

∫ t

0

λ(s)ds

∫

E

(eiz⊤ϕ(s,u) − 1)p(du).

Hence

EJl(t) =

∫ t

0

λ(s)ds

∫

E

ϕl(s, u)p(du),

and

EJl(t)Jl′(t) =

∫ t

0

λ(s)ds

∫

E

ϕl′(s, u)p(du) ·
∫ t

0

λ(s)ds

∫

E

ϕl(s, u)p(du)

+

∫ t

0

λ(s)ds

∫

E

ϕl(s, u)ϕl′(s, u)p(du),

and then note that Cov(Jl(t), Jl′(t)) = EJl(t)Jl′(t) − EJl(t)EJl′(t).

7.3 Summed reciprocal eigenvalues of Σ

Consider the determinant

Dm :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 + κ2
1 κ1κ2 κ1κ3 κ1κm−1 κ1κm

κ2κ1 α2 + κ2
2 κ2κ3 κ2κm

κ3κ1 κ3κ2 α3 + κ2
3

κm−1κ1 κm−1κ2 αm−1 + κ2
m−1 κm−1κm

κmκ1 κmκ2 κmκm−1 αm + κ2
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 + κ2
1 κ1κ2 κ1κ3 κ1κm−1 κ1κm

κ2κ1 α2 + κ2
2 κ2κ3 κ2κm

κ3κ1 κ3κ2 α3 + κ2
3

κm−1κ1 κm−1κ2 αm−1 + κ2
m−1 κm−1κm

−κm

κ1
α1 0 0 αm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αmDm−1 −
κm

κ1
α1(−1)m−1

∣∣∣∣∣∣∣∣∣∣∣∣

κ1κ2 κ1κ3 κ1κm−1 κ1κm

α2 + κ2
2 κ2κ3 κ2κm

κ3κ2 α3 + κ2
3

κm−1κ2 κm−1κ3 αm−1 + κ2
m−1 κm−1κm

∣∣∣∣∣∣∣∣∣∣∣∣

.
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Since ∣∣∣∣∣∣∣∣∣∣∣∣

κ1κ2 κ1κ3 κ1κm−1 κ1κm

α2 + κ2
2 κ2κ3 κ2κm

κ3κ2 α3 + κ2
3 κ3κm

κm−1κ2 αm−1 + κ2
m−1 κm−1κm

∣∣∣∣∣∣∣∣∣∣∣∣

= ... = κ1κm(−1)m−2

∣∣∣∣∣∣∣∣∣∣

α2 0 0
0 α3

0
0

0 0 αm−1

∣∣∣∣∣∣∣∣∣∣

= κ1κm(−1)m−2α2 · · · αm−1,

we obtain

Dm = αmDm−1 −
κm

κ1
α1(−1)m−1κ1κm(−1)m−2α2 · · · αm−1

= αmDm−1 + κ2
mα1α2 · · · αm−1 = ...

=

(
1 +

m∑

p=1

κ2
p

αp

)
m∏

q=1

αp.

Hence,

Dm(λ) = |Σ − λIm| =

(
1 +

m∑

p=1

κ2
p

αp − λ

)
m∏

q=1

(αq − λ)

=
m∏

q=1

(αq − λ) +
m∑

p=1

κ2
p

m∏

q=1,
q 6=p

(αq − λ) =: · · · +Kλ+ |Σ|,

where the coefficient of λ is given by

K := −
m∑

p=1

m∏

q=1,
q 6=p

αq −
m∑

p=1

m∑

r=1,
r 6=p

κ2
p

m∏

q=1,
q 6=p,q 6=r

αq.
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We finally obtain

m∑

p=1

1

λi
= − K

|Σ| =

m∑

p=1

m∏

q=1,
q 6=p

αq +

m∑

p=1

m∑

r=1,
r 6=p

κ2
p

m∏

q=1,
q 6=p,q 6=r

αq

m∏

q=1

αq +
m∑

p=1

κ2
p

m∏

q=1,
q 6=p

αq

=

m∑

p=1

1
αp

+

m∑

p=1

m∑

r=1,
r 6=p

κ2
p

αpαr

1 +

m∑

p=1

κ2
p

αp

.

7.4 Derivation of (24)

On the one hand we have,

∫ ∞

0

Oj(v)e
ivzdv =

∫ ∞

0

eivzEj+1(e
Xj(Tj) − ev)+dv (53)

=

∫ ∞

0

eivz

∫ ∞

v

Pj+1(Xj(Tj) ∈ dx)(ex − ev)dv

=

∫ ∞

0

Pj+1(Xj(Tj) ∈ dx)

∫ x

0

eivz(ex − ev)dv

=

∫ ∞

0

Pj+1(Xj(Tj) ∈ dx)

[
e(iz+1)x

(
1

iz
− 1

iz + 1

)
+

1

iz + 1
− eixz

iz

]

and on the other hand,

∫ 0

−∞

Oj(v)e
ivzdv =

∫ 0

−∞

eivzEj+1(e
v − eXTj )+dv (54)

=

∫ 0

−∞

eivzdv

∫ v

−∞

Pj+1(Xj(Tj) ∈ dx)(ev − ex)

=

∫ 0

−∞

Pj+1(Xj(Tj) ∈ dx)

∫ 0

x

(ev − ex)eivzdz

=

∫ 0

−∞

Pj+1(Xj(Tj) ∈ dx)

(
e(iz+1)x

(
1

iz
− 1

iz + 1

)
+

1

iz + 1
− ex

iz

)

Note that the characteristic function Φj+1(z;Tj) of Xj(Tj) exist in the strip
{z = x+ iy ∈ C : −∞ < x <∞, −1 ≤ y ≤ 0} since Ej+1Lj(Tj) = Lj(0) exists.
Hence, by combining (53), (54), and using the martingale property of Xj(Tj)
again, we obtain (24).
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7.5 Characteristic properties of Oj

By denoting the density of Lj(Tj) with ρLj(Tj) we may write

Cj(K) = Bj+1(0)Ej+1[(Lj(Tj) −K)+δj ]

= Bj+1(0)δj

∫ ∞

K

(y −K)ρLj(Tj)(y)dy,

and then by differentiating two times with respect to K we obtain

C ′′
j (K) = Bj+1(0)δjρLj(Tj)(K).

The density of Xj := lnLj(Tj) − lnLj(0) is obviously given by ρXj
(v) :=

ρLj(Tj)(Lj(0)ev)Lj(0)ev, so

ρXj
(v) = B−1

j+1(0)δ−1
j C ′′

j (Lj(0)ev)Lj(0)ev

= B−1
j+1(0)δ−1

j L−1
j (0)

(
C′′

j (v) − C′
j(v)

)
e−v

=
(
O′′

j (v) −O′
j(v)

)
e−v, v 6= 0,

where O′′
j −O′

j extends continuously at v = 0. In particular, Oj satisfies

O′′
j (v) −O′

j(v) > 0 and O′(0−) −O′(0+) = 1. (55)

On the grid vj , −N − 1 ≤ j ≤ N + 1 we consider a continuous piecewise

linear approximation Õn−1 of On−1,

Õn−1(v) :=

N+1∑

j=−N

1

vj − vj−1
(On−1,j−1vj − vj−1On−1,j + v(On−1,j −On−1,j−1))1[vj−1,vj)(v)

with vj and On−1,j−1 given by (27) and (28), extended with On−1,−N−1 =
ON+1,n−1 = 0 (note that v0 := 0). Then it follows that (with suppressed
subscript n− 1)

d

dv

distr

Õ(v) =

N+1∑

j=−N

Oj −Oj−1

vj − vj−1
1[vj−1,vj)(v) (56)

in (Schwartz) distribution sense. Differentiating in distribution again yields

d2

dv2

distr

Õ(v) =
O−N

v−N − v−N−1
δv−N−1

+
ON

vN+1 − vN
δvN+1

+

N∑

j=−N

(
Oj+1 −Oj

vj+1 − vj
− Oj −Oj−1

vj − vj−1

)
δvj
. (57)
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Because O satisfies

O′′(v) −O′(v) =
d2

dv2

distr

O − d

dv

distr

O, v 6= 0,

we consider for v 6= 0,

(
d2

dv2

distr

Õ − d

dv

distr

Õ
)
e−v = −O1 −O0

v1
1[0,v1)(v)e

−v +
ON

vN+1 − vN
δvN+1

e−vN+1

O−N

v−N − v−N−1
δv−N−1

e−v−N−1 − O−N

v−N − v−N−1
1[v−N−1,v−N )(v)e

−v (58)

+

N∑

j=−N
j 6=0

[(
Oj+1 −Oj

vj+1 − vj
− Oj −Oj−1

vj − vj−1

)
δvj
e−vj − Oj+1 −Oj

vj+1 − vj
1[vj ,vj+1)(v)e

−v

]
,

which follows from (56) and (57) and some rearranging of terms. Since the
generalized function (58) should be an approximation of the density ρXn−1

,
integrals over each interval [vj−1, vj), j = −N, ..N + 1, should be non-negative.
This leads to

0 ≤
(
Oj+1 −Oj

vj+1 − vj
− Oj −Oj−1

vj − vj−1

)
e−vj − Oj+1 −Oj

vj+1 − vj

∫
1[vj ,vj+1)(v)e

−vdv

=
Oj+1 −Oj

vj+1 − vj
e−vj+1 − Oj −Oj−1

vj − vj−1
e−vj , j = −N, ...,−N, j 6= 0. (59)

Note that (59) holds if the input data are consistent with a function O which
is convex on both v < 0 and v > 0, and if the grid vj is fine enough. Fur-
ther, the total mass of (58) should be one. This leads straightforwardly to the
requirement,

O0 −O−1

−v−1
− O1 −O0

v1
= 1,

which is a discretisation of the boundary condition (55) in fact.
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